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Abstract This paper deals with the problem of
observer-based quantized control of nonlinear sys-
tems subject to actuator saturation and bounded dis-
turbances. The nonlinearity is assumed to satisfy the
local Lipschitz condition and appear in the state equa-
tion. Attention is focused on the design of an observer-
based controller such that the resulting closed-loop
system is convergent to a minimal ellipsoid for every
initial condition emanating from a large admissible
domain. The admissible Lipschitz constant, the dis-
turbance attenuation level, and admissible domains
are obtained through a convex optimization problem.
A sufficient condition for the existence of quantized
observers guarantees asymptotic stability for the result-
ing error dynamical system. Finally, illustrative exam-
ples are provided to demonstrate the effectiveness of
the proposed approach.

Keywords Observer based · Quantized control ·
Linear matrix inequalities · Nonlinear systems · Input
saturation

1 Introduction

Saturation nonlinearities are ubiquitous in engineer-
ing systems such as control systems and neural net-

G. Song (B) · T. Li · K. Hu · B.-C. Zheng
CICAEET, School of Information and Control, Nanjing
University of Information Science and Technology,
Nanjing 210044, Jiangsu, People’s Republic of China
e-mail: gongfei.song@gmail.com

work systems. In the past years, much attention has
been drawn to saturation nonlinearities. A great num-
ber of results on these topics have been reported and
different approaches have been posed in the literature
(see, e.g., [1,2,5,9–12]). The polytopic representation
of the saturation function has been originally proposed
in [1]. The problemof robust controller design of uncer-
tain discrete time delay systems subject to both con-
trol actuator saturation and bounded external distur-
bances was considered in [4], while a state feedback
controller was constructed by using an iterative lin-
ear matrix inequality relaxation scheme. In [5], a new
criterion for the regional asymptotic stability of dis-
crete time delayed system with saturation nonlinearity
by using sector-bounded nonlinear model was estab-
lished. In recent years, the study of Markovian jump
systems has received considerable attention and lots
of results have been reported [6–8]. It is worth not-
ing that, the robust H∞ filtering problem for time-
varyingMarkovian jump systemswith randomlyoccur-
ring nonlinearities and sensor saturation was investi-
gated in [9]. Note that the case with polytopic uncer-
tainties and the case with partially unknown transition
probabilities were considered in [9], respectively. The
observer-based discrete-time consensus problem for a
general linear multi-agent system subject to actuator
saturation was discussed in [10], where this problem
was solved by means of the bounded input technique.
In [11], the problem of event-based linear control of
systems subject to input saturation was proposed and
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novel event-triggered control algorithms were devel-
oped to achieve global stabilization.

For decades, some work dealt with the problem of
observer design has appeared in many aspects. The
observer-based control problem for a class of uncertain
systems was studied in [14] where exponential stabi-
lizability and the convergence rate of system were pro-
posed. Recently, observers design for Lipschitz non-
linear systems has been widely investigated, see for
instance [15–17,21,22] and the references therein. In
[15], the non-convex problem was decomposed into
observer design and controller design by introducing
new scalar variables. A new algorithm for robust H∞
nonlinear observer design of a class of Lipschitz non-
linear systems was proposed in [16]. After that, the
method proposed in [17] was noniterative and not only
provided a less restrictive solution but also extended
the results to uncertain and Lipschitz nonlinear sys-
tems. By using a single-step approach, full-order and
reduced-order observer-based quantized feedback con-
trollers were designed in [19]. A less conservative Lip-
schitz condition was introduced in [21]. It should be
pointed out that this condition led to less restrictive
synthesis conditions than those reported in the litera-
ture.Moreover, much attention has been focused on the
problems of observer design for uncertain systems (see,
e.g. [22,23]), Markov jump systems (see, e.g. [24,25]),
complex dynamical network (see, e.g. [26]) and time
delay systems (see, e.g. [27,28]). On the other hand,
the output feedback control is more useful because it
can be easily implemented. Therefore, some impor-
tant problems have been studied, such as robust sta-
tic output feedback H∞ control [32], dynamic output-
feedback-based H∞ design [29] and output feedback
predictive control [30]. In [31], the observer and con-
troller gains were computed simultaneously by solving
only one inequality and a new linear matrix inequality
(LMI) condition was provided for the observer-based
H∞ stabilization. In contrast to the existing conditions
for observer-based H∞ control, the improvement of the
proposed results over the existing ones is shown in [33].

On another research front, a quantized feedback sys-
tem is a control system in which the feedback loop
involves finite-level quantization of signals. A quan-
tizer can convert a real-valued signal into a piecewise
constant one. Since the nonlinearities caused by the
finite-level quantization of signals, the analysis and
synthesis of quantized feedback systems are compli-
cated. Recently, the quantized feedback control prob-

lems have recently been paid much research atten-
tion (see, e.g. [19,34–38]). Based on the classical sec-
tor bound approach, a logarithmic quantizer has been
reported in [34], where the robust H∞ finite-horizon
filtering problem was investigated for discrete time-
varying stochastic systems. With regard to the trans-
mission error, an effective quantization method and the
zooming protocol were presented in [35]. The feedback
stabilization problem for single-input single-output lin-
ear uncertain control systemswith saturating quantized
measurements was addressed in [36]. In particular, the
problems of stabilization of control systems with quan-
tization and actuator saturation were developed in [37]
and [38], respectively. To the best of the authors’ knowl-
edge, there are no reports on the problem of quantized
control for systems via actuator saturation and bounded
disturbances using a saturated quantizer.

Motivated by these studies, this brief considers the
problem of observer-based quantized control of non-
linear systems with input saturation and bounded dis-
turbances. It is often difficult to handle simultaneous
the nonlinearities caused by the quantization and Lip-
schitz nonlinearities. In this paper, the saturated quan-
tizer is addressed by using the method to investigate
the problem of nested saturations. Different from the
previous results where the Lipschitz constant is com-
pletely fixed, amore general situationwhere the admis-
sible Lipschitz constant is obtained through a con-
vex optimization problem. The purpose of this paper
is to develop a sufficient condition such that there
exists an admissible initial domain ensuring that for
every initial condition from this admissible domain,
all solutions of the closed-loop system are convergent
to a minimal ellipsoid. More specifically, a specified
disturbance attenuation level is also required to be
achieved.

NotationThroughout this paper, formatrices X,Y ∈
R
n×n , the notation X ≥ Y (respectively, X > Y )

with X and Y being symmetric matrices, means that
the matrix X − Y is positive semi-definite (respec-
tively, positive definite). I is the identity matrix with
appropriate dimension. T represents the transpose. For
a matrix H ∈ R

m×n, H(h,·) denotes its h-th row.
1m denotes a vector of m dimensions with compo-
nents equal to 1. diag{a1, . . . , an} stands for a diagonal
matrix whose diagonal elements are a1, . . . , an . For a
vector v ∈ R

n, v(i), i = 1, 2, . . . , n denotes the i-th
component of v. Matrices, if not explicitly stated, are
assumed to have compatible dimensions.
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2 Problem formulation

Consider a discrete nonlinear system with input sat-
uration and bounded system disturbances, which is
described by

x(k + 1) = (A + �A(k))x(k) + BsatU1(u(k))

+ f (x(k)) + Ew(k), (1)

y(k) = (C + �C(k))x(k) + Dw(k), (2)

z(k) = (G1 + �G1(k))x(k)

+G2satU1(u(k)) + G3w(k), (3)

where x(k) ∈ R
n is the state, u(k) ∈ R

m is the con-
trol input, y(k) ∈ R

p is the output, z(k) ∈ R
q is

the control output and w(k) ∈ R
r is the disturbance

input. A, B,C, D, E,G1,G2 and G3 are known real
constant matrices with appropriate dimensions denot-
ing the nominal system of (1)–(3), �A(k),�C(k) and
�G1(k) are unknown norm-bounded matrices repre-
senting parameter uncertainties, and are assumed to be
of the form⎡
⎣

�A(k)
�C(k)
�G1(k)

⎤
⎦ =

⎡
⎣
M1F1(k)N1

M2F2(k)N2

M3F3(k)N3

⎤
⎦ , (4)

where Ml , Nl , l = 1, 2, 3 are known real constant
matrices and Fl(k), l = 1, 2, 3 are unknown real
matrix satisfying Fl(k)T Fl(k) ≤ I . sat(·):Rm →
R
m is vector valued saturation function defined as

satU1(u(k)) = [
satU1(u(k)(1)) . . . satU1(u(k)(m))

]T
,

where satU1(u(k)(h)) = sign(u(k)(h))min{U1(h),

|u(k)(h)|} with U1 = [
U1(1) . . . U1(m)

]T
,U1(h) >

0, h = 1, 2, . . . ,m being constants. U1 denotes the
level of saturation.

Throughout this paper, we consider the following
saturated quantizer with saturation level U2 (U2 > 0):

Q(v(h)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

U2(h) − �0

2
, for v(h) > U2(h)(� N�0), N = 1, 2, 3, . . . ,

�0

2
+ k�0, for k�0 < v(h) ≤ (k + 1)�0, k = 0, 1, 2, . . . , N − 1,

0, for v(h) = 0,

−Q(−v(h)), for v(h) < 0,

(5)

where �0 > 0 is the quantization error bound (see
[13]). Then, we let φ(v) = Q(v) − satU2(v). Fur-
thermore, one has |φ(v(h))| ≤ �0

2 , h = 1, 2, . . . ,m,
i.e. |φ(v)| ≤ √

m�0
2 . Similar to [2], we define the set

V = {v ∈ R
m :v( j) = 1, 2, 3}. It is easy to see that

there are 3m elements in V . Then, we present a v ∈ V
to define a diagonal matrix �i (v) such that

�i (v) = diag{σ(v(1) − i), σ (v(2) − i),

. . . , σ (v(m) − i)}, i = 1, 2, 3,

where ∀ j = 1, 2, . . . ,m,

σ (v( j) − i) =
{
1, if v( j) = i,

0, if v( j) 	= i.

As shown in [17], the function f (·):Rn → R
n stands

for the nonlinearity of the system and satisfies the fol-
lowing assumption.

Assumption 1 We assume that the function f (x) is
locally Lipschitz with respect to x in a region D con-
taining the origin if ‖ f (0)‖ = 0 and

‖ f (x1) − f (x2)‖ ≤ γ ‖x1 − x2‖, ∀x1, x2 ∈ D,

where ‖ · ‖ is the induced 2-norm and γ > 0 is called
the Lipschitz constant.

Remark 1 In this case, the Lipschitz constant γ > 0
is not determined. Our aim is finding the maximum
allowable Lipschitz constant γ ∗.

We introduce the following technical lemma, which
is crucial to the proof of our main results.

Lemma 1 ([3]) Let D,H and F be real matrices of
appropriate dimensions with F satisfying FTF ≤ I .
Then for any scalar λ > 0, we have

DFH + (DFH)T ≤ λ−1DDT + λHTH.

Now, we design observer-based controller for sys-
tem (1)–(3) of the form

x̃(k + 1)= Ax̃(k)+BsatU1(u(k)) + L(y(k) − Cx̃(k))

+ f (x̃(k)), u(k) = Q(K x̃(k)), (6)

123
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where x̃(k) ∈ R
n is the estimated state, L is the gain

matrix of the designed observer, K is the gain matrix
of the feedback controller. Defining the observer error
as e(k) = x(k) − x̃(k), we have

e(k + 1) = (A − LC)e(k) + [�A(k) − L�C(k)]x(k)
+ f (x(k)) − f (x̃(k)) + (E − LD)w(k).

(7)

Applying the controller (6) to system (1)–(3), we obtain
the resulting closed-loop system as

x̂(k + 1) = ( Â + � Â(k))x̂(k)

+B̂satU1(Q(K̂ x̂(k)))

+ f̂ (x(k), x̃(k)) + Êw(k), (8)

where

Â =
[
A 0
0 A − LC

]
,

� Â(k) =
[

�A(k) 0
�A(k) − L�C(k) 0

]
,

Ê =
[

E
E − LD

]
,

K̂ = K
[
In −In

]
,

B̂ =
[
B
0

]
,

f̂ (x(k), x̃(k)) =
[

f (x(k))
f (x(k)) − f (x̃(k))

]
,

‖ f̂ (x(k), x̃(k))‖ ≤ γ ‖x̂(k)‖, x̂(k) =
[
x(k)
e(k)

]
.

Then, the problem to be addressed can be formulated
as follows:

• Determine a controller (6) (with u(k) = 0 and
w(k) = 0) such that the closed-loop system (8)
is asymptotically stable with maximum allowable
Lipschitz constant γ ∗.

• Design a state feedback gain K and an observer
gain L such that there exists the controller (6)
(with w(k) = 0) ensuring that the closed-loop sys-
tem (8) is convergent to the minimal ellipsoid for
every initial condition from the admissible domain.
Simultaneously, the corresponding domains and
the maximum allowable Lipschitz constant γ ∗ are
obtained.

• Determine a quantized observer in the form of (6)
such that the resulting closed-loop system (8) is
asymptotically stable and a prescribed disturbance
attenuation level is achieved.

3 Stability analysis

The result on stability analysis for system (8) with
u(k) = 0 and w(k) = 0 is provided in the following
theorem.

Theorem 1 The uncertain discrete system (8) with
u(k) = 0 andw(k) = 0 is asymptotically stable if there
exist matrices P > 0, Z , L and scalars ε > 0, α >

0, λ1 > 0, λ2 > 0 such that the following condition
holds:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−ε I 0 0 0 I 0

 −α I 0 0 0 I

 
 −λ1 I 0 M̂T

1 Z 0

 
 
 −λ2 I M̂T

2 Z 0

 
 
 
 P − Z − ZT ZT Â

 
 
 
 
 −P + N̂ T

1 λ1 N̂1 + N̂ T
2 λ2 N̂2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (9)
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where

M̂1 =
[
M1

M1

]
, M̂2 =

[
0

−LM2

]
,

N̂1 = [
N1 0

]
, N̂2 = [

N2 0
]
.

Proof Under conditions u(k) = 0 and w(k) = 0, sys-
tem (8) is reduced to

x̂(k + 1) = ( Â + � Â(k))x̂(k) + f̂ (x(k), x̃(k)). (10)

A Lyapunov function for system (10) is constructed
by using symmetric positive-definite matrix P as
follows:

V (k + 1) = x(k)T Px(k), P =
[
P1 0
0 P2

]
.

Then, we have

�V (k) = V (k + 1) − V (k)

= [( Â + � Â(k))x̂(k) + f̂ (x(k), x̃(k))]T P
×[( Â + � Â(k))x̂(k)

+ f̂ (x(k), x̃(k))] − x̂(k)T Px̂(k)

= x̂(k)T ( Â + � Â(k))T P( Â + � Â(k))x̂(k)

+ f̂ (x(k), x̃(k))T P f̂ (x(k), x̃(k))

+ 2x̂(k)T ( Â + � Â(k))T P f̂ (x(k), x̃(k))

− x̂(k)T Px̂(k). (11)

Fist, denote Q = ε I − P . Then, from Assumption
1, it follows that

2x̂(k)T ( Â + � Â(k))T P f̂ (x(k), x̃(k))

+ f̂ (x(k), x̃(k))T P f̂ (x(k), x̃(k))

= 2x̂(k)T ( Â + � Â(k))T P f̂ (x(k), x̃(k))

+ ε f̂ (x(k), x̃(k))T f̂ (x(k), x̃(k))

− f̂ (x(k), x̃(k))T Q f̂ (x(k), x̃(k))

≤ x̂(k)T ( Â + � Â(k))T PQ−1P( Â + � Â(k))x̂(k)

+ εγ 2 x̂(k)T x̂(k). (12)

Hence, we can get

�V (k) ≤ x̂(k)T ( Â + � Â(k))T P(Q−1 + P−1)

×P( Â + � Â(k))x̂(k) + εγ 2 x̂(k)T x̂(k)

− x̂(k)T Px̂(k) = x̂(k)T�1 x̂(k), (13)

where �1 = ( Â + � Â(k))T P(Q−1 + P−1)P( Â +
� Â(k)) + εγ 2 I − P . For a matrix Z =

[
Z1 0
0 Z2

]
, it

is worth noting that the following inequality holds (see
[25]):

− ZT P−1Z ≤ P − Z − ZT . (14)

Using the above inequality (14), and then pre-
multiplying and post-multiplying (9) by diag{I, I, I, I,
Z−T , I } and diag{I, I, I, I, Z−1, I }, respectively, it is
easy to deduce

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−ε I 0 0 0 I 0

 −α I 0 0 0 I

 
 −λ1 I 0 M̂T

1 0

 
 
 −λ2 I M̂T

2 0

 
 
 
 −P−1 Â

 
 
 
 
 −P + N̂ T

1 λ1 N̂1 + N̂ T
2 λ2 N̂2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (15)

By applying the Schur complement equivalence, it fol-
lows from (15) that

⎡
⎢⎢⎢⎣

−λ1 I 0 M̂T
1 0


 −λ2 I M̂T
2 0


 
 ε−1 I − P−1 Â

 
 
 −P + α−1 I + N̂ T

1 λ1 N̂1 + N̂ T
2 λ2 N̂2

⎤
⎥⎥⎥⎦ < 0. (16)
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It follows fromLemma1 that existmatrices F1(k), F2(k)
such that

[
M̂1

0

]
F1(k)

[
0 N̂1

]
+

[
0 N̂1

]T
F1(k)

T
[
M̂1

0

]T

≤
[
M̂1

0

]
λ−1
1

[
M̂1

0

]T

+
[
0 N̂1

]T
λ1

[
0 N̂1

]
,

[
M̂2

0

]
F2(k)

[
0 N̂2

]
+

[
0 N̂2

]T
F2(k)

T
[
M̂2

0

]T

≤
[
M̂2

0

]
λ−1
2

[
M̂2

0

]T

+
[
0 N̂2

]T
λ2

[
0 N̂2

]
. (17)

Now taking into account (17) and using the Schur com-
plement equivalence again, then it can be shown from
(16) that
[

ε−1 I − P−1 Â + � Â(k)

 −P + α−1 I

]
< 0. (18)

Furthermore, by the matrix inversion lemma, it fol-
lows that (Q−1 + P−1)−1 = P − P(Q + P)−1P =
P − Pε−1P . Define α = (εγ 2)−1, so that the above
inequality (18) implies that �1 < 0. Thus, the uncer-
tain discrete system (8) is stable with u(k) = 0 and
w(k) = 0. This completes the proof. �

Remark 2 It should be pointed out that, the condition in
Theorem 1 is not in the form of standard LMI. Thus, it
cannot be solved directly. To overcome this difficulty,
we can let L̂ = ZT

2 L . Moreover, the inequality (9)
can be solved directly by using the standard convex
optimization numerical software.

4 Observer-based quantized control design

In this section, an observer-based quantized feedback
controller will be designed for system (8) (withw(k) =
0) such that the closed-loop system (8) is convergent to
a minimal ellipsoid.

Theorem 2 Consider the uncertain discrete system (8)
withw(k) = 0. For given scalars0 < π1 < π2, 0 < π3

andamatrix J > 0, if there existmatrices P > 0, P2 >

0, H1, H2, K , L, a diagonal matrix 0 < T ∈ R
m×m

and scalars ε > 0, α > 0, λ1 > 0, λ2 > 0 such that
the following inequalities hold:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ε I 0 0 0 I 0 0

 −α I 0 0 0 I 0

 
 −λ1 I 0 M̂T

1 0 0

 
 
 −λ2 I M̂T

2 0 0

 
 
 
 −2J + J P J Â + B̄1 B̄2


 
 
 
 
 
 0

 
 
 
 
 
 −π3T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (19)

[
U1(h) I Ĥ1(h,·)


 U1(h)P

]
≥ 0,

[
U2(h) I Ĥ2(h,·)


 U2(h)P

]
≥ 0, h = 1, 2, . . . ,m, (20)

[
(π1 − π2)I

�
2 1

T
mT


 −π−1
3 T

]
≤ 0, (21)

P2 − P ≥ 0, (22)

where


 = − (1 + π1)P + π2P2 + N̂ T
1 λ1 N̂1

+N̂ T
2 λ2 N̂2,

Ĥ1 = H1
[
In −In

]
, Ĥ2 = H2

[
In −In

]
,

M̂1 =
[
M1

M1

]
, M̂2 =

[
0

−LM2

]
,

N̂1 = [
N1 0

]
, N̂2 = [

N2 0
]
,

B̄1 = B̂[�1(v)Ĥ1 + �2(v)Ĥ2 + �3(v)K̂ ],
B̄2 = B̂[�2(v) + �3(v)], ∀v ∈ V.

Then the resulting closed-loop system (8) with w(k) =
0 is convergent to a small ellipsoid for every initial
condition from an admissible domain.
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Proof For further discussion, we denote an ellipsoid

for a positive definite matrix P =
[
P11 0
0 P12

]
by

�(P) = {x̂(k) ∈ R
2n :x̂(k)T Px̂(k) ≤ 1} and a

symmetric polyhedron for a matrix Ĥ1 ∈ R
m×2n

by L(Ĥ1,U1) = {x̂(k) ∈ R
2n : | Ĥ1(h,·) x̂(k) |≤

U1(h), h = 1, 2, . . . ,m}. From [1] and [2], it fol-
lows that (20) is equivalent to �(P) ⊂ L(Ĥ1,U1) ∩
L(Ĥ2,U2). By considering (22), it follows that the
ellipsoid �(P) contains the ellipsoid �(P2) with

P2 =
[
P21 0
0 P22

]
. By following a similar line as

in [2], for ∀v ∈ V and for all x̂(k) in some ellipsoid
�(P), B̂satU1(Q(K̂ x̂(k))) can be expressed as

B̂satU1(Q(K̂ x̂(k)))

= B̂satU1(φ(K̂ x̂(k)) + satU2(K̂ x̂(k)))

∈ convex{B̂�1(v)Ĥ1 x̂(k) + B̂�2(v)(φ(K̂ x̂(k))

+Ĥ2 x̂(k)) + B̂�3(v)(φ(K̂ x̂(k)) + K̂ x̂(k))}
≤ max

v∈V
{B̂[�1(v)Ĥ1 + �2(v)Ĥ2 + �3(v)K̂ ]x̂(k)

+B̂[�2(v) + �3(v)]φ(K̂ x̂(k))}, (23)

where convex{·} stands for the convex full. To proceed,
a Lyapunov function candidate is chosen as V (k) =
x̂(k)T Px̂(k). For x̂(k) ∈ �(P), the forward difference
in the functional V (k) along the solution of (8) with
w(k) = 0 is given by

�V (k) = x̂(k + 1)T Px̂(k + 1) − x̂(k)T Px̂(k)

≤ max
v∈V

{[( Â + B̄1 + � Â(k))x̂(k) + B̄2φ(K̂ x̂(k))]T

P[( Â + B̄1 + � Â(k))x̂(k) + B̄2φ(K̂ x̂(k))]
+ 2[( Â + B̄1 + � Â(k))x̂(k) + B̄2φ(K̂ x̂(k))]T
P f̂ (x(k), x̃(k))

+ f̂ (x(k), x̃(k))T P f̂ (x(k), x̃(k)) − x̂(k)T Px̂(k)}.
(24)

Similar to the derivation of (12), we can show

�V (k) ≤ max
v∈V

{[( Â + B̄1 + � Â(k))x̂(k)

+ B̄2φ(K̂ x̂(k))]T P(P−1 + Q−1)

× P[( Â + B̄1 + � Â(k))x̂(k) + B̄2φ(K̂ x̂(k))]
+ εγ 2 x̂(k)T x̂(k) − x̂(k)T Px̂(k)}. (25)

On the other hand, it is easy to show that

�V (k) − π1[x̂(k)T Px̂(k) − 1] − π2[1 − x̂(k)T P2 x̂(k)]
−π3[φ(K̂ x̂(k))T Tφ(K̂ x̂(k)) − �2

4
1TmT 1m ]

≤ max
v∈V

{[
x̂(k)T φ(K̂ x̂(k))T

]

�2

[
x̂(k)

φ(K̂ x̂(k))

]
+ π1 − π2 + �2

4
π31

T
mT 1m

}
,

(26)

where

�2 =
[

( Â + B̄1 + � Â(k))T P
B̄T
2 P

]
(P−1 + Q−1)

×
[
P( Â + B̄1 + � Â(k)) P B̄2

]

+
[−(1 + π1)P + π2P2 + εγ 2 0

0 −π3T

]
.

The proof follows a similar procedure to the proof of
Theorem 1. Considering −P−1 ≤ −2J + J P J (see
[18]), the matrix inequality (19) implies
⎡
⎢⎢⎢⎢⎣

−λ1 I 0 M̂T
1 0 0


 −λ2 I M̂T
2 0 0


 
 −P−1 + ε−1 I Â + B̄1 B̄2


 
 
 
 + α−1 I 0

 
 
 
 −π3T

⎤
⎥⎥⎥⎥⎦

< 0.

(27)

Furthermore, by the Schur complement equivalence
and Lemma 1, we can deduce from (27) that
⎡
⎣

−P−1 + ε−1 I Â + B̄1 + � Â(k) B̄2

 −(1 + π1)P + π2P2 + α−1 I 0

 
 −π3T

⎤
⎦<0.

(28)

Pre-multiplying and post-multiplying (28) by
diag{P, I, I, } and using the matrix inversion lemma
it is easy to get that
⎡
⎣

−(P−1 + Q−1)−1 P( Â + B̄1 + � Â(k)) P B̄2


 −(1 + π1)P + π2P2 + α−1 I 0

 
 −π3T

⎤
⎦<0.

(29)

Note that α = (εγ 2)−1. From (29) it is easy to see that
�2 < 0. Then, by the Schur complement equivalence,
it follows from (21) that

π1 − π2 + �2

4
π31

T
mT 1m ≤ 0.

Using this together with (29) and noting (26), we
can verify that �V (k) < 0 for x̂(k) such that
x̂(k)T Px̂(k) ≤ 1 and x̂(k)T P2 x̂(k) ≥ 1. Hence, the
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closed-loop system obtained by applying observer-
based quantized feedback controller (6) to system
(1)–(2) (with w(k) = 0) converges to {x̂(k) ∈
R
2n :x̂(k)T P2 x̂(k) ≤ 1} |(x(k),0) for all initial con-

ditions in {x̂(k) ∈ R
2n : x̂(k)T Px̂(k) ≤ 1 and

x̂(k)T P2 x̂(k) ≥ 1} |(x(k),0). This completes the
proof. �


When the conditions of Theorem 2 are satisfied, we
can obtain the estimates of the corresponding domain of
attraction of the closed-loop systemswith unknown the
Lipschitz constant. An implicit objective of this paper
is to maximize the estimation of the domain of initial
states associated with the closed-loop system. Simul-
taneously, our another aim is to minimize the ellipsoid
�(P2). Similar to [17] and [20], for a matrix R, the
corresponding domains and the maximum allowable
Lipschitz constant γ ∗ = 1√

εα
can be determined by

solving the following convex optimization problem

inf
P,P2,H1,H2,K ,L ,T,R,ε,α,λ1,λ2,v∈V

ρ(trace(R)

+trace(P)) + (1 − ρ)(α + ε) (30)

s. t. (a) Inequalities (19), (20), (21) and (22),

(b)

[
P2 −I
−I R

]
≥ 0,

where the tuning parameter ρ satisfies 0 < ρ < 1.

Remark 3 In implementation of (30), thematrix J may
be chosen based on the results in [18]. The matrix J
should be a positive-definite matrix and it can be set as[

β(AT A + I )−1 0
0 β(AT A + I )−1

]
, where β is pos-

itive constant.

5 Robustness analysis

In what follows, we will present some conditions to
design a quantized observer in the form of (6) such
that the corresponding closed-loop system is asymptot-
ically stable and a prescribed disturbance attenuation
level is achieved.

Theorem 3 Given constant scalars 0 < π1 < π2, 0 <

π3 andamatrix J > 0, the closed-loop systemobtained
by applying observer-based quantized feedback con-
troller (6) to system (1)–(3) is robustly stable with
disturbance attenuation level η, if there exist matri-
ces P > 0, P2 > 0, H1, H2, K , L, a diagonal matrix
0 < T ∈ R

m×m and scalars ε > 0, α > 0, λ1 >

0, λ2 > 0, λ3 > 0 such that the following inequalities
hold:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−λ3 I 0 0 0 0 MT
3 0 0 0 0


 −ε I 0 0 0 0 I 0 0 0


 
 −α I 0 0 0 0 I 0 0


 
 
 −λ1 I 0 0 M̂T
1 0 0 0


 
 
 
 −λ2 I 0 M̂T
2 0 0 0


 
 
 
 
 −I 0 Ḡ1 + Ĝ2 Ĝ22 G3


 
 
 
 
 
 −2J + J P J Â + B̄1 B̄2 Ê


 
 
 
 
 
 
 � 0 0


 
 
 
 
 
 
 
 −π3T 0


 
 
 
 
 
 
 
 
 −η2 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (31)

[
U1(h) I Ĥ1(h,·)


 U1(h)P

]
≥ 0,

[
U2(h) I Ĥ2(h,·)


 U2(h)P

]
≥ 0, h = 1, 2, . . . ,m, (32)

[
(π1 − π2)I

�
2 1

T
mT


 −π−1
3 T

]
≤ 0, (33)

P2 − P ≥ 0, (34)
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where

� = −(1 + π1)P + π2P2 + N̂ T
1 λ1 N̂1

+N̂ T
2 λ2 N̂2 + N̂ T

3 λ3 N̂3,

M̂1 =
[
M1

M1

]
, M̂2 =

[
0

−LM2

]
,

N̂1 = [
N1 0

]
, N̂2 = [

N2 0
]
,

N̂3 = [
N3 0

]
,

Ĥ1 = H1
[
In −In

]
, Ĥ2 = H2

[
In −In

]
,

Ḡ1 = [
G1 0

]
,

Ĝ2 = G2[�1(v)Ĥ1 + �2(v)Ĥ2 + �3(v)K̂ ],
Ĝ22 = G2[�2(v) + �3(v)],
B̄1 = B̂[�1(v)Ĥ1 + �2(v)Ĥ2 + �3(v)K̂ ],
B̄2 = B̂[�2(v) + �3(v)], ∀v ∈ V.

Proof Introduce the following cost function for system
(3) as

J =
∞∑
k=1

[z(k)T z(k) − η2w(k)Tw(k)].

Under zero initial condition, index J can be rewritten
as

J ≤
∞∑
k=1

[z(k)T z(k) − η2w(k)Tw(k) + �V (k)]. (35)

Applying the controller (6)–(3), we can obtain the
resulting closed-loop system as

z(k) = Ĝ1 x̂(k) + G2satU1(φ(K̂ x̂(k))

+ satU2(K̂ x̂(k))) + G3w(k)

≤ max
v∈V

{
(Ĝ1 + Ĝ2)x̂(k)

+ Ĝ22φ(K̂ x̂(k)) + G3w(k)
}

, (36)

where Ĝ1 = Ḡ1 + M3F3(k)N̂3.
Moreover, we can deduce that

�V (k) + z(k)T z(k) − η2w(k)Tw(k)

−π1[x̂(k)T Px̂(k) − 1]
−π2[1 − x̂(k)T P2 x̂(k)]
−π3[φ(K̂ x̂(k))T Tφ(K̂ x̂(k)) − �2

4
1TmT 1m]

≤ max
v∈V

{[
x̂(k)T φ(K̂ x̂(k))T w(k)T

]

�3

⎡
⎣

x̂(k)
φ(K̂ x̂(k))

w(k)

⎤
⎦

+π1 − π2 + �2

4
π31

T
mT 1m

}
, (37)

where

�3 =
⎡
⎣

( Â + B̄1 + � Â(k))T P
B̄T
2 P

ÊT P

⎤
⎦ (P−1 + Q−1)

× [
P( Â + B̄1 + � Â(k)) P B̄2 P Ê

]

+
⎡
⎣

−(1 + π1)P + π2P2 + εγ 2 0 0
0 −π3T 0
0 0 −η2 I

⎤
⎦

+
⎡
⎣

(Ĝ1 + Ĝ2)
T

ĜT
22

GT
3

⎤
⎦[

(Ĝ1 + Ĝ2) Ĝ22 G3
]
.

Then, the proof can be carried out by following simi-
lar lines as in the proof of Theorems 1 and 2. There-
fore, it can be shown that z(k)T z(k)−η2w(k)Tw(k)+
�V (k) < 0. When the zero initial condition is used,
it is easy to get that z(k)T z(k) − η2w(k)Tw(k) <

−V (k + 1) < 0, that is J < 0. Thus, the closed-loop
system obtained by applying observer-based quantized
feedback controller (6) to system (1)–(3) is robustly sta-
ble and it also satisfies a prescribed disturbance atten-
uation level. This completes the proof. �


According to the conditions of Theorem 3, themaxi-
mum Lipschitz constant and the minimum disturbance
attenuation level can be obtained by utilizing multi-
objective optimization method. Parallel to the preced-
ing section, we will present the following convex opti-
mization problem

inf
P,P2,H1,H2,K ,L ,T,R,ε,α,λ1,λ2,λ3,v∈V

ρ(trace(R)

+trace(P)) + (1 − ρ)(α + ε + η̂) (38)

s. t. (a) Inequalities (31), (32), (33) and (34),

(b)

[
P2 −I
−I R

]
≥ 0,

where η̂ = η2 and 0 < ρ < 1.

6 Simulation examples

Here, two examples are presented in this section in
order to illustrate the effectiveness of the proposed
approach.
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Fig. 1 Real states of the system (8) with w(k) = 0 (Example 1)

Example 1 Consider the uncertain discrete system
from (1) to (2) with parameters as follows:

A =
[−0.5 0.2

0.5 1.3

]
, B =

[−0.1
0.5

]
,

C =
[
1.2 1
0.5 0.1

]
,

M1 =
[

0.1
−0.1

]
, M2 =

[
0.1
0.2

]
,

N1 = [
0.1 0.1

]
, N2 = [

0.2 0.1
]
,

F1(k) = sin(k), F2(k) = cos(k).

In this example, we assume π1 = 10−3, π2 =
0.05, π3 = 1,U1 = 6,U2 = 8, β = 15 and the quan-
tization error bound �0 = 1.2. In what follows, based
on our results, we resort to the standard convex opti-
mization numerical software to check the convex opti-
mization problem in (30), and obtain γ ∗ = 0.0566,

K = [−0.8023 −2.1734
]
,

L =
[−0.6750 1.6858

1.6858 −3.1340

]
.

To verify the designed observer, Fig. 1 shows the

real states for initial condition given by x(0) =
[−3

1

]

and Fig. 2 presents the estimated states for initial condi-

tion given by x̃(0) =
[
0
0

]
. Moreover, Fig. 3 shows the

error dynamics for the same initial conditions. It can be
observed from Fig. 3 that the estimation error does tend
to zero asymptotically. Figure 4 shows the input trajec-

0 5 10 15 20 25 30
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

k

Fig. 2 Estimated states of the system (8) withw(k) = 0 (Exam-
ple 1)

0 5 10 15 20 25 30
−3

−2

−1

0

1

2

3

k

Fig. 3 Estimation error under the observer (6) with w(k) = 0
(Example 1)

tory of the closed-loop system for the aforementioned
initial conditions. It is clearly observed from Fig. 5 that
some trajectories of system states emanating from the
outer ellipsoid converge to the inner ellipsoid.

Example 2 Consider the uncertain discrete system
from (1) to (3) with the same system parameters as
in Example 1 and

D =
[
0.2
0.1

]
, E =

[
0.1
0.2

]
,

G1 = [
0.1 0.2

]
,

G2 = 0.2, G3 = 0.1,

M3 = [
0.2 0.1

]
,

N3 = 0.1, F3(k) = sin(k).
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Fig. 4 Trajectory of input (Example 1)
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x 2

Fig. 5 State trajectories (Example 1)

In this case, we choose π1 = 0.01, π2 = 0.17, π3 =
1,U1 = 6,U2 = 8, β = 7 and the quantization
error bound �0 = 1.2. Then, using the standard
convex optimization numerical software, we can get
the disturbance attenuation level η = 2.2377 and
the maximum Lipschitz constant γ ∗ = 0.0307. By
solving the convex optimization problem in (38), the
corresponding design parameters can be obtained as
follows:

K = [−0.7203 −1.9208
]
,

L =
[−0.5728 1.7368

1.7368 −3.3591

]
.

The real states of the closed-loop system (8) for ini-

tial condition given by x(0) =
[−2.2

0.8

]
are shown in

0 5 10 15 20 25 30 35 40 45 50
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

k

x

Fig. 6 Real states of the system (8) (Example 2)
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Fig. 7 Estimated states of the system (8) (Example 2)
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Fig. 8 Estimation error under the observer (6) (Example 2)

Fig. 6 and the estimated states of the closed-loop sys-

tem (8) for initial condition given by x̃(0) =
[
0
0

]
are

recorded in Fig. 7. Furthermore, Fig. 8 depicts the error
dynamics for the same initial conditions. Fig. 9 plots
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Fig. 9 Trajectory of input (Example 2)
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Fig. 10 State trajectories (Example 2)

the trajectory of input for the same initial conditions.
Some state vectors of system under the quantized feed-
back controller are shown in Fig. 10, fromwhichwe see
that the states cannot converge to the origin; however,
they remain around a minimal ellipsoid.

7 Conclusions

This paper has studied observer-based quantized con-
trol of nonlinear systems with input saturation and
bounded system disturbances. The designed observer-
based quantized feedback controllers guarantee that
there exists an admissible initial domain ensuring that
all solutions of the closed-loop system are conver-
gent to a minimal ellipsoid for every initial condition
from this admissible domain. In addition, the maxi-

mum Lipschitz constant and the minimum disturbance
attenuation level are obtained by using multi-objective
optimizationmethod. Finally, two simulation examples
have been presented to demonstrate the usefulness of
the derived results.
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