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Abstract Geometrical actions often used to describe
elastic properties of elastic rods and fluid membranes
have been proposed recently to explain functional
mechanism of the primary visual cortex V1. These
energies are defined in terms of functionals depend-
ing on the Frenet–Serret curvatures of a curve (profile
curve, for axisymmetric membranes) and are relevant
in image restoration by curve completion. In this con-
text, extremals of length, total squared curvature (bend-
ing energy) and total squared torsion, acting on spaces
of curves of the unit tangent bundle of the plane, are
studied here.We first see that Sub-Riemannian geodes-
ics in R

2 × S
1 project down to minimizers of a total

curvature type energy in the plane. This motivates us to
analyze the associated variational problem inEuclidean
space under different boundary conditions. Although,
as we show, parametrized extremals can be obtained by
quadratures, their concrete explicit determination faces
technical difficulties which can be overcome numeri-
cally.We use a numerical approach, based on a gradient
descent method, to determine both critical trajectories
for these three energies and their projection into the
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image plane under different boundary and isoperimet-
ric constraints.
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1 Introduction

Length is the simplest action describing motion of a
particle in space-time, and its proper time-parametrized
critical trajectories are geodesics. On the other hand,
bending energies based on the squared first Frenet
curvature and its high-dimensional counterpart, the
mean curvature function, have been used since the
seventeenth century to model the shape of differ-
ent types of elastic materials both in physics and bio-
physics. In fact, extremals of the bending energy cor-
respond to the classical elasticae as proposed by D.
Bernoulli around 1740 and have been widely stud-
ied (see for instance, [11,15–18]). In R

3, they can be
used also to model a variety of physical objects as stiff
rods, stiff polymers, vortices in fluids, superconductors,
membranes and mechanical properties of DNA mole-
cules (for more details see [8,21] and the references
therein).Moreover, geometricalmodels describing par-
ticlemotion, that involve functionals depending on sev-
eral Frenet–Serret curvatures associated with a world-
line, have been considered recently (see, for example,
[1,3] and references therein).
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In particular, work on functionals depending only
on the first Frenet curvature, κ , has demonstrated very
clearly the natural division of the variational problem
into twoparts: In the first part, first integrals of the equa-
tions of motion, in terms of the extremal’s curvature
and torsion and their derivatives, are obtained; then, in
the second part, one tries to solve these equations and
then integrate the Frenet–Serret equations to get the
position vector of theminimizing trajectory. In general,
however, this program cannot be totally accomplished,
but there are some cases for which the problem can be
solved to a large extent. One of these remarkable cases
concerns the classical elastic or bending energy which
we describe below.

Regular curves in Riemannian manifolds Mn which
are critical points of the elastic energy

∫
γ

κ2 (κ being
the geodesic curvature of the curve γ ) have been inten-
sively investigated under various points of view. In par-
ticular, their possible shapes in R

2 where discovered
by L. Euler. There are no closed plane free elasticae.
Using a Lagrangemultiplier argument, extremals of the
bending energy among curves with the same length can
be considered as critical curves of

∫
γ

κ2 + λ, λ ∈ R.

Only two types of closed extremals in R
2 appear in

this case: circles and Bernoulli’s eight figure. More-
over, closed extremals of

∫
γ

κ2 in R
2 among curves

with same length and enclosed area have applications in
material science [2,22]. Closed classical elastic curves
in R3 have been analyzed in [17].

On the other hand, curve optimization plays a major
role in imaging and visual perception. Mostly, these
optimal curve models rely on Euler’s elastica, but this
approach has two important problems: First, there are
many local minimizers which are not global, and, while
local stationarity can be reasonably checked, global
optimality is much more difficult to deal with; and sec-
ond, the boundary value problem for elastica is very
hard to solve analytically.

To overcome these problems, another approach ba-
sed on Sub-Riemannian geodesics of the unit tangent
bundle has been raised recently in image reconstruc-
tion, [9,13] (see also Sect. 2). Once the unit tangent
bundle has been taken as a natural space for examining
curve completion, one may explore the use of addi-
tional completion principles defined on this bundle to
study combinations of other image plane properties.
Thus, for example, one could attempt to study not only
geodesics in the tangent bundle, but also its curves of

least elastic energy (i.e., the elastica) and their pro-
jections in the image plane. More generally, since in
dimension three the geometry of a curve is determined
by the arc-length and the two first Frenet–Serret curva-
tures (simply called curvature and torsion, respectively,
in this paper), one might consider energies on the unit
tangent bundle which include torsion, in addition to
length and curvature, and analyze its implications on
image plane properties [9]. In other words, we are led
to study extremal curves of Lagrangians depending on
the Frenet–Serret curvature in R2 × S

1 and their plane
projections.

A version of the Sub-Riemannian geodesic appro-
ach is explained in Sect. 2 and leads to theminimization

of the energy
∫
γ
(κ2 + a2)

1
2 in R2. Thus, in Sect. 3, we

focus on the variational problem for the energy

Fa(γ ) =
∫

γ

(
κ2 + a2

) 1
2
ds, (1)

where a ∈ R, s is the arc-length parameter and κ(s)
is the geodesic curvature of the curve γ (s), acting on
suitable spaces of immersed curves in the Euclidean
space.

If a = 0, then Fa is nothing but the total curvature
functionalwhich has been associatedwith certainmod-
els of massless particles with rigidity [20]. From the
mathematical point of view, this is a trivial variational
problem inR2 (for closed curves this is due to the clas-
sical Whitney and Grauestein’s result). Moreover, as a
consequence of another classical result due to Fenchel,
the minimum of the total curvature action over simple
closed curves in the Euclidean 3-space is 2π , and it
is reached precisely on convex plane curves. Also, it
can be seen that arbitrary plane curves are the critical
curves of the total curvature energy acting on clamped
curves of R3, [4,5]. As in the elasticae case, one may
study extremals of the total curvature among curves of
the same length and/or same total torsion. Again, by
a Lagrange multiplier argument, these may be treated
as critical curves for

∫
γ
(m + nκ + pτ), m, n, p ∈ R

and τ representing the torsion of γ . These curves have
been used as models for relativistic particles in pseudo-
Riemannian ambient spaces, and if p = 0, they were
proposed as a variational model to described protein
chains in [14]. In this case, the family of extremals is
formed by Lancret helices.
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Curvature-dependent energies minimizers and visual curve completion 1139

Therefore, here we concentrate on the case a �= 0
and we consider the variational problem associated
with (1), for a �= 0, when acting on spaces of curves of
theEuclideanm-spaceRm satisfying suitable boundary
conditions. As it has been said before, if a �= 0, planar
extremals are relevant in image restoring. This con-
nection is described in Sect. 2. In Sect. 3, we first com-
pute the first variation formula and the natural boundary
conditions are derived. These will imply that m ≤ 3.
Then, we express the Euler–Lagrange equation for (1)
in invariant form and use the symmetries of the va-
riational problem to obtain Euler–Lagrange equation’s
first integrals. Symmetries are also used to show that
extremal curves can be determined from the first Frenet
curvature after two quadratures. Moreover, in R

2, the
curvature can be solved explicitly. This gives a way of
computing extremal curves which is different to that
offered in [9]. In connection with this, we wish to men-
tion also the work [12] where the authors examine a
modification of the Helfrich Hamiltonian of the form∫
(1 + bH2)1/2 d A,within the context of gel-phase lipid

membranes analysis (H being themean curvature of the
membrane surface, b ∈ R). The axisymmetric geome-
tries they study are described by and elastic bending
type energy

∫
(1 + b κ2)1/2 ds acting on the profile

curve,which differs from themodel studied here only in
that the length is fixed,whereas here it is not. There, first
integrals are obtained differently byusing stress conser-
vation along the axis, and then, the solutionmembranes
can be obtained by twoquadratures from the profile tan-
gent angle. Also within Sect. 3, it is shown that neither
closed extremals nor extremals with constant curvature
(other that geodesics) may exist; however, we see that
cylinders and surfaces of revolution inR3 with constant
positive curvature are foliated by closed critical curves
of (1) with constant curvature (parallels).

Thus, while the theoretical problem is solved in R2,
applications to real situation in vision reconstruction
presents technical difficulties. For more details see [9]
and Sect. 4, where these problems are overcome by
using different numerical approaches. In the last sec-
tion, we introduce a numerical method which is based
on a gradient descent method. The method has been
implemented in the computational platform XEL-3.0
and, although a short description is given here, full
details can be found in [7]. As we notice in Sect. 4,
if Sub-Riemannian geodesics of the unit tangent bun-
dle R2 × S

1 are used as models, our findings are very
close to those of [9]. However, one of the advantages

of our method is that it can be adapted not only to the
Sub-Riemannian geodesic problem, but also to nume-
rically study extremal curves of Frenet–Serret curva-
tures’ dependent energies, defined on spaces of curves
of the unit tangent bundle R2 × S

1, and their projected
planar trajectories. Here, the analysis is performed for
the three actions, length, total squared curvature (elas-
tic energy) and total squared torsion, by using the
XEL-platform implemented in [7] under different con-
straints, although it can be extended to a combination
of these three basic actions and to many other similar
functionals.

We remark that elasticae in the unit tangent bun-
dle R2 × S

1 and implications in computer vision have
been treated in [10]. But, the “elastic” energy used in
[10] differs from the standard definition of the bend-
ing energy in a Riemannian manifold that we use here.
Also, a part of our results has been announced without
proof in [6].

2 Sub-Riemannian geodesics in R
2 × S

1

Neurobiological research over the past few decades has
greatly clarified the functional mechanisms of the first
layer V1 of the visual cortex (primary visual cortex).
Such layer contains a variety of types of cells, inclu-
ding the so-called simple cells. Researchers found that
V1 constitutes of orientation selective cells at all orien-
tations for all retinal positions, so simple cells are sen-
sitive to orientation-specific brightness gradients (for
details see [9,13]).

Recently, this structure of the primary visual cor-
tex has beenmodeled usingSub-Riemannian geometry,
[19]. In particular, the unit tangent bundle of the plane
can be used as an abstraction to study the organization
and mechanisms of V1.

According to this model, in the space R2 ×S
1, each

point (x, y, θ) represents a column of cells associated
with a point of retinal data (x, y) ∈ R

2, all of which are
adjusted to the orientation given by the angle θ ∈ S

1.
In other words, the vector (cos θ, sin θ) is the direction
of maximal rate of change of brightness at point (x, y)
of the picture seen by the eye. Such vector can be seen
as the normal to the boundary of the picture. Thus,
when the cortex cells are stimulated by an image, the
border of the image gives a curve inside the 3D space
R
2 × S

1, but such curves are restricted to be tangent to
the distribution spanned by the vector fields
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X1 = cos θ
∂

∂x
+ sin θ

∂

∂y
, X2 = ∂

∂θ
. (2)

It is believed that if a piece of the contour of a picture
is missing to the eye vision (or maybe it is covered by
an object), then the brain tends to “complete” the curve
by minimizing some kind of energy, being length the
simplest (but not the only) of such. In short, there is
some Sub-Riemannian structure on the space of visual
cells and the brain considers a Sub-Riemannian geo-
desic between the endpoints of the missing data.

LetMn be a smooth n-manifold. A sub-bundle of the
tangent bundle T Mn is called distribution D on Mn .
Once we have chosen D, a D-curve on Mn is a smooth
immersed curve γ : [a, b] → Mn which is always tan-
gent to D; that is, γ ′(t) ∈ Dγ (t) for all t ∈ [a, b]. A dis-
tribution D is said to be bracket-generating if for every
p ∈ Mn the sections of D near p together with all their
commutators span the tangent space ofMn at p, TpMn .
By a well-known theorem of Chow, there is a D-curve
joining any two points of Mn if D is bracket generat-
ing (check [10] for the smooth version of this theorem).
A Sub-Riemannian metric is a smoothly varying pos-
itive definite inner product 〈, 〉 on D. Thus, if D were
equal to the whole tangent bundle, 〈, 〉 would give a
Riemannian metric on Mn . A Sub-Riemannian mani-
fold, (Mn, D, 〈, 〉), is a smoothn-dimensionalmanifold
Mn equipped with a Sub-Riemannian metric 〈, 〉 on a
bracket generating distribution D of rankm > 0. In this
case, the length of a D-curve γ : [a, b] → M is defined
to be L(γ ) = ∫ b

a 〈γ ′(t), γ ′(t)〉 1
2 dt . Since D is bracket-

generating, it is possible to endow Mn with a distance
d. The distance d(p, q) between any two points p
and q of Mn is defined by d(p, q) = in fγ {L(γ )/γ

is a D − curve joining p to q}.
To construct a Sub-Riemannian structure on M3 =

R
2 × S

1, we take the distribution D = ker(sin θ dx −
cos θ dy), where x and y are the coordinates onR2 and
θ is the coordinate on S

1. This distribution is spanned
by the vector fields described in (2). Consider on D,
the inner product 〈, 〉 for which the two vectors (2)
are everywhere orthonormal. Every D-curve γ (t) =
(x(t), y(t), θ(t)) with γ ∗(cos θ dx + sin θ dy) �= 0 is
the lift of a regular curve α(t) = (x(t), y(t)) in the
plane whose tangent vector α′(t) forms the angle θ(t)
with the x-axis, i.e.,

α′(t) = v(t) cos θ
∂

∂x
+ v(t) sin θ

∂

∂y
, (3)

where v(t) is the speed of α(t). Conversely, every reg-
ular curve α(t) in the plane may be lifted to a D-curve
γ (t) = (x(t), y(t), θ(t)) by setting θ(t) equal to the
angle between α′(t) and the x-axis. Now, the tangent
vector γ ′(t) of the D-curve γ (t) has squared length

〈γ ′(t), γ ′(t)〉 = v2(t) + θ ′2(t)

= v2(t)

(

1 +
(

θ ′(t)
v(t)

)2
)

= v2(t)(1 + κ2(t)), (4)

where κ(t) is the curvature of α, and so the length of
γ (t) is equal to the integral of

√
1 + κ2(t)v(t) along α.

Thus, the D-curves with γ ∗(cos θ dx + sin θ dy) �= 0
that realize the distance between two points (x0, y0, θ0)
and (x1, y1, θ1) of M3 are the lifts of curves α in the
plane joining (x0, y0) to (x1, y1) with initial angle θ0
and final angle θ1 that minimize the functional

F(α) =
∫ (

1 + κ2(s)
) 1

2
ds, (5)

s being the arc-length parameter, among all such curves
in the plane. In other words, geodesics in V1 are
obtained by lifting to M3 = R

2 × S
1 minimizers of

(5) in R2.
Finally, as indicated in [9], the hypercolumnar orga-

nization of the visual cortex suggests that the cost of
moving one orientation unit is not necessarily the same
as to moving spacial units, then the curve completion
problem should consider the functional Fa acting on
planar curves instead. This motivates considering criti-
cal curves of Fa not only in the plane, but also in more
general backgrounds.

3 Extremals in Euclidean space Rm

For finite m, consider Rm the m-dimensional Euclid-
ean space with standard metric 〈 , 〉. Let γ (t), γ :
[0, 1] → R

m be a C∞ immersed curve and denote by
γ (s) its unit speed reparametrization; that is, it satisfies
〈γ ′(s), γ ′(s)〉 ≡ 1, where now ′ denotes derivative with
respect to the arc-length parameter s ∈ [s0, s1]. If the
successive covariant derivatives of the speed vector

γ ′(s), γ ′′(s), γ (3)(s), . . . , γ (n−1)(s),

are everywhere linearly independent, for 1 ≤ n ≤ m,
then we set e0 := γ ′(s) and define the unit normal field
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Curvature-dependent energies minimizers and visual curve completion 1141

e1 to be the unit vector field along γ in the direction of
γ ′′(s). The first Frenet curvature is defined by

κ1(s) := 〈e′
0(s), e1(s)〉.

Unit normal vector fields e j (Frenet frame on γ )
and Frenet curvatures κ j , for j = 2, . . ., n − 1,
are given inductively by Gramm–Schmidt orthogonal-
ization, as follows. Let ê j (s) be the orthogonal pro-
jection of e′

j−1 onto the orthogonal complement of
{e0(s), e1(s), e2(s), . . . , e j−1(s)}. Set

e j (s) := ê j (s)
‖ê j (s)‖ ,

and κ j (s) := 〈e′
j−1(s), e j (s)〉. Then, κ j is never zero,

and the Frenet–Serret formulae read as

e′
j−1(s) = κ j (s)e j (s) − κ j−1(s)e j−2(s),

e′
n−1(s) = −κn−1(s)en−2(s). (6)

We call rank of γ the maximum integer j for which
the functions κ j (s) �= 0 for some s ∈ [s0, s1], namely
rank(γ ) = n − 1 where n is the maximum integer
for which γ ′(s), γ ′′(s), γ (3)(s), . . . , γ (n−1)(s), are
linearly independent. So 0 ≤ rank(γ ) ≤ m − 1 and γ

is a geodesic if and only if rank(γ ) = 0. When γ has
constant curvatures κl for 1 ≤ l ≤ rank(γ ), it is called
a helix of rank l.

Curves in R
m of any rank are determined by their

curvatures up to isometries, and if the rank of γ is n −
1, with 2 ≤ n < m, then γ is contained into an n-
dimensional Euclidean subspace, Rn , of Rm .

Along this section, wewill often resort to techniques
inspired by arguments in [16] and [17]. Let us first con-
sider the space Ω of immersed curves γ (t) in Rm with
fixed endpoints p, q ∈ R

m : Ω = {γ : [0, 1] → R
m;

γ is a C∞-immersion; γ (0) = p; γ (1) = q}. Let us
define the following energy functional Fa : Ω → R

Fa(γ ) =
∫

γ

(
κ2 + a2

) 1
2
ds, (7)

where a ∈ R, s is the arc-length parameter, and κ(s) ≡
κ1(s) is the first Frenet curvature of γ (s). Observe that
geodesics (curves of rank 0) are minima of Fa .

For a given γ ∈ Ω , we consider a C∞ variation
by curves in Ω; that is, a C∞ function Γ : (−ε, ε) ×
[0, 1] → R

m such that Γ (0, t) = γ (t) and Γ (z, t) =
γz(t) ∈ Ω . We say that γ (t) is a critical curve or,

simply, an extremal ofFa in Ω , if dFa
dz (0) = 0, for any

variation of γ . By using standard arguments, one can
compute the first variation formula of Fa

dFa

dz
(0) =

∫

γ

〈E(γ ),W〉 ds + B[γ,W], (8)

where W = ∂ Γ
∂ z (0, t) is the variation field of Γ and

E(γ ) and B[γ,W] are the Euler–Lagrange and bound-
ary operators, respectively. After a long computation,
we obtain that the Euler–Lagrange operator is given by

E(γ ) = 1
(
κ2 + a2

) 1
2

T(3) + 2
d

ds

⎛

⎝ 1
(
κ2 + a2

) 1
2

⎞

⎠T′′

+
⎛

⎝ d2

ds2

⎛

⎝ 1
(
κ2 + a2

) 1
2

⎞

⎠ + κ2 − a2

(
κ2 + a2

) 1
2

⎞

⎠T′

+ d

ds

⎛

⎝ κ2 − a2

(
κ2 + a2

) 1
2

⎞

⎠T,
(9)

T = e0(s) = dγ

ds being the unit tangent vector to the
arc-length reparametrization of γ (we may assume that
s ∈ [0, 1] is the arc-length parameter of γ ), while the
boundary operator B is given by

B[γ,W] = 〈W′,K〉|10 − 〈W, J〉|10, (10)

where we have set

K = 1
(
κ2 + a2

) 1
2

T′, J = K′ +
(
κ2 − a2

)

(
κ2 + a2

) 1
2

T . (11)

If one additionally assumes that a curve γ ∈ Ω

satisfies suitable first-order boundary conditions, for
instance, setting the velocities at the endpoints to be fix
v1, v2 ∈ R

3, that is, γ ∈ Ωv1,v2 , where Ωv1,v2 := {γ ∈
Ω; γ ′(0) = v1, γ ′(1) = v2}, then γ is a critical curve
of Fa , if and only if,

E(γ ) = 0, (12)

since, in this case, (10) vanishes identically. In partic-
ular, from (8), straight segments are always extremals
of Fa for suitable boundary conditions on Ω .

Since geodesics are always critical for Fa (for suit-
able boundary conditions), in the following, we may
assume, in addition, that γ ∈ Ω is a non-geodesic
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curve, namely that it is a curve of rank at least 1.
Now, if γ is an extremal of Fa , then E(γ ) = 0, and
then, if rank(γ ) = n and n > 3, one can combine
(9) and Frenet formulae (6) to obtain a contradiction.
Thus, we must have n ≤ 3 and γ must lie in R

3. In
this case, we use the standard notation for the Frenet
frame {e0(s) ≡ T(s), e1(s) ≡ N(s), e2(s) ≡ B(s)}
(which will be referred to as unit tangent, unit normal
and binormal vectors, respectively) and Frenet curva-
tures {κ ≡ κ1, τ ≡ κ2} (which will be referred to as
curvature and torsion, respectively). Using the Frenet
formulas (6) and the linear independence of the Frenet
frame, the Euler–Lagrange equations (9) reduce, after
some straightforward computations, to

d2

ds2

⎛

⎝ κ
(
κ2 + a2

) 1
2

⎞

⎠

+ κ
(
κ2 + a2

) 1
2

(
κ2 − τ 2

)
− κ

(
κ2 + a2

) 1
2 = 0,

(13)

d

ds

(
κ2

(
κ2 + a2

)τ

)

= 0. (14)

Case a = 0 corresponds to the total curvature func-
tional. In this case, if γ ∈ Ω is critical, then (13) and
(14) imply that the torsion τ = 0, and therefore, γ is a
planar curve. Then,

∫

γ

κ = θ(1) − θ(0) + 2πm, (15)

where θ(i) ∈ [0, 2π), i = 1, 2, denotes the angle that
vi , i = 1, 2, makes with the line determined by p and
q, andm ∈ Z is integer, the number (taking orientation
into account) of loops that the trace of γ has between p
and q. Since (15) is constant within any homotopy class
of Ωv1,v2 , we see that the corresponding variational
problem is trivial; that is, any γ ∈ Ωv1,v2 is critical for
Fa when a = 0.

So we assume a �= 0. Notice that above equations
(13) and (14) imply that there are no helices (nor even
Lancret helices) critical for Fa . On the other hand, if
γ ∈ Ω is critical for Fa under arbitrary boundary con-
ditions, then standard arguments imply that it satisfies
E(γ ) = 0, and then, the first variation formula (8) gives

δFa(γ,W) = B[γ,W] = 〈W′,K〉|10 − 〈W, J〉|10 (16)

where K and J are obtained combining (11) and the
Frenet equations

K = 1
(
κ2 + a2

) 1
2

κN, (17)

J = −a2

(
κ2 + a2

) 1
2

T + a2κ ′
(
κ2 + a2

) 3
2

N

+ κτ
(
κ2 + a2

) 1
2

B. (18)

Now, (16), (17) and (18) allow us to useNoether’s argu-
ment to relate symmetries ofFa to constants of motion
along γ .

For translational symmetries, we take W, its infini-
tesimal generator, to be a constant vector field. Hence,
for any variation in the direction ofW, δFa(γ,W) = 0
and (16) gives 〈W, J〉|10 = 0. Since 〈W, J〉|s0 = 0 holds
also for any s ∈ [0, 1] and W is an arbitrary constant
vector field, we conclude that J is a constant vector
field along γ . Thus, (18) gives

(
dκ

ds

)2

=
(
a2 + κ2

a2

)2

×
(
κ2

(
d − τ 2

)
+ a2

(
d − a2

))
, (19)

where d is a constant.
For rotational symmetries we use againW to denote

its infinitesimal generator. Any rotational vector field
can be written as W = x × V, where x is the posi-
tion vector and V is a constant vector field. Again, for
any variation in the direction of W, δFa(γ,W) = 0
and (16) give 〈W′,K〉|10 −〈W, J〉|10 = 0, which, by the
same argument as before, holds also for any s ∈ [0, 1].
Hence, using (17) and (18), we obtain after some
manipulations that the vector field

γ × J − κ
(
κ2 + a2

) 1
2

B (20)

is constant along γ . Therefore, there exists a constant
vector field Vo such that

κ
(
κ2 + a2

) 1
2

B = γ × J + Vo (21)

along γ . Thus, the vector field H := κ

(κ2+a2)
1
2
B is the

restriction of a Killing field of R3 to γ . Translating the
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Curvature-dependent energies minimizers and visual curve completion 1143

origin of R3 if needed, we may assume that Vo = η J

for some constant η ∈ R, and therefore,

H = κ
(
κ2 + a2

) 1
2

B = γ × J + η J (22)

is the restriction to γ of a helicoidal Killing vector field
of R3.

Now, let us call W the extension of H to R
3. We

may apply again Noether’s argument in combination
with equations (17) and (18) to obtain

τ = e

(
κ2 + a2

κ2

)

, (23)

with e ∈ R, and we may conclude from (19) and (23)
that
(
dκ

ds

)2

=
(
a2 + κ2

a2κ

)2

(24)

×
((

κ2 + a2
)

(dκ2 − e2(κ2 + a2)) − κ2 a4
)

,

τ = e

(
κ2 + a2

κ2

)

, (25)

d, e ∈ R, are first integrals of the Euler–Lagrange
equations (13) and (14).

On the other hand, as we have shown before, we
know that if γ ∈ Ω is critical for Fa , then

H = κ
(
κ2 + a2

) 1
2

B (26)

is the restriction of a Killing vector field of R3 to γ .
Actually, this fact characterizes critical curves for Fa

(up to a penalty on the length). In fact, assume that
H = κ

(κ2+a2)
1
2
B is the restriction of a Killing field to

a curve γ . The following variational formulas for the
three fundamental geometric curve invariants, speed,
v(u) = |α′(u)|, curvature κ(u) and torsion τ(u), were
computed in [17]

W(v) = 〈W′,T〉 v, (27)

W(κ) = 〈W′′,N〉 − 2〈W′,T〉 κ, (28)

W(τ ) =
(
1

κ
〈W′′,B〉

)′
+ 〈W′, κB − τT〉, (29)

for any variation of γ with variation field W. Now, if
W happens to be the restriction of a Killing field, then

v(u), κ(u) and τ(u) are constant along the curves of
the variation and then

W(v) = W(κ) = W(τ ) = 0. (30)

Thus, if H = κ

(κ2+a2)
1
2
B is the restriction to γ of a

Killing field, we could apply previous formulae (27),
(28), (29) and (30) to W. We see first that W(v) = 0
impose no condition on γ , since (27) is trivial. On the
other hand, W(κ) = 0 and (28) imply

d

ds

(
κ2

(
κ2 + a2

)τ

)

= 0 (31)

along γ . Finally, after somemanipulations, one can see
that W (τ ) = 0 and (29) give

d2

ds2

⎛

⎝ κ
(
κ2 + a2

) 1
2

⎞

⎠

+ κ
(
κ2 + a2

) 1
2

(
κ2 − τ 2

)
− κ

(
κ2 + a2

) 1
2 = μκ,

(32)

for some μ ∈ R. Comparing (31) and (32) with (13)
and (14), it is not difficult to see that then, γ satisfies
the Euler–Lagrange equations for Fa +μ

∫
γ
ds, i.e., γ

would be critical (under certain boundary conditions)
of Fa for variations with constant length.

In consequence, we see that congruence solutions,
γ (s, t), of the following geometric evolution equation
(geometric binormal flow solutions)

∂γ

∂t
(s, t) = κ

(
κ2 + a2

) 1
2

B(s, t) (33)

are, precisely, the critical curves of Fa .
Moreover, by using the symmetries of Fa , also the

coordinates of a critical curve γ can be obtained by
quadratures. In fact, γ being critical means that

J = Vo, (34)

H = γ × J + η J (35)

are Killing fields, where V0 is constant and H comes
from a one parameter group of helicoidal motions.
Then, choosing ∂z as the axis of the helicoidal motion,
introducing cylindrical coordinates r, θ, z, and taking
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into account the first integrals of the Euler–Lagrange
equations given before, (24) and (25), we get

J = √
d ∂z, (36)

H = γ × J + e

d
J = e/

√
d∂z − √

d∂θ , (37)

where e, d ∈ R are the constants appearing in (24) and
(25). Since | ∂θ |2= r2(s), then (26) and (37) give

r2(s) = κ2

d(κ2 + a2)
− e2

d2
. (38)

Moreover, T(s) = r ′∂r + θ ′∂θ + z′∂z so (18) and (36)
imply

z′(s) = −a2

(
d(κ2 + a2)

) 1
2

. (39)

Finally, combining 〈T,H〉 = 0 and (37), we obtain

θ ′(s) = e

d

z′

r2
. (40)

Therefore, from (38), (39) and (40), we see that once
the curvature of the critical curve is known (for which
we need to solve (24)), the coordinates can be obtained
by quadratures. Notice also that (39) implies that z(s)
is monotonic; thus, there are no periodic solutions of
the Euler–Lagrange equations (13) and (14), so that we
cannot have closed critical curves.

Extremals in R2 are totally determined by their cur-
vature, κ,which, in our case, can be obtained explicitly.
In fact, making τ = 0 in the Euler–Lagrange equation
(13), we get

d2

ds2

⎛

⎝ κ
(
κ2 + a2

) 1
2

⎞

⎠ − a2κ
(
κ2 + a2

) 1
2

= 0,

from which we have

κ
(
κ2 + a2

) 1
2

(s) = c1e
a s + c2e

−a s,

for some integration constants c1, c2. Then, solving for
κ , one obtains

κ(s) = a(c1ea s + c2e−a s)
(
1 − (

c1ea s + c2e−a s
)2)

1
2

. (41)

From this equation,we see that there is atmost onepoint
where the curvature may change sign, so the curvature
is always positive (or negative) except for at most one
inflection point. Moreover, κ ′(s) has at most one zero
(a vertex); hence, either the curvature is monotonic,
or it monotonically decreases up to reaching the vertex
where it starts tomonotonically increase (or vice versa).
This means that planar critical curves are a family of
spirals in the plane.

This is a case relevant in image restoration as we
mentioned at the beginning and a parametrization of
extremal curves, using as parameter, θ , the angle which
the curve makes with a fixed line was given in [9],
under the assumption that the curves have no inflection
points. But, as we have just noticed, these extremals
have at most one vertex; hence, the argument of [9]
applies and an explicit parametrization of extremals
for this variational problem can be obtained in terms
of elliptic integrals of the first and second kind. Alter-
natively, one may use our previous computations to
get different parametrizations of extremals, at least, by
quadratures. In fact, as it is very well known, a para-
metrization in terms of the curvature and arc-length
parameter of a planar curve is given by

(∫
cos

∫
κ,∫

sin
∫

κ
)
; then, using (41), we can also get a para-

metrization of the Fa-extremals in R
2 in terms of the

arc-length parameter after two quadratures. Observe
that another parametrization can also been explicitly
obtained from (38), (39) in terms of Elliptic func-
tions.

However, for any possible choice of a parametriza-
tion method, a specific determination of the solution
curves implies that the integration constants must be
determined. This can be tried by imposing the solu-
tions to satisfy the given boundary conditions, but this
requires, at the best, solving a highly nonlinear sys-
tem for which an explicit parameters expression seems
unlikely. Hence, a numerical approach seems to be a
reasonable strategy. Our numerical treatment will be
developed in next section.

To finish this section, recall that we have discov-
ered that there are neither critical curves with con-
stant curvature, nor closed critical curves of Fa in R

2.
This fact does not hold in other surfaces of R3. Actu-
ally, there are surfaces containing curves being both
types of extremals at the same time. In fact, consider

Fa(γ ) = ∫
γ

(
κ2 + a2

) 1
2 ds acting on a space of curves

of a surface S ⊂ R
3, where κ denotes the geodesic
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curvature of a curve in the surface. Then, with a little
extra effort, it can be seen that a closed curve in a sur-
face, S, is an extremal for Fa , if and only if, satisfies

d2

ds2

⎛

⎝ κ
(
κ2 + a2

) 1
2

⎞

⎠ + κ(KS − a2)
(
κ2 + a2

) 1
2

= 0, (42)

where KS represents the Gaussian curvature of S. Now,
if S happens to be a surface of revolution, Sα , with
profile curve α(t) = ( f (t), h(t)), t ∈ (−ε, ε), then,
since the geodesic curvature is constant on parallels,
we can use (42) to see that all of parallels of a surface
of revolution are extremals for Fa , if and only if,

κ(t)(KSα − a2)(t) = 0, t ∈ (−ε, ε). (43)

Then, either all parallels are geodesics and, therefore,
our surface is a cylinder, or else the Gaussian curvature
is a positive constant on KSγ = a2. In other words,
rotation surfaces of R

3 with constant Gaussian cur-
vature a2 are foliated by closed extremals of Fa . This
fact can be extended to equivariant surfaces of a real
space form M3(c), [6].

4 Numerical approach

In [7], we have developed a gradient descent-based
method (which we call XEL-platform) to localize min-
ima of an ample family of functionals defined on
certain spaces of curves satisfying both affine and
isoperimetric constraints. We first describe the for-
malism which serves as base for the numerical treat-
ment.

4.1 Lagrangians and metrics

More concretely, let H0(I,Rm) = L2(I,Rm) be the
set of square integrable functions from I to Rm , where
I is an interval [a, b]. Let H1(I,Rm) denote the set
of absolutely continuous maps x : I → R

m such that
x (1) ∈ H0(I,Rm), where x (1) stands for the first deriv-
ative of the function. Finally, denote by Hn(I,Rm) the
set of maps x : I → R

m such that x (k) ∈ H1(I,Rm),
k ∈ {0, . . . , n − 1}, where x (k) denotes the kth deriva-
tive of x . Then, Hn(I,Rm) is a Hilbert space with the
following family of inner products [7]

〈x(t), y(t)〉n,a,b : =
n−1∑

k=0

ηka〈x (k)(a), y(k)(a)〉

+
n−1∑

k=0

ηkb〈x (k)(b), y(k)(b)〉

+
∫ b

a
〈x (n)(t), y(n)(t)〉dt, (44)

where 〈, 〉 is the standard inner product in R
m and

ηka, η
k
b ∈ R. To simplify the notation, from now on,

the above inner product (44) and the space Hn(I,Rm)

will be denoted simply by 〈, 〉n and Xn = Hn(I,Rm),
respectively.

We want to analyze the variational problem associ-
ated with a certain family of energy functionals F :
Xn → R defined on Xn or on suitable subspaces of
curves in Xn . We consider functionals of the form

F (x) =
∫ b

a
f
(
t, . . . , xi , . . . , x

(1)
i , . . . , x (n)

i , . . .
)
dt

+A
(
a, . . . , xi (a) , . . . , x (n−1)

i (a) , . . .
)

+B
(
b, . . . , xi (b) , . . . , x (n−1)

i (b) , . . .
)

,

(45)

where x = (x j (t)) ∈ Xn , j = 1, . . . ,m and f : W ⊂
R
m(n+1)+1 → R A, B : W̃ ⊂ R

mn+1 → R are contin-
uously differentiable functions defined on a sufficiently
large domainsW , W̃ . We also assume that f, A, B sat-
isfy suitable additional conditions which guarantee the
Fréchet differentiability of F and the (local) conver-
gence of the gradient steepest descent method.

As usual, one may consider F acting on subspaces
of functions x = (x1, . . . , xm) ∈ Xn satisfying along
with their derivatives x (i) = (x (i)

1 , . . . , x (i)
m ) given

boundary conditions at the endpoints of the interval
(they will be referred to as affine constraints). For
instance, for a given i ∈ {0, 1, . . ., n − 1}, fix pi =(
pi1, . . . , p

i
m

)
and qi = (

qi1, . . . , q
i
m

)
, points in R

m .
Then, for any arbitrary choice of a finite number of
indexes i ∈ {0, 1, . . . , n − 1} and j ∈ {1, 2, . . . ,m},
the intersection of the following family of subspaces

X (i)
a,b, j =

{

y : [a, b] −→ R
m; y(i)

j (a)

= pij , y
(i)
j (b) = qij

}

,

is an affine subspace of Xn . So endpoint constraints
lead to spaces of functions which are not linear but they
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are affine spaces instead which causes minor computa-
tional additional difficulties.

In contrast, suppose that we are seeking functions
which not only satisfy affine constraints, but also ver-
ify extra restrictions of the form (which will be called
isoperimetric restrictions )

G (x) =
∫ b

a
g

(
t, . . . , xi , . . . x

(1)
i , . . . , x (n)

i , . . .
)
dt

+AG (
a, . . . , xi (a) , . . . , x (n−1)

i (a) , . . .
)

+BG (
b, . . . , xi (b) , . . . , x (n−1)

i (b) , . . .
)

= c, (46)

where g, AG, BG are, at least, continuously differen-
tiable functions and c ∈ R. Now, any candidate to be a
solution must lie in the hypersurface Xn

G = G−1 (c) ⊆
Xn , which is not an affine subspace. Of course, more
that one isoperimetric restriction may appear at the
same time, and then, any solution to the variational
problem must lie in Xn

G = Xn
G1

∩ · · · ∩ Xn
Gh
.

For simplicity, in the rest of this section, we focus on
the unconstrained problem. Thus, we assume that the
above functional (45) is defined on Xn . The gradient
of F at x is defined to be the unique ∇Fx ∈ Xn that
satisfies 〈∇Fx , w〉n = DFx (w), for all w ∈ Xn . The
existence and uniqueness of ∇Fx is guaranteed by the
Riesz representation theorem. Actually, as it has been
proved in [7], for a functionalF : Xn −→ R of the type
(45) (satisfying suitable conditions as those mentioned
before), the gradient is given by

∇Fx =
∫ t

a

n· · ·
∫ t

a
E f
x,ndt + P2n−1 (t) , (47)

where E f
x,n are defined recursively as

E f
x,0 = ∂ f

∂x
= fx ,

E f
x,i = fx (i) −

∫ t

a
E f
x,i−1ds

=
i∑

j=0

(−1)i− j
∫ t

a

i− j· · ·
∫ t

a
fx ( j)ds. (48)

and P2n−1 (t) = ∑2n−1
i=0 ci t i is a polynomial of degree

2n−1, whose coefficients ci are fully determined as the
solutions of the 2n × 2n linear system which depends
on the concrete choice of the metric 〈, 〉n . Notice then
that, while an extremal is a zero of the gradient for any

choice of the metric (44), the gradient itself depends on
the metric, and therefore, the metric choice is crucial
in our computation.

If F is considered acting on a subspace satisfying
additional constraints Xn

G , the gradient ∇∗Fx is the
orthogonal projection of ∇Fx onto the corresponding
tangent space and computation of the gradient requires
a more elaborated process.

On the other hand, one of themost commonmethods
for minimization of F is the gradient steepest descent
method. Basically, the essence of this method is to ana-
lyze the behavior of the sequence {xk, k ∈ N} of suc-
cessive approximations for the local minimum points
of F given by the formula

xk+1 = xk + tkhk, k ∈ N,

where tk is a sequence of positive numbers, the so-
called control parameters, which lie in a closed inter-
val of the real line. In order to construct the sequence
{xk, k ∈ N}, start with an arbitrary point xo ∈ Xn

(where of course, ∇Fxo �= 0); then, assuming that
xo, x1, . . . , xk have already been constructed, pro-
ceed by choosing a sequence hk ∈ Xn such that
〈∇Fxk , hk〉 < 0 (usually, hk = −∇Fxk ) and then take
xk+1 = xk + tkhk .

Then, a numerical method to locate minimizers of
this general class of variational problems under both
affine and isoperimetric constraints is implemented
in [7] (see also, www.ikergeometry.org). The method
is suitable for application to the energy functionals
described previously; in particular, it will be applicable
to Frenet–Serret actions after some convenient adjust-
ments.

4.2 Minimizing length

As explained in Sect. 2, the problem of minimizing
the functional (5) acting on the space of plane curves
joining two given points of R2 with prescribed initial
and final angles is equivalent to that of finding D-
curves minimizing the Sub-Riemannian length. Even
better adapted to the curve completion demands is the
variational problem associated with the functional Fa ,
which has been discussed in the previous section. Thus,
once we translate it to the language of the unit tangent
bundle, we are led to the following variational problem.

Denote by X the space of curves

β : [a, b] −→ R
2 × S

1; β (t)=(x (t) , y (t) , θ (t)) ,
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joining two given points (xa, ya, θa) and (xb, yb, θb) of
R
2 × S

1, that is

(x (a) , y (a) , θ (a)) = (xa, ya, θa) ,

(x (b) , y (b) , θ (b)) = (xb, yb, θb) ,

and satisfying the following admissibility condition

y′(t) = x ′(t) tan θ(t), t ∈ [a, b] , (49)

where ′ denotes derivative with respect to the curve
parameter t ∈ [a, b] hereafter. On X, we consider the
functional L defined by

L (β) =
∫ b

a

√
(x ′)2 + (y′)2 + h2 (θ ′)2dt, (50)

whereh ∈ R is a proportionality constant introducedby
accuracy of the physical model [9]. Then, our problem
is to find the minimizers or, more generally, extremals
of L : X → R.

We first translate the problem to our settings. The
Sub-Riemannian metric defined on R

2 × S
1 in Sect. 2

is extended to thewhole space by considering the vector
field

X3 = − sin θ
∂

∂x
+ cos θ

∂

∂y
, (51)

and declaring orthonormal the family {X1,X2,X3},
where X1,X2 are given in (2). It is easy to check that
the induced metric in nothing but the standard product
metric in R2 × S

1.
Now, consider the exponential map

exp : R → S
1, exp(t) = (cos t, sin t).

Then, π := I d × exp : R3 → R
2 × S

1, π(x, y, z) =
(x, y, exp z) is a Riemannian covering map with
respect to the product metrics in both spaces, and in
particular, it is a local isometry. For any β ∈ X, choose
a point (xa, ya, θ̃a) ∈ R

3 such that π((xa, ya, θ̃a)) =
(xa, ya, θa) and take the unique lifting β̃ : [a, b] −→
R
3 of β to R

3 with β̃(a) = (xa, ya, θ̃a). Define
(xb, yb, θ̃b) = β̃(b). Then, any variation of β within
X can be uniquely lifted to a variation of β̃ with end-
points (xa, ya, θ̃a) and (xb, yb, θ̃b) satisfying the con-
straint y′(t) = x ′(t) tan θ̃ (t), t ∈ [a, b].

Thus, on the space of curves X̃

β̃ : [a, b] −→ R
3; β̃ (t) = (x (t) , y (t) , θ̃ (t)),

joining the two points (xa, ya, θ̃a), (xb, yb, θ̃b) of R3,

(
x (a) , y (a) , θ̃ (a)

) = (
xa, ya, θ̃a

)
,

(
x (b) , y (b) , θ̃ (b)

) = (
xb, yb, θ̃b

)
,

and satisfying the admissibility condition

y′(t) = x ′(t) tan θ̃ (t), t ∈ [a, b] , (52)

we can define the functional

L̃ (
β̃
) =

∫ b

a

√(
x ′)2 + (y′)2 + h2

(
θ̃ ′)2dt. (53)

Then, L̃(β̃) = L (β) , and therefore, β is critical for
L, if and only if, β̃ is critical for L̃. Observe also that
regular curves inR2 ×S

1 are lifted to regular curves in
R
3 with the same curvature and torsion, and that they

have the same projection, α(t) = (x(t), y(t)), on R
2.

Therefore, the original problem boils down to study
extremals for L̃ in X̃, and we are in position to apply
our algorithm (with m = 3, n = 1, A = B = 0)
to the functional L̃ acting on X̃ (however, by abuse of
notation, we are going to denote both, the functional
and the space of curves, without the tilde )̃. Moreover,
for computational simplicity, it is better to work with
plane curves α(t) = (v(t), θ(t)), which are parame-
trized by using its speed v (t), and the angle that its
tangent makes with the x-axis direction, θ (t). Hence,
our energy functional becomes

L (β) =
∫ b

a

√
v2 (t) + h2 (θ ′)2dt,

and will be considered acting on the space X̂ formed by
curves (we are abusing again of the notation by using
the same letter β as before)

β : [a, b] −→ R
2, β (t) = (v (t) , θ (t)),

satisfying the affine conditions

θ (a) = θa, θ (b) = θb,
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along with the following isoperimetric conditions

xb − xa =
∫ b

a
v cos θdt, yb − ya =

∫ b

a
v sin θdt.

Observe that the relations

x ′ (t) = v (t) cos θ (t) , y′ (t) = v (t) sin θ (t) ,

enable us to recover the original minimizing curve β.
Finally, the choice of our metric will be

〈β(t), β̄(t)〉 = 〈β(a), β̄(a)〉
+

∫ b

a
〈β ′(t), β̄ ′(t)〉dt, (54)

for curves β, β̄ ∈ X̂.
In order to make the XEL-platform [7] to work on

the functional L : X̂ → R just defined, we can take,
without loss of generality, our curves defined in the unit
interval, i.e., a = 0, b = 1, and assume also that the
ends of the curves are chosen to be

p0 = (0, 0, θ0) , p1 = (1, 0, θ1) , θ0, θ1 ∈ R.

As a strategy to speed up the convergence of the
algorithm, we will restrict our analysis to curves β sat-
isfying additionally θ (t) = θ0+ t (θ1 − θ0), t ∈ [0, 1].
Notice that, this is a quite reasonable assumption in
image reconstruction, sincewe do not expect our image
filling curves to have loops and its inclusion does not
alter the conclusions. Rewriting our functional in this
context, we have

L (β) =
∫ 1

0

√
v2 (t) + h2 (θ1 − θ0)

2dt,

with

θ (0) = θ0, θ (1) = θ1,

x1 − x0 =
∫ 1

0
v cos θdt, y1 − y0 =

∫ 1

0
v sin θdt.

x ′ (t) = v (t) cos θ (t) , y′ (t) = v (t) sin θ (t) .

To start with the gradient descent process, we need
to choose an initial curve αo in the above space of func-
tions. For a = 0, b = 1, we determine αo by selecting
functions

θ (t) = (θ1 − θ0) t + θ0, (55)

v (t) = λ + ηt, (56)

where the parameters λ and η are obtained by using the
isoperimetric constraints, that is

1 =
∫ 1

0
v (t) cos θ (t) dt,

0 =
∫ 1

0
v (t) sin θ (t) dt.

In other words, denoting by �θ = θ1 − θ0, we have

1 = λ

�θ
[sin (θ (t))]10

+ η

[
t

�θ
sin (θ (t)) + cos θ (t)

(�θ)2

]

,

and

0 = λ

�θ
[− cos (θ (t))]10

+ η

[

− t

�θ
cos (θ (t)) + sin θ (t)

(�θ)2

]

.

This gives a linear system A
(

λ

η

)

=
(
1
0

)

, with asso-

ciated matrix

A =

⎛

⎜
⎜
⎝

sin θ1 − sin θ0

�θ

sin θ1

�θ
+ cos θ1 − cos θ0

(�θ)2

cos θ0 − cos θ1

�θ

sin θ1 − sin θ0

(�θ)2
− cos θ1

�θ

⎞

⎟
⎟
⎠

whose solutions are

λ = 1

det (A)

{
sin θ1 − sin θ0

(�θ)2
− cos θ1

�θ

}

,

η = 1

det (A)

{
cos θ1 − cos θ0

�θ

}

.

Now, substitution of these values in (56) gives us
the curve αo to start with the method. Of course, this
can be done for any choice of initial conditions θ0, θ1.
Figure 1 shows a family ofminimizerswhich have been
obtained via the XEL-platform for different choices of
end angles θ0, θ1 detailed in Table 1.

One may wish to compare extremals obtained by
our method with those obtained in [9], where the
authors used a different numeric approach. For exam-
ple, Table 1 also shows the length of the extremal curves
obtained with both methods for identical initial data.
Thus, although both numeric approaches are concep-
tually very different, it is remarkable that the results
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10

0.3

0

Fig. 1 Minimizers of (53) obtained via XEL

Table 1 Length of the curve β (s) in R
2 × S

1

θ0 θ1 Ben-Yosef and
Ben-Shahar [9]

XEL

20◦ −10◦ 1.1687 1.1691

40◦ −30◦ 1.6287 1.6289

60◦ −50◦ 2.2435 2.2436

70◦ −60◦ 2.5758 2.5761

obtained by either method are very close concerning
both shape and length of the extremals.

4.3 Minimizing elastic energy

One advantage of our XEL-platform is that it is easily
adaptable to a huge family of functionals satisfying the
required conditions. For instance, it has been pointed
out in [9] that investigation of extremals for the elastic
energy in the unit normal bundle might be important
for examining combinations of image plane properties.
The elastic or bending energy is defined by

F̂ : X → R, F̂(β) =
∫

β

κ2
β du , (57)

where X has been previously defined in Sect. 4.2, κβ

denotes the geodesic curvatures of β, and u is the arc-
length parameter of the curve.

Now, by using the universal Riemannian covering as
we did in 4.1, the problem can be “lifted” fromR

2×S
1

to R3. So, assume that

α = α (s) = (x(s), y(s))

is an arc-length parametrized plane curve with Frenet
frame {T (s) ,N (s) ,B (s) = (0, 0, 1)}, and denote by
β its lift to X̃ (with slope h ∈ R). Then, β (s) = α (s)+
θ (s) hB, with θ ′ = κα (s) and, since the curvature of
β is given by κβ = |β ′×β ′′|

|β ′|3 , we obtain that κβ and κα ,
the curvatures of β and α, respectively, are related by

κ2
β (s) = κ2

α (s) + h2κ4
α (s) + h2

(
κ ′
α (s)

)2

(
1 + h2κ2

α

)3

= κ2
α (s)

(
1 + h2κ2

α

)2 + h2
(
κ ′
α (s)

)2

(
1 + h2κ2

α

)3 . (58)

Moreover, since the speed of β can be expressed as

vβ (s) =
√
1 + h2κ2

α (s) , (59)

then the elastic energy in R3 of β is given by

F̂(β) =
∫ l

0
κ2
βvβds =

∫ l

0

κ2
α (s)

(
1 + h2κ2

α

)3/2 ds

+ h2
∫ l

0

(
κ ′
α (s)

)2

(
1 + h2κ2

α

)5/2 ds, (60)

where l stands for the length of α.
Again, for computational simplicity, it is better

to work with X̂, the space of plane curves α(t) =
(v(t), θ(t)) parametrized by using its velocity, v (t),
and the angle that its tangent makes with the x-axis
direction, θ (t). Also, we will consider on X̂ the same
metric (54) as before in Sect. 4.2. In this case, we have

κα (t) = θ ′

vα

,

dκα

ds
(t) = θ ′′

v2α
− θ ′v′

α

v3α
,

d2κα

ds2
(t) = θ ′′′

v3α
− 3θ ′′ v′

α

v4α
− θ ′ vαv′′

α − 3
(
v′
α

)2

v5α
, (61)

vα denoting in these formulae the speedofα. Therefore,
by substitution in (60), we obtain

∫ l

0

κ2
α (s) ds

(
1 + h2κ2

α

)3/2 =
∫ b

a

(
θ ′(t)
vα(t)

)2
vα dt

(

1 + h2
(

θ ′(t)
vα(t)

)2)3/2

=
∫ b

a

(
θ ′ (t) vα (t)

)2 dt
(
v2α (t) + h2 (θ ′ (t))2

)3/2 ,

(62)
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∫ l

0

(
κ ′
α (s)

)2 ds
(
1 + h2κ2

α

)5/2 =
∫ b

a

(
θ ′′(t)
v2α(t)

− θ ′(t)v′
α(t)

v3α(t)

)2
vα

(

1 + h2
(

θ ′(t)
vα(t)

)2)5/2
dt

=
∫ b

a

(
θ ′′ (t) vα − θ ′v′

α

)2 dt
(
v2α (t) + h2 (θ ′ (t))2

)5/2 .

(63)

which allows F̂ to be written more efficiently for our
numerical experiments with the XEL-platform.

However, as in previous case Sect. 4.2, in order to
speed up the convergence of the procedure, we can
restrict our analysis to curves of the type θ (t) =
θ0 +�θ t , with �θ := θ1 − θ0, t ∈ [0, 1]. Now, formu-
lae in (61) change to

κα (t) = (�θ)
1

v
,

dκα

ds
(t) = − (�θ)

v′

v3
,

d2κα

ds2
(t) = − (�θ)

vv′′ − 3
(
v′)2

v5
, (64)

and (62) and (63) are transformed into
∫ 1

0

(v�θ)2

(
v2 + h2 (�θ)2

)2

√
v2 + h2 (�θ)2dt,

∫ 1

0

(
v′�θ

)2

(
v2 + h2 (�θ)2

)3

√
v2 + h2 (�θ)2dt.

A combination of these formulae and (60) allows us
to express F̂ in manner suitable for the work of the
XEL-platform.

Once more, to start computations with the XEL-
platform, we need an initial curve α0(t) = (v(t), θ(t))
in X̂ satisfying the required conditions. Since this
choice is arbitrary, we can choose the same curve as
the one we used previously in (55) for fixed values
θ0, θ1 ∈ R. Then, the process can be initiated with
these data obtaining, by following the gradient descent,
extremals for the elastic energy inR2 ×S

1, whose pla-
nar projection are shown in Fig. 2 for different choices
of the values θ0, θ1 ∈ R.

By using and combining different additional con-
straints, many different experiments can be performed
with the elastic energy functional F̂ in R

2 × S
1.

For example, choosing again p0 = (0, 0, θ0), p1 =

fixed
free

curvature at endpoints:

10

2/3

0

Fig. 2 Minimizing the elastic energy

Table 2 Elastic energy in R
2 × S

1

θ0 θ1 Prescribed curva-
ture at endpoints

nprescribed curvature
at endpoints

20◦ −10◦ 2.84653 0.62874

40◦ −30◦ 0.88453 0.46458

60◦ −50◦ 0.56127 0.45739

70◦ −60◦ 0.53310 0.46825

(1, 0, θ1) as end points for our curves, and several end-
ing angles, θ0, θ1, onemaywish to find extremals of the
elastic energy for, say, variations with (or without) the
same length and/or with (or without) prescribed ending
curvatures.

Thus, when there is no penalty on the length, Fig. 2
shows extremals obtained under both assumptions, pre-
scribed or unprescribed ending curvatures, and Table 2
shows initial data and the corresponding value of the
elastic energy in both situations.

4.4 Minimizing total squared torsion

Another possibility in image reconstruction is to
choose, as filling curves in the plane, projections of
minimizers of the total squared torsion in the unit tan-
gent bundle R2 × S

1, [9]. This time, the energy we are
going to consider on curves of the unit normal bundle
will be

F : X → R, F(β) =
∫

β

τ 2β ds, (65)

where X plays the same role as in the two previous
cases, τβ denotes the torsion of β in R

2 × S
1, and s

stands for the arc-length parameter of β.
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Again, the strategy is to lift the problem fromR
2×S

1

to R
3 by using the universal Riemannian covering as

we did in Sects. 4.2 and 4.3. So, following the same
procedure, assume that

α = α (s) = (x(s), y(s))

is an arc-length parametrized plane curve with Frenet
frame {T (s) ,N (s) ,B (s) = (0, 0, 1)}, and denote by
β its lift to X̃ (with slope h ∈ R). Then, β (s) = α (s)+
θ (s) h B, with θ ′ = κα (s). Hence, if κβ and κα denote,
respectively, the geodesic curvatures of β in R3 and of
α in R2, we have

β ′ (s) = T (s) + κα (s) h B (s) , (66)

β ′′ (s) = κα (s)N (s) + κ ′
α (s) h B (s) . (67)

Therefore,

β ′ × β ′′ (s) = κα (s)B (s)

− κ ′
α (s) h N (s) − κ2

α (s) h T (s) , (68)

and

∥
∥β ′ × β ′′∥∥2 (s) = κ2

α (s) + h2κ4
α (s) + h2

(
κ ′
α (s)

)2
.

(69)

We need to compute also

β ′′′ = −κ2
αT + κ ′

αN + κ ′′
αh B, (70)

since the torsion of α is τα = 0. Hence,

[
β ′, β ′′, β ′′′] = κακ ′′

αh − (
κ ′
α

)2
h + κ4

αh. (71)

Thus, combining (58), (59), (66)-(71) and the standard
formula for computing the torsion in R

3, one gets that
the torsion of β is

τβ (s) =
h

(
κακ ′′

α − (
κ ′
α

)2 + κ4
α

)

κ2
α

(
1 + h2κ2

α

) + h2
(
κ ′
α

)2 . (72)

Again, we want to express this with respect to the
parametrization of α(t) = (v (t) , θ (t)). This time, the
choice of our metric on X̂ will be

〈β(t), β̄(t)〉 = 〈β(a), β̄(a)〉 + 〈β ′(a), β̄ ′(a)〉
+

∫ b

a
〈β ′′(t), β̄ ′′(t)〉 dt, (73)

for curves β, β̄ ∈ X̂. After some computations, one can
check that

τβ (t) = h
τ1

τ2
(t) ,

where

τ1 = v2
(
θ ′θ ′′′ − (

θ ′′)2 + (
θ ′)4) − vv′θ ′θ ′′

+ (
θ ′)2 (

2
(
v′)2 − vv′′) ,

τ2 = v2
(
θ ′)2 (

v2 + h2
(
θ ′)2) + h2

(
θ ′′v − θ ′v′)2 .

Observe that s is not the arc-length parameter of β, so
the total squared torsion energy of β, (65), is given by

∫ l

0

(
τβ

)2
vβds = h2

∫ b

a

(
τ1

τ2

)2 √
v2 + h2 (θ ′)2dt.

(74)

As before, for computational ease, we restrict our a-
ttention to the space of curves of the type (v (t) , θ (t) =
θ0 + �θ t), with �θ denoting �θ = θ1 − θ0 for
fixed given values θ0, θ1 ∈ R. After some lengthly but
straightforward computations with the aid of (64), we
obtain

τ1 = (�θ)4 v2 + 2 (�θ)2
(
v′)2 − (�θ)2 vv′′,

τ2 = (�θ)2 v2
(
v2 + (�θ)2 h2

)
+ (�θ)2 h2

(
v′)2 ,

and factoring (�θ)2, we finally have

τ1 =
(
(�θ)2 v2 + 2

(
v′)2 − vv′′) (�θ)2 . (75)

τ2 =
(
v2

(
v2 + h2

)
+ h2

(
v′)2) (�θ)2 . (76)

Substitution in (74) finally gives

F(β) =
∫ l

0

(
τβ

)2
vβds

= h2
∫ b

a

(
τ1

τ2

)2 √
v2 + (�θ)2 h2dt, (77)

where τ1 and τ2 are given in (75) and (76), respec-
tively. Once more, to initialize the gradient descent
process with the XEL-platform, we select as initial
curve α0(t) = (v(t), θ(t)) in X̂ the one obtained in
(55) for given values θ0, θ1 ∈ R. Following the gradient
descent pathway, extremals for the total squared torsion
energy (65) in R

2 × S
1 project down to planar curves
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fixed
free

curvatures at endpoints:

10

2/3

0

Fig. 3 Projected extremals of the total squared torsion inR2×S
1

shown in Fig. 3 (under prescribed or unprescribed cur-
vature values at the endpoints) for the same choices of
the angles θ0, θ1 ∈ R as those made in Tables 1 and 2.

Curves so obtained are critical for the total squared
torsion functional, but they are not, necessarily, min-
ima. On the other hand, absolute minimum for this
energy is obviously reached at curves β with torsion
τβ = 0. By (72), we know these curves must satisfy
the differential equation

κα (s) κ ′′
α (s) − (

κ ′
α (s)

)2 + κ4
α (s) = 0, (78)

that is solved by the curvature functions

κ (s) = C1

cosh (C0 ± C1s)
.

Then, the angular function θ (s) is obtained by integrat-
ing κ (s)

θ (s) = 1

C1
arctan (sinh (C0 ± C1s)) + C2

C1
,

with C0, C1 and C2 integration constants which can be
determined by using the boundary constraints.

Once more, for computational purposes, we restrict
our attention to the space of curves α(t) = (v(t), θ(t))
parametrized by using velocity, v (t), and the angle
that its tangent makes with the x-axis direction. We
additionally assume that θ (t) = θ0 + t (θ1 − θ0) with
t ∈ [0, 1]. Then, since τβ = 0 equation (78) becomes

vv′′ − 2
(
v′)2 − (θ1 − θ0)

2 v2 = 0,

that is solved by the speed v (t) given by

oθ1 = −40oθ0 = 70

10

0.3

0

Fig. 4 Projections of minimal curves for total squared torsion
(red and orange); elastic energy (green); and length (geodesic in
blue). While the curve in red comes from a global minimum for
the total squared torsion functional, the orange colored curves
come from local minima. (Color figure online)

v (t) = C1

cos ((θ1 − θ0) t + θ0 − C0)
, (79)

with C0 and C1 integration constants.
As in the experiments previously seen in Sects. 4.2

and 4.3, in order to make easier the work of the XEL-
platform on the functional F : X̂ → R, we suppose,
without loss of generality, that the ends of the curves
are chosen to be

p0 = (0, 0, θ0) , p1 = (1, 0, θ1) .

Then, the integration constants C0 and C1 are deter-
mined by the boundary constraints

C1

∫ 1

0

cos ((θ1 − θ0) t + θ0)

cos ((θ1 − θ0) t + θ0 − C0)
dt = 1, (80)

C1

∫ 1

0

sin ((θ1 − θ0) t + θ0)

cos ((θ1 − θ0) t + θ0 − C0)
dt = 0. (81)

With a little of trigonometry, one can see that the second
equation (81) is equivalent to

ln

(
cos (θ1 − C0)

cos (θ0 − C0)

)

= (θ1 − θ0) tan (C0) ,

which reduces to

C1 = cos (C0) .

Now, the relations

x ′ (t) = v (t) cos θ (t) , y′ (t) = v (t) sin θ (t) ,

allow us to recover the planar curves obtained by pro-
jection of the absolute minima of (65).

For instance, in Fig. 4 five curves joining the points
p0 and p1 with respective angles at endpoints θ0 = 70◦
and θ1 = −40◦ are depicted: the absolute minimum of
the total squared torsion (just described) and another
four curves obtained by gradient descent of different
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oθ1 = −40oθ0 = 70

10

0.3

0

Fig. 5 Projected minimum of the total squared torsion func-
tional (79) (curve in red) evolves under the XEL-platform to the
projection of a local minimum for the length (projected geodesic
in blue) following the gradient descent of the latter (Sect. 4.2).
(Color figure online)

energies with XEL. The curve in red is the projec-
tion of the absolute minimum, F (β) = 0, of the total
squared torsion functional, while the orange ones are
the projections of local minima for the same functional
obtained in similar manner to those of Fig. 3 with
F (β) = 1.8567 and F (β) = 3.4543 respectively.
Finally, the curve in green is the projection of an elas-
tica, local minimum for the elastic energy functional
in R

2 × S
1 (obtained as described in Sect. 4.3) and

the curve in blue is the projection of a geodesic curve
R
2 × S

1 (a local minimum of the length obtained as
described in Sect. 4.2).

Even more, last curve, the planar projection of a
geodesic inR2×S

1 is also obtained byXEL if one starts
the curve descent evolution for the length (Sect. 4.2)
taking as initial curve the absolute minimum of the
torsion functional (red curve), Fig. 5.

4.5 Comparing models

Figures 2, 3, 4 and 5 involve boundary conditions with
relatively small acute angle on both ends, but it might
be illustrative to compare different models under more
demanding boundary conditions as, for instance, larger
curvature values at the ends and/or obtuse angles in one
or both ends. Thus, in Fig. 6, we consider planar projec-
tions of elastic energy minimizers between two given
points po = (0, 0) and p1 = (1, 0), where we fix the
angles θo, θ1, and curvatures κo = 1, κ1 = 2, at both
ends. While the angle at po = (0, 0) is always kept to
be θo = 120◦, the final angle at p1 = (1, 0), θ1, is cho-
sen to vary from −90◦ to −270◦ in amounts of −30◦.
Analogously, Fig. 7 shows planar projections of mini-
mizers for the total squared torsion energy between the
same points, po = (0, 0) and p1 = (1, 0), under simi-
lar boundary conditions. This time, we choose κo = 1,

Fig. 6 Planar projections of elastic energy minimizers between
two inducers, po = (0, 0), θo = 120◦, κo = 1, and, p1 = (1, 0),
κ1 = 2 when the final angle θ1 varies from the initial value−90◦
to −270◦ in amounts of −30◦

Fig. 7 Planar projections of minimizers for the total squared
torsion energy between the inducers, po = (0, 0), θo = 60◦,
κo = 1, and, p1 = (1, 0), κ1 = 2 for a final angle θ1 variation
with stepsize −30◦ from the initial value 60◦ to −330◦. Here,
no constraint is assumed on the values of the curvature (κ ′

o, κ
′
1)

derivatives at the endpoints

κ1 = 2 as curvature values at the ends and θo = 60◦ for
the angle at po = (0, 0). Then we look for energy min-
imizers by fixing different values for the arrival angle
at p1 = (1, 0), θ1. The choices for θ1 form a varia-
tion with stepsize −30◦ from the initial value 60◦ to
−330◦. Here, no constraint is assumed on the values of
the curvature derivatives κ ′

o, κ
′
1 at the endpoints, and,

as a consequence, there are no substantial differences
between the twomodels as long as boundary conditions
are similar.

In order to find significant differences, constraints on
the values of the curvature derivatives must be imposed
at the endpoints. In fact, a more direct comparison
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Fig. 8 Planar projection of an elastic energy minimizer in the
unit tangent bundle joining the inducer points po = (0, 0),
θo = 60◦, κo = 1, and, p1 = (1, 0), θ1 = −210◦ κ1 = 2,
is shown in black. Then, projections of four minimizers of the
total squared torsion, joining the same endpoints, but under addi-
tional boundary conditions of the curvature derivatives, are given:
no constraint on (κ ′

o, κ
′
1) (blue); (κ ′

o, κ
′
1) = (1, f ree) (green);

(κ ′
o, κ

′
1) = ( f ree, 1) (red); and (κ ′

o, κ
′
1) = (1, 1) (magenta).

(Color figure online)

between the elastic and total squared torsion models
is given in Figs. 8 and 9. In Fig. 8, we choose again
the above two points po, p1 and we fix the following
boundary conditions at both ends: θo = 60◦, κo = 1 for
po = (0, 0); and θ1 = −210◦, κ1 = 2, for p1 = (1, 0).
Then, the planar projection of an elastic energy min-
imizer in the unit tangent bundle joining these two
inducer points is shown in black. Moreover, projec-
tions of four minimizers of the total squared torsion,
joining the same end points with same boundary con-
ditions for angles and curvature, but under additional
boundary conditions for the curvature derivatives, are
given (note that these latter constraints make no sense
for the elastic energy): Aminimizer with no constraints
on curvature derivatives at the ends, κ ′

o, κ
′
1, is shown in

blue; the curve in green is a minimizer with constraints
(κ ′

o, κ
′
1) = (1, f ree); constraints (κ ′

o, κ
′
1) = ( f ree, 1)

give rise to the curve in red; andfinally, theminimizer in
magenta corresponds to the choice (κ ′

o, κ
′
1) = (1, 1). It

follows that there are no significant differences between
the two models unless constraints on the values of the
curvature derivatives are imposed at the endpoints.

A similar experiment is performed in Fig. 9. This
time, the fix boundary conditions are: θo = 60◦,
κo = 1 at po = (0, 0); and θ1 = −210◦, κ1 = 1 at
p1 = (1, 0). The planar projection of an elastic energy
minimizer in the unit tangent bundle joining the inducer
points is shown in cyan. Then, additional constraints
on the curvature derivatives at the ends are consid-
ered for the total squared torsion energy, and projec-

Fig. 9 Planar projection of an elastic energy minimizer in the
unit tangent bundle joining the inducer points po = (0, 0),
θo = 60◦, κo = 1, and, p1 = (1, 0), θ1 = −210◦, κ1 = 1,
is shown in cyan. Then, projections of four minimizers of the
total squared torsion, joining the same endpoints, but under addi-
tional boundary conditions of the curvature derivatives, are given:
no constraint on (κ ′

o, κ
′
1) (red); (κ ′

o, κ
′
1) = (0, f ree) (green);

(κ ′
o, κ

′
1) = ( f ree, 0) (blue); and (κ ′

o, κ
′
1) = (0, 0) (violet). The

curve in black corresponds to an elastica under the same con-
straints but free departing curvature at po. (Color figure online)

Fig. 10 Projectedminimizers of the total squared torsion energy
showing inflection points

tions of four minimizers of this energy, under different
boundary conditions of the curvature derivatives, are
given: with no constraint on (κ ′

o, κ
′
1) appears in red;

(κ ′
o, κ

′
1) = (0, f ree) (green); (κ ′

o, κ
′
1) = ( f ree, 0)

(blue); and (κ ′
o, κ

′
1) = (0, 0) (violet). Finally, for com-

parison, an elastica under the same constraints but free
departing curvature at po is shown in black.

Another relevant difference between models is
shown in Fig. 10. As remarked in previous Sect. 3, pla-
nar projections of length minimizers in the unit tangent
bundle are a kind of spirals and do not show up inflec-
tion points on their trace (this fact seems to be supported
also byphysiological evidence [9]).As far as elastic and
total squared torsion energies are concerned, our exper-
iments show a different behavior. In fact, while we are
not able to obtain planar projections of elastic minimiz-
ers with inflection points (points where curvature sign
changes), it is possible to get, under suitable boundary
conditions, planar projections of total squared torsion
minimizers having inflection points (see Fig. 10).
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5 Conclusions

Frenet–Serret curvatures’ dependent energies acting on
spaces of curves in the unit tangent bundle R

2 × S
1,

for example, length, elastic energy, total squared tor-
sion energies and their linear combinations, play an
important role in recent models describing the func-
tional mechanism of the primary visual cortex V1. In
particular, it turns out that Sub-Riemannian geodesics
have to be lifts to R

2 × S
1 of curves in R

2 which are
critical for an elastic energy type functional. More gen-
erally, the variational problem associatedwith the latter
curvature energy is considered for curves in Euclid-
ean m-space. In this case, we compute the first vari-
ation formula and then, using the symmetries of the
problem and a Noether- type argument, we obtain first
integrals of the corresponding Euler–Lagrange equa-
tions. Combining them with symmetries again, we are
able to determine the extremal curves (up to quadra-
tures) in terms of the curvature of the solution curves.
These facts can be translated to the plane, which is the
case of interest in vision reconstruction by curve com-
pletion, and show now that Euler–Lagrange equations
can be integrated obtaining the curvature of the criti-
cal curves, what guarantees explicit parametrization of
the extremals. At this point, we are short of finding the
value of the parameters involved in the solutions. Try-
ing to determine these constants by using the boundary
conditions lead us to serious technical problems.

To overcome these difficulties, we propose a numer-
ical approach and use a gradient descent-based method
implemented by our group somewhere else [7], which
can be adapted to a large family of functionals, includ-
ing the above-mentioned Frenet–Serret curvatures’
dependent energies of curves in R

2 × S
1. For the first

type of energy we consider here, Sub-Riemannian geo-
desics, our results are in close agreement with those
obtained by other authors [9]. Then, we extend the
scope of our method by considering applications to
elastic and total squared torsion energies. We analyze
minimizers of both energies under similar boundary
constraints, and we find no significant differences in
their behavior unless curvature derivative boundary
conditions are imposed on the latter. Under this addi-
tional boundary constraints, total squared torsion min-
imizers also show inflection points which do not show
up (numerically) for the elastic energy problem.

Applications can also be extended to linear com-
binations of the above energies at no extra computa-

tional charge in XEL. Under the XEL-platform, it is
possible to linearly combine the above functionals to
create new ones and even switching the roles played
by them. Thus, as a consequence of a Lagrange mul-
tiplier version, a given energy can be treated as an
objective energy to be minimized under certain con-
straints within a functional, or as an isoperimetric con-
straint for other energies within the same functional.
For instance, with nearly the same amount of effort,
XEL can search for elasticae (ie, minimizers of the
elastic energy) among curves of fixed length and/or tor-
sion, or search for curves thatminimize torsion between
those of prescribed length and/or elastic energy, etc.
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