
Nonlinear Dyn (2016) 86:1117–1135
DOI 10.1007/s11071-016-2952-5

ORIGINAL PAPER

Reliable sampled-data vibration control for uncertain
flexible spacecraft with frequency range limitation

Shidong Xu · Guanghui Sun · Weichao Sun

Received: 4 January 2016 / Accepted: 7 July 2016 / Published online: 19 July 2016
© Springer Science+Business Media Dordrecht 2016

Abstract This paper deals with the problem of reli-
able finite frequency vibration control for flexible
spacecraft subject to torque constraint, actuator failure
and linear fractional transformation (LFT) uncertainty.
The practical sampled-data control signal is converted
into a continuous-time input with time-varying delay.
Since the main vibration energy of flexible spacecraft is
dominated by low-frequency vibration modes lying in
a specific frequency band, a novel reliable robust H∞
output feedback controller with frequency constraint
is employed here to suppress these resonance modes.
Compared with classic full frequency scheme, finite
frequency algorithm achieves a lower upper bound of
vibration reduction performance even under the cir-
cumstance of torque constraint, actuator failure and
LFT uncertainty. By convex optimization techniques,
the problem of seeking admissible controller is trans-
formed into the feasibility of linear matrix inequalities.
The merits and effectiveness of proposed control algo-
rithm are confirmed by an illustrative design example.
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1 Introduction

In recent years, flexible spacecraft has served humanity
in various areas, like communication, monitoring, nav-
igation, resources observation, and remote sensing[1].
In the presence of elastic appendages, stabilizing the
attitude of flexible spacecraft is really a hard work
for designer. To implement high-precision attitude
maneuvering, the elastic vibration induced by flexible
appendages must be suppressed fully [2]. The complex
space environment and defects of flight control system
further increase the complexity and difficulty of this
work.

In most control algorithms for flexible spacecraft,
actuator is always regraded as a perfect component in
system, which means it outputs the required control
torque fully. However, the opposite is true in real-world
applications. Because of component aging or other rea-
sons, actuator may not perform the command from
controller completely or even do not response to the
command at all. The attitude control performance and
system stability will be undermined by the actuator
with loss of effectiveness. Any control scheme with-
out considering actuator failure is likely to collapse in
practical applications [3]. Thus, in practice it is essen-
tial to design a controller which has the ability to keep
the stability and desired performance of system in the
situation of actuator failure. During the last decade,
the robust fault-tolerant control method is widely used
to deal with vibration suppression for flexible space-
craft. For example, Zhang et al. [5] developed a fault-
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tolerant H∞ controller against partial input faults for
flexible spacecraft. Jin et al. [6] investigated the prob-
lem of adaptive tracking for linearized aircraft based
on reliable robust H∞ approach; moreover, the topic
of reliable H∞ filtering is also discussed by them in
[7]. Shen et al. [8] designed a reliable filter for semi-
Markov jump system which ensures mixed H∞ and
passive performance.

Apart from actuator failure, the imprecisely mod-
elling of plant is another obstacle for controller design
in practice. On account of time-varying physical para-
meter, nonlinear elastic-rigid coupling and modal trun-
cation, uncertainty always exists in the mathematical
model of plant. It is apparent that parameter uncertainty
is another potential threat to system stability and per-
formance. However, robust H∞ control method pro-
vides a window for the solution of this problem. By
virtue of LMI approach together with some algebraic
manipulations, model uncertainty could be taken into
account during the controller design. For example, Sak-
thivel et al. proposed a novel robust H∞ controller for
a class of uncertain mechanical system [9], and they
also solved the problem of reliable robust synthesis
for uncertain Takagi–Sugeno fuzzy system [10]. The
robust stabilization of uncertain neural networks was
studied in [14]. On the other hand, as the digital com-
puters are widely employed in control systems, it is
of significance to investigate the sampled-data control
for flexible spacecraft. On the strength of input delay
method [11,25], the discrete-time control signal can
be transformed into the form of time-varying delayed
input which can be handled by Lyapunov functional
theory easily. Shen et al. [12]. constructed a sampled-
data controller to guarantee the extended dissipative
performance of Markov jump system. Sakthivel et al.
[13] investigated the problem of reliable sampled-data
H∞ control for flexible spacecraft with input sampling
and probabilistic time delays.

It is important to underscore that all of the existing
literatures about vibration control for flexible space-
craft focus on the full frequency H∞ method. How-
ever, they have ignored that the main vibration energy
of flexible structure are caused by low-order vibra-
tion modes gathering in a specific frequency region.
If we only impose the H∞ index requirement on this
given frequency band instead of entire frequency range,
will we achieve a lower upper bound of optimal H∞
index, which implies a better vibration reduction per-

formance? Motivated by this question, we begin this
investigation. Recently, an important and contributive
work [16], generalized KYP lemma, makes it possi-
ble to impose this control objective on a limited fre-
quency range by convex optimization. This inspira-
tional achievement has been studied for some years and
applied in model reduction [19–21], active suspension
control [22,23], 2-D system [24], etc. But there are few
papers reporting the utilization of fault-tolerant finite
frequency control for uncertain flexible spacecraft with
input sampling, failure and energy limitation.

In this work, a novel reliable finite frequency con-
troller is designed to suppress the elastic vibration of
flexible spacecraft during attitude maneuvering. We
firstly derive the dynamic model of flexible spacecraft
along with hard constraints. As we cannot obtain all of
the state variables, the output feedback approach, which
only needs a few measurable variables, is adopted here
to fulfill finite frequency algorithm. Then, drawing sup-
port from Lyapunov functional and S-procedure, the
existence conditions of desirable controller are con-
verted into a set of LMI to be figured out. Finally,
a practical design example is provided to prove the
advantages of presented controller over the full fre-
quency counterparts.

The remainder contents of this study will be out-
lined as follow: Sect. 2 derives the single-axis dynamics
of flexible spacecraft with input sampling, failure and
constraint, and presents the control objectives of this
work. The main results of finite frequency vibration
attenuation for flexible spacecraft are stated in Sect. 3.
Section 3.2 gives a practical example to confirm the
better control performance of proposed method than
traditional full frequency approach. Finally, the con-
clusive statements and the discussions of future work
are written in Sect. 5.

Notation For better comprehension and expression,
the mathematical notations used in this paper are sum-
marized here. If A is assumed to be a general matrix,
A−1, A∗, AT refer to its inverse, conjugate transposi-
tion and transposition matrix, respectively. If A > 0
(< 0), then we think A is a positive (negative) def-
inite matrix. The abbreviation [A]s denotes AT + A.
‖A‖ indicates the induced 2-norm of A. The maximum
eigenvalue of A is denoted by ρmax (A). ⊗ represents
Kronecker product. In partitioned matrices, the sym-
bols 0 and I describe appropriately dimensioned zero
matrix and identity matrix, and a symmetric term is
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represented by �. ‖ f (t)‖2 =
√∫ ∞

0 f T (t) f (t)dt repre-
sents the 2-norm of vector f (t). The set of n×n dimen-
sional Hermitian matrices are denoted by Hn . �g� and
�g	 describe the nearest integral number smaller than or
equal to and greater than or equal to g. Rn and C

n rep-
resents n-dimensional real and complex vector space,
respectively.

2 Problem formulation and preliminaries

This paper takes into consideration the single-axis
model inferred from nonlinear attitude dynamics of
the flexible spacecraft which features a rigid object
attached by a elastic appendage. This equations of
motion of flexible spacecraft are given by [26]:

{J θ̈ (t)+ Hη̈(t) = u f (t)
HT θ̈ (t)+ Ms η̈(t)+ Cs η̇(t)+ Ksη(t) = Lw(t)

(1)

whereJ is the total moment of inertia of flexible space-
craft, H denotes elastic-rigid coupling matrix , Ms ,
Cs , Ks represent mass, damping, and stiffness matri-
ces, respectively. L is disturbance input matrix. θ(t)
refers to the attitude angle to be controlled, η(t) =
[η1(t) η2(t) · · · ηn̂(t)]T describes generalized coordi-
nates of elastic appendages. u f (t) is control torque
which suffers actuator failure. w(t) denotes external
disturbance. Different from existing single-axis space-
craft dynamics where w(t) appears in the right-hand
side of first equation in (1), it deserves to underline
that in this case w(t) locates in the right-hand side
of second equation in (1), which indicates external
disturbance impacts on flexible appendage directly.
The latter model is accordance with the actual sit-
uation. Moreover, we assume that disturbance term
w(t) has the property of energy bounded, indicating
w(t) ∈ L[0,∞) and ‖w(t)‖2

2 ≤ w where w is a posi-
tive constant.

The equations of motion (1) are able to be expressed
in the following simplified form,

Mν̈(t)+ Cν̇(t)+ Kν(t) = Bu f (t)+ Bww(t) (2)

where ν(t) = [θT (t) ηT (t)]T and

M =
[ J H
HT Ms

]
, C =

[
0 0
0 Cs

]
,

K =
[

0 0
0 Ks

]
,

B =
[

1
0

]
, Bw =

[
0
L

]
.

By introducing a novel vector ε(t) = [νT (t) ν̇T (t)]T

and defining

A =
[

0 I
−M−1K −M−1C

]
, B =

[
0

M−1B
]
,

Bw =
[

0
M−1Bw

]
,

we have the state equation for flexible spacecraft,

ε̇(t) = Aε(t)+ Bu f (t)+ Bww(t). (3)

For flexible spacecraft, actuator converts the control
signals (like voltage or electricity) into control torque
which is imposed on plant directly. However, due to
component aging or other reasons, actuator may not
implement the commend fully, which means it can not
output enough torque required by controller. Therefore,
it is significant and needful to fulfill reliable control
for flexible spacecraft with the existence of actuator
failure. Based on the actuator fault model stated in [4,
9], we define the control input with actuator faults as

u f (t) = Lu(t) (4)

where L is the actuator effectiveness matrix which sat-
isfies L ≤ L ≤ L , where L = diag{l1, l2, . . . , ln},
L = diag{l1, l2, . . . , ln}, and L = diag{l1, l2, . . . , ln}.
After defining L0 = L+L

2 and L1 = L−L
2 , we have

L = L0 +ΔL , |ΔL | ≤ L1. (5)

It deserves to mention that li = 1 indicates the i th
actuator is normal, 0 < li < 1 indicates the i th actuator
loses partial effectiveness, and li = 0 means the i th
actuator loses the effectiveness completely.

Furthermore, in practical flight control system, the
control signal u(t) figured out by digital computer
merely updates at time instants tk, . . . , tk+1, . . .. That
is to say u(tk) are valid in time interval [tk, tk+1], which
is given as

u(t) = u(tk), tk ≤ t < tk+1.
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Here we assume that u(t) is sampled at a series of time
instants, and the upper bound of the interval between
any two adjacent time instants is defined as h (h > 0),
which implies tk+1 − tk ≤ h,∀k ≥ 0. The discrete con-
trol input u(tk) increases the difficulties in designing an
effective controller for system. To tackle this problem,
the input delay approach is adopted in this case, which
rewrites the sampling time tk as

tk = t − (t − tk) = t − τ(t),

where τ(t) = t − tk ≤ h, which further leads to

u(t) = u(tk) = u(t − τ(t)), tk ≤ t < tk+1, (6)

where τ(t) is time-varying delay and satisfies τ̇ (t) =
1, t �= tk .

On the other hand, it is well known that the paramet-
ric uncertainties exist extensively in physical systems
because of inaccurate mathematical model and changes
in external environment. The presence of uncertain-
ties will impair the stability and performance of con-
trol system. To obtain satisfactory control performance
in practical applications, uncertainties should be taken
into account during the controller design. In compari-
son with norm-bounded uncertainty description, there
exit a more general and natural uncertainty description
called LFT formulation. In this paper, LFT method is
used to depict the uncertain changes in system matrix A
and input matrix B in state equation (3). Therefore, by
introducing LFT uncertainties into this system and tak-
ing care of actuator faults (4) and input sampling-data
description (6), the state equation (3) becomes

ε̇(t) = Ãε(t)+ B̃Lu(t − τ(t))+ Bww(t) (7)

where Ã = A + ΔA(t) and B̃ = B + ΔB(t). ΔA(t)
andΔB(t) are referred to as the unknown time-varying
uncertainties in system matrix A and input matrix B,
respectively. Moreover, ΔA(t) and ΔB(t) are repre-
sented as

[ΔA(t) ΔB(t)] = HΔ(t)[E A EB], (8)

where H , E A, EB are known appropriately dimen-
sioned constant matrices and Δ(t) is a time-varying
unknown matrix which guarantees

Δ(t) = [I − F(t)J ]−1 F(t),

where matrix J is known and meets I − J J T > 0,
and time-varying matrix F(t) is unknown and meets
FT (t)F(t) ≤ I . Finally, the state space representation
of uncertain flexible spacecraft is stated as

{
ε̇(t) = Ãε(t)+ B̃Lu(t − τ(t))+ Bww(t)
z(t) = Czε(t)

(9)

where z(t) is the attitude angle θ(t) to be controlled.
Revisiting the equations of motion (1), we should

point out that the accurate measurement of all of the
elastic generalized coordinate η(t) is an extremely dif-
ficult work in practice, which means state feedback
approach can not be accommodated into designing con-
troller in this case. However, since the attitude angle
and attitude angle rate of spacecraft body and flexible
appendage tip can be measured easily and accurately
in physical situation, output feedback scheme is the
best choice for controller design here. In this study, we
define the measurement output equation as

y(t) = Cε(t)

where y(t) represents the measurable physical vari-
ables. Then, a dynamic output feedback controller gov-
erned by

{ ˙̂ε(t) = Ak ε̂(t)+ Aτ ε̂(t − τ(t))+ Bk y(t)
u(t) = Ck ε̂(t)

(10)

is employed in this work, where ε̂ is the state variable of
this controller, and Ak , Aτ , Bk , Ck are the parameters
to be designed. Combining (9) and (10), we obtain the
closed-loop system as

{
x(t) = Ax(t)+ Bx(t − τ(t))+ Bww(t)
z(t) = Cz x(t)

(11)

where x(t) = [εT (t), ε̂T (t)]T and

A =
[

Ã 0
BkC Ak

]
, B =

[
0 B̃LCk

0 Aτ

]
,

Bw =
[

Bw

0

]
, Cz = [

Cz 0
]
.

Invoking the closed-loop system’s state vector x(t), the
control input with actuator faults can be rewritten as
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u f (t) = Cu x(t) (12)

where Cu = [0 LCk].
The major objective of this study is to construct a

dynamic output feedback controller (10), such that the
robustly stability of disturbance-free closed-loop sys-
tem (11) is guaranteed. What is more, in the specific
frequency range (
1,
2) the closed-loop system (11)
perseveres the disturbance suppression index γ , which
means∫ ∞

0
zT ( jω)z( jω)dt ≤ γ 2

∫ ∞

0
wT ( jω)w( jω)dt,

∀ω ∈ (
1,
2), (13)

which differs from the H∞ performance of traditional
entire frequency H∞ method,
∫ ∞

0
zT ( jω)z( jω)dt ≤ γ 2

∫ ∞

0
wT ( jω)w( jω)dt,

∀ω ∈ (−∞,+∞). (14)

Moreover, because of the limited energy consumption
in flight control application, the actuator output torque
is confined by

∫ ∞

0
u f (t)T u f (t)dt ≤ δ, (15)

where δ is a presupposed constant.
Before presenting the main results of this study, the

following lemmas will be revisited first, whose detailed
proof is shown in [15–18].

Lemma 1 ([15]) Assuming there exists constants a
and b, and symmetric matrix P > 0, thus, for any
vector function x(s) in [a, b] → R

n, we have

∫ b

a
xT (s)Px(s)ds ≥ 1

b − a
ζ(s)TPζ(s),

where ζ(s) = ∫ b
a x(s)ds.

Lemma 2 (S-procedure [16]) Given vector ξ ∈ C
n,

and matrices Θ, M ∈ Hn, it can be derived that

ξ∗Θξ < 0, ∀ξ �= 0, ξ∗Mξ ≥ 0,

if and only if

∃σ ∈ R, σ ≥ 0, Θ + σM < 0.

Lemma 3 [17] Given the general matrices P , Q, and
R with appropriate dimensions. If ‖Q‖ ≤ 1, we have

PQR + RTQTPT ≤ ε−1PPT + εRTR.

holds for any scalar ε > 0.

Lemma 4 [18] Let the symmetric matrix Ξ , appropri-
ately dimensioned general matrices P , Q, J and F(t)
be given. The following two inequalities are equivalent:

– (1) Ξ + PΔ(t)Q + QTΔ(t)PT < 0, where
Δ(t) = [I − F(t)J ]−1F(t), I − JJ T > 0 and
FT (t)F(t) < I .

– (2)

⎡
⎣

Ξ � �

PT −ρ I �

ρQ ρJ −ρ I

⎤
⎦ < 0.

where ρ is an arbitrary positive number.

Remark 1 It is the key to finite frequency vibration con-
trol for flexible spacecraft that how to determine the
concerned frequency range. In fact, from the equations
of motion of flexible spacecraft, the nature frequen-
cies of vibration modes can be inferred. In this paper,
we want the specific frequency range in (13) just cov-
ers these nature frequencies instead of full frequency
band. For instance, if we merely consider the first tow-
order nature frequencies ω1 and ω2 in system model,
then the concerned frequency region can be defined as
(�ω1�, �ω2	) [
1 = �ω1�, 
2 = �ω2	 in (13)].

3 Controller design

In this section, the problem of controller synthesis for
the vibration attenuation of flexible spacecraft is dis-
cussed. Drawing supports from convex optimization
and Lyapunov functional method, the desirable con-
troller can be obtained straightly through figuring out
a set of LMIs. And the following statements are sepa-
rated as two subsections: reliable sampled-data control
for nominal and uncertain flexible spacecraft model,
respectively.

3.1 Fault-tolerant sampled-data controller design

The main purpose of this subsection is to design the
reliable sampled-data control strategy for closed-loop
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system (11) without LFT uncertainty, and this nominal
closed-loop system is expressed as

{
x(t) = Ax(t)+ Bx(t − τ(t))+ Bww(t)
z(t) = Cz x(t)

(16)

where Bw and Cz have been expressed in (11) and

A =
[

A 0
BkC Ak

]
, B =

[
0 BLCk

0 Aτ

]
.

The finite frequency reliable sampled-data control
algorithm for nominal system (16) is presented by fol-
lowing theorem.

Theorem 1 Given the scalars γ > 0, ε > 0, δ > 0,
positive-definite matrices X11, X22, Y11, Y22, Z11, Z22,
G11, G22, R11, R22, T11, T22, Q11, Q22, symmetric
matrices P11, P22, general matrices X21, Y21, Z21, G21,
R21, T21, Q21, P21, K1, K2, K3, K4, M, U11, V11. If
the LMIs exhibited as follow

Ξ =

⎡
⎢⎢⎢⎢⎣

Ξ11 � � � �

Ξ21 Ξ22 � � �

Ξ31 Ξ32 Ξ33 � �

Ξ41 Ξ42 0 Ξ44 �

Ξ51 0 0 0 Ξ55

⎤
⎥⎥⎥⎥⎦
< 0, (17)

Ω =
⎡
⎣
Ω11 � �

Ω21 Ω22 �

Ω31 Ω32 Ω33

⎤
⎦ < 0, (18)

Γ =
⎡
⎣

−I � �

0 −δY11 �√
εK T

3 LT −δY21 −δY22

⎤
⎦ < 0, (19)

are true, where

Ξ11 =
[

X11 − Z11 −
1
2 Q11 + [U T
11 A]s + [K2C]s

X21 − Z21 −
1
2 Q21 + K T
1 + A

�

X22 − Z22 −
1
2 Q22 + [AV11]s
]
,

Ξ21 =
[

Y11 + P11 + j
c Q11 + U T
11 A + K2C − U11

Y21 + P21 + j
c Q21 + A − M

Y T
21 + PT

21 + j
c QT
21 + K1 − I

Y22 + P22 + j
c Q22 + AV11 − V T
11

]
,

Ξ22 =
[

h2 Z11−[U11]s −Q11 �

h2 Z21−M− I −Q21 h2 Z22−[V11]s −Q22

]
,

Ξ31 =
[

Z11 Z T
21

Z21+K T
4 Z22+K T

3 LT BT

]
,

Ξ32 =
[

0 0
K T

4 K T
3 LT BT

]
,

Ξ33 =
[ −X11 − Z11 �

−X21 − Z21 −X22 − Z22

]
,

Ξ41 = [
BT
wU11 BT

w

]
,

Ξ42 = [
BT
wU11 BT

w

]
, Ξ44 = −γ 2 I,

Ξ51 = [
Cz Cz V11

]
, Ξ55 = −I,

Ω11 =
[

R11 − T11 + [U T
11 A]s + [K2C]s

R21 − T21 + A + K T
1

�

R22 − T22 + [AV11]s
]
,

Ω21 =
[

G11−U11+U T
11 A+K2C GT

21− I +K1
G21−M+ A G22−V T

11+ AV11

]
,

Ω22 =
[

h2T11 − [U11]s �

h2T21 − M − I h2T22 − [V11]s
]
,

Ω31 =
[

T11 T T
21

T21 + K T
4 T22 + K T

3 LT BT

]
,

Ω32 =
[

0 0
K T

4 K T
3 LT BT

]
,

Ω33 =
[ −R11 − T11 �

−R21 − T21 −R22 − T22

]
, 
c = 
1+
2

2
,

Then, for the known actuator failure matrix L, a
dynamic output feedback controller (10) with

Ck = K3V −1
21 (20)

Bk = U−T
21 K2 (21)

Ak = U−T
21 (K1 − U T

11 AV11 − U T
21 BkCV11)V

−1
21 (22)

Aτ = U−T
21 (K4 − U T

11 BLCk V21)V
−1
21 (23)

V T
21U21 = M − V T

11U11 (24)

can be found, such that the stability and required per-
formance (13), (15) can be ensured for closed-loop sys-
tem (16) simultaneously.

Proof To simplify discussion, integrating the matrices
in Theorem 1 as follow

X̃ =
[

X11 �

X21 X22

]
, Ỹ =

[
Y11 �

Y21 Y22

]
,

Z̃ =
[

Z11 �

Z21 Z22

]
,

G̃ =
[

G11 �

G21 G22

]
, R̃ =

[
R11 �

R21 R22

]
,
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T̃ =
[

T11 �

T21 T22

]
,

Q̃ =
[

Q11 �

Q21 Q22

]
, P̃ =

[
P11 �

P21 P22

]
.

Then, assuming there exist an invertible matrix U and
partitioning it and its inverse as

U =
[

U11 U12

U21 U22

]
U−1 =

[
V11 V12

V21 V22

]

If we define

Δ1 =
[

U11 I
U21 0

]
, Δ2 =

[
I V11

0 V21

]
,

it can be easily obtained thatΔ2U = Δ1. Furthermore,
from (20)–(24), it can be derived that

K1 = U T
21 Ak V21 + U T

11 AV11 + U T
21 BkCV11 (25)

K2 = U T
21 Bk (26)

K3 = Ck V21 (27)

K4 = U T
21 Aτ V21 + U T

11 BLCk V21 (28)

M = V T
21U21 + V T

11U11 (29)

Substituting (25)–(29) into (17)–(19), inequalities
(17)–(19) can be restated into following form,

ΛT
1 Ξ̃Λ1 < 0 (30)

ΛT
2 Ω̃Λ2 < 0 (31)

ΛT
3 Υ̃ Λ3 < 0 (32)

where

Ξ̃ =

⎡
⎢⎢⎢⎢⎢⎣

Ξ̃11 � � � �

Ξ̃21 Ξ̃22 � � �

Z + B
T

U B
T

U −X − Z � �

B
T
wU B

T
wU 0 −γ 2 I �

Cz 0 0 0 −I

⎤
⎥⎥⎥⎥⎥⎦
,

Ω̃ =
⎡
⎢⎣

R − T + [U T A]s � �

G − U + U T A h2T − [U ]s �

T + B
T

U B
T

U −R − T

⎤
⎥⎦ ,

Υ̃ =
[ −I �√

εCu −δY

]
,

Λ1 = diag{Δ2,Δ2,Δ2, I, I },
Λ2 = diag{Δ2,Δ2,Δ2}, Λ3 = diag{I,Δ2},

with

Ξ̃11 = X − Z + [U T A]s −
1
2 Q,

Ξ̃21 = Y − U + U T A + P + j
c Q,

Ξ̃22 = h2 Z − [U ]s − Q, X̃ = ΔT
2 XΔ2,

Ỹ = ΔT
2 YΔ2,

Z̃ = ΔT
2 ZΔ2, G̃ = ΔT

2 GΔ2, R̃ = ΔT
2 RΔ2,

T̃ = ΔT
2 TΔ2, P̃ = ΔT

2 PΔ2, Q̃ = ΔT
2 QΔ2.

Obviously, inequalities (30)–(32) follow the equiva-
lence with the inequalities shown below, respectively,

Ξ̃ < 0, (33)

Ω̃ < 0, (34)

Υ̃ < 0. (35)

For the sake of proving that the control objective
(13) can be guaranteed by inequality (33), we define a
Lyapunov functional for closed-loop system (16) as

V1(t, x(t)) = xT (t)Y x(t)+
∫ t

t−h
xT (s)X x(t)ds

+ h
∫ 0

−h

∫ t

t+θ
ẋ T (s)Z ẋ(s)dsdθ

(36)

Differentiating V1(t) with respect to time t yields

V̇1(t, x(t)) = 2xT Y ẋ(t)− xT (t − h)X x(t − h)

+ xT (t)X x(t)+ h2 ẋ T (t)Z ẋ(t)

− h
∫ t

t−h
ẋT (θ)Z ẋ(θ)dθ

(37)

Recalling Lemma 1, we have
(

xT (t)− xT (t − h)
)

Z (x(t)− x(t − h))

≤ h
∫ t

t−h
ẋT (θ)Z ẋ(θ)dθ (38)

Taking care of (37) and (38), it is can be found that the
following inequality is true,

V̇1(t, x(t)) ≤ 2xT Y ẋ(t)+ xT (t)(X − Z)x(t)

+ h2 ẋ T (t)Z ẋ(t)+ 2xT (t)Z x(t − h)

− xT (t − h)(X + Z)x(t − h) (39)
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For the invertable matrix U , we have the zero equalities
as follow,[

xT (t)U T + ẋ T (t)U T
]

× [
Ax(t)− ẋ(t)+ Bx(t − τ)+ Bww(t)

] = 0,

(40)[
xT (t)A

T − ẋ T (t)+ xT (t − h)B
T + wT (t)B

T
w

]

× [U x(t)+ U ẋ(t)] = 0. (41)

Inserting equations (40) and (41) into (39) yields

V̇1 ≤ 2xT (Y − U T )ẋ(t)+ xT (t)(X − Z)x(t)

+ h2 ẋ T (t)Z ẋ(t)+ 2xT (t)Z x(t − h)

− xT (t − h)(X + Z)x(t − h)

− 2ẋ T (t)U T ẋ(t)+ 2xT (t)U T Ax(t)

+ 2xT (t)U T Bx(t − h)+ 2xT (t)U T Bww(t)

+ 2ẋ T (t)U T Ax(t)+ 2ẋ T (t)U T Bx(t − h)

+ 2ẋ T (t)U T Bww(t)

(42)

Based on inequality (42), it can be further derived that

zT (t)z(t)−γ 2wT (t)w(t)+V̇1(t, x(t)) ≤ ξ T (t)Πξ(t),

(43)

where ξ(t) = [xT (t) ẋ T (t) xT (t −h) wT (t)]T and

Π =

⎡
⎢⎢⎢⎢⎢⎣

Π11 � � � �

Π21 h2 Z − [U ]s � � �

Z + B
T

U B
T

U −X − Z � �

B
T
wU B

T
wU 0 −γ 2 I �

Cz 0 0 0 −I

⎤
⎥⎥⎥⎥⎥⎦
.

withΠ11 = X−Z+[U T A]s andΠ21 = Y −U+U T A.
Assuming the initial conditions of system are zero and
integrating inequality (43) from t = 0 to t = ∞ will
give∫ ∞

0
ξ T (t)Πξ(t)dt ≥

∫ ∞

0
zT (t)z(t)dt

−γ 2
∫ ∞

0
wT (t)w(t)dt � Jh

where Jh denotes the H∞ performance of closed-loop
system. According to Parseval equality, we have

∫ ∞

0
ξ T (t)Πξ(t)dt = 1

2π

∫ ∞

0
ξ∗(λ)Πξ(λ)dt,

where λ = jω and

ξ(λ) = [xT (λ) λ · xT (λ) e−λh · xT (λ) wT (λ)]T .

(44)

If ξ∗(λ)Πξ(λ) < 0 can be ensured for all ω ∈
(
1,
2), then Jh < 0 holds for all ω ∈ (
1,
2)

indicating the control performance (13) is guaranteed.
In order to prove this, we will first revisit inequality
(33) which can be restated as

Π +Σ < 0, (45)

where Σ = F∗(Φ ⊗ P + Ψ ⊗ Q)F and

F =
[

0 I 0 0
I 0 0 0

]
, Φ =

[
0 1
1 0

]
,

Ψ =
[ −1 j
c

− j
c −
1
2

]
,

Based on Lemma 2, inequality (45) follows the equiv-
alence with

ξ∗(λ)Πξ(λ) < 0, ∀ξ(λ) ∈ S1,

where

S1 = {
ξ(λ) ∈ C|ξ(λ) �= 0, ξ∗(λ)Σξ(λ) ≥ 0

}
.

Defining Γλ = [I − λI ] and recalling (44), we can
obtain the following set,

S2 ={ξ(λ)∈C|ξ(λ) �=0, ΓλFξ(λ)=0, λ∈(λ1, λ2)} ,

whereλ1 = j
1 andλ2 = j
2. The statements exhib-
ited in [16] say that S1 is equivalent to S2, such that we
have

ξ∗(λ)Πξ(λ) < 0, ∀ω ∈ (
1,
2),

where further implying system performance (13) is
ensured by inequality (33).

In the following discussion another inequality will
be constructed to guarantee the asymptotically stability
of closed-loop system (16) withw(t) = 0 over full fre-
quency region. Another functional candidate is defined
as
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V2(t, x(t)) = xT (t)Gx(t)+
∫ t

t−h
xT (s)Rx(s)ds

+ h
∫ 0

−h

∫ t

t+θ
ẋ T (s)T ẋ(s)dsdθ, (46)

whose time derivative is written as

V̇2(t, x(t)) = 2xT Gẋ(t)− xT (t − h)Rx(t − h)

+ xT (t)Rx(t)+ h2 ẋ T (t)T ẋ(t)

− h
∫ t

t−h
ẋT (θ)T ẋ(θ)dθ.

(47)

Application of Lemma 1 to (47) gives rise to

V̇2(t, x(t)) ≤ 2xT Gẋ(t)+ xT (t)(R − T )x(t)

+ h2 ẋ T (t)T ẋ(t)+ 2xT (t)T x(t − h)

− xT (t − h)(R + T )x(t − h) (48)

Clearly, the following equations always hold for distur-
bance-free closed-loop system,
[
xT (t)U T + ẋ T (t)U T

]

× [
Ax(t)− ẋ(t)+ Bx(t − h)

] = 0, (49)[
xT (t)A

T − ẋ T (t)+ xT (t − h)B
T
]

× [U x(t)+ U ẋ(t)] = 0. (50)

Bringing equations (49) and (50) into (48) leads to

V̇2(t, x(t)) ≤ ξ(t)TΠξ(t), (51)

where ξ(t) = [xT (t) ẋ T (t) xT (t − h)]T and

Π=
⎡
⎢⎣

R − T +[U T A]s � �

G − U +U T A h2T −[U ]s �

T +B
T

U B
T

U −R−T

⎤
⎥⎦ .

It is clear that inequality (34) guarantees V̇2(t) < 0,
indicating the closed-loop system without disturbance
w(t) is asymptotically stable.

Finally, if ξ T (t)Πξ(t) < 0, inequality (43) will give

V̇1(t, x(t))− γ 2wT (t)w(t) < 0.

Integrating above inequality with respect to t from 0 to
∞ leads to

V1(t, x(t)) < γ 2‖w(t)‖2
2 + V1(0).

Since the second and third term of (36) are all positive,
it can be obtained that xT (t)Y x(t) < ε, where ε =
γ 2‖w(t)‖2

2 + V1(0). Then, recalling the control torque
constraint (15), we have

max
0<t<∞

(
u f (t)T u f (t)

)
= max

0<t<∞

(
xT (t)C

T
u Cu x(t)

)

≤ ε · ρmax

(
Y − 1

2 C
T
u CuY − 1

2

)

< δ,

which further results in

−δY + ε · C
T
u Cu < 0.

Clearly, the above inequality follows the equivalence
with inequality (35) by schur complement lemma. Now,
the proof is completed.

To underscore the benefits of proposed finite fre-
quency method, an entire frequency H∞ control algo-
rithm for nominal system (16) is addressed as follow
for comparison,

Corollary 1 Given the scalars γ > 0, ε > 0, δ > 0,
positive-definite matrices P11, P22, Q11, Q22, R11, R22,
general matrices P21, Q21, R21, K1, K2, K3, K4, M,
U11, V11. If the LMIs shown below

Ξe =

⎡
⎢⎢⎢⎢⎣

Ξe11 � � � �

Ξe21 Ξe22 � � �

Ξe31 Ξe32 Ξe33 � �

Ξe41 Ξe42 0 Ξe44 �

Ξe51 0 0 0 Ξe55

⎤
⎥⎥⎥⎥⎦
< 0,

(52)

Γe =
⎡
⎣

−I � �

0 −δP11 �√
εK T

3 LT −δP21 −δP22

⎤
⎦ < 0, (53)

are feasible, where

Ξe11 =
[

Q11 − R11 + [U T
11 A]s + [K2C]s

Q21 − R21 + K T
1 + A

�

Q22 − R22 + [AV11]s

]
,

Ξe21 =
[

P11 + U T
11 A + K2C − U11 PT

21 + K1 − I
P21 + A − M P22 + AV11 − V T

11

]

Ξe22 =
[

h2 R11 − [U11]s �

h2 R21 − M − I h2 R22 − [V11]s

]
,
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Ξe31 =
[

R11 RT
21

R21 + K T
4 R22 + K T

3 LT BT

]
,

Ξe32 =
[

0 0
K T

4 K T
3 LT BT

]
,

Ξe33 =
[ −Q11 − R11 �

−Q21 − R21 −Q22 − R22

]
,

Ξe41 = [
BT
wU11 BT

w

]
,

Ξe42 = [
BT
wU11 BT

w

]
, Ξe44 = −γ 2 I,

Ξe51 = [
Cz Cz V11

]
, Ξe55 = −I.

Then, for the known actuator failure matrix L, a
dynamic output feedback controller (10) with

Ck = K3V −1
21 (54)

Bk = U−T
21 K2 (55)

Ak = U−T
21 (K1 − U T

11 AV11 − U T
21 BkCV11)V

−1
21 (56)

Aτ = U−T
21 (K4 − U T

11 BLCk V21)V
−1
21 (57)

V T
21U21 = M − V T

11U11 (58)

can be achieved, such that, the stability, performance
(14) and (15) are guaranteed for close-loop system (16).

Proof Defining

P̃ =
[

P11 �

P21 P22

]
, Q̃ =

[
Q11 �

Q21 Q22

]
,

R̃ =
[

R11 �

R21 R22

]
.

Using the same matrices U , U−1,Δ1,Δ2 and the simi-
lar mathematical transformations shown in
Theorem 1, we find that inequalities (52) and (53) fol-
low the equivalence with

⎡
⎢⎢⎢⎢⎢⎣

Q−R+[U T A]s � � � �

P−U + U T A h2 R − [U ]s � � �

R+B
T

U B
T

U −Q−R � �

B
T
wU B

T
wU 0 −γ 2 I �

Cz 0 0 0 −I

⎤
⎥⎥⎥⎥⎥⎦
<0,

(59)
[ −I �√

εCu −δP

]
< 0, (60)

where

P̃ = ΔT
2 PΔ2, Q̃ = ΔT

2 QΔ2, R̃ = ΔT
2 RΔ2.

Defining the following Lyapunov functional for closed-
loop system (16),

V (t, x(t)) = xT (t)Px(t)+
∫ t

t−h
xT (s)Qx(t)ds

+ h
∫ 0

−h

∫ t

t+θ
ẋ T (s)Rẋ(s)dsdθ,

and performing the similar proving steps shown in The-
orem 1, we are able to conclude that if inequalities (59)
and (60) are feasible, the close-loop system (16) is sta-
ble and satisfies specifications (14) and (15) at the same
time. Therefore, the proof is completed.

Remark 2 Diverse Lyapunov functional candidates
give rise to the controllers with conservatism of dif-
ferent degrees. To avoid this effect and make a fair
comparison, in this paper the Lyapunov functional can-
didates for entire and finite frequency controller have
the same structure.

In some practical situations, actuator fault matrix
L may be unknown, but changes in a known interval.
Such that, it is of importance to investigate the reliable
control for flexible spacecraft with unknown actuator
faults. Next, the finite frequency case will be given by
the following theorem.

Theorem 2 For unknown matrix L, by means of the
dynamic output control law (10) with parameters
shown in (20)–(24), the closed-loop system (16) is sta-
ble and guarantees system performances (13) and (15),
if there exist the scalars γ > 0, ε > 0, δ > 0, εi > 0
(i = 1, 2, 3), positive-definite matrices X11, X22, Y11,
Y22, Z11, Z22, G11, G22, R11, R22, T11, T22, Q11, Q22,
symmetric matrices P11, P22, general matrices X21,
Y21, Z21, G21, R21, T21, Q21, P21, K1, K2, K3, K4, M,
U11, V11, which ensure that the following inequalities

⎡
⎣

Ξ ′ � �

ST
1 −ε1 I �

ε1 N1 0 −ε1 I

⎤
⎦ < 0, (61)

⎡
⎣

Ω ′ � �

ST
2 −ε2 I �

ε2 N2 0 −ε2 I

⎤
⎦ < 0, (62)

⎡
⎣

Γ ′ � �

ST
3 −ε3 I �

ε3 N3 0 −ε3 I

⎤
⎦ < 0, (63)
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are feasible, where Ξ ′, Ω ′, Γ ′ are the matrices Ξ , Ω ,
Γ depicted in Theorem 1 in which L is replaced by L0,
and

S1 = M1L1, S2 = M2L1, S3 = M3L1,

M1 = [
BT U11 BT BT U11 BT 0 0 0 0

]T
,

M2 = [
BT U11 BT BT U11 BT 0 0

]T
,

M3 = [
I 0 0

]T
,

N1 = [
0 0 0 0 0 K3 0 0

]
,

N2 = [
0 0 0 0 0 K3

]
,

N3 = [
0 0

√
εK3

]
.

Proof Considering Lemma 3, unknown fault matrix L
in (5), and inequality (17), we have

Ξ = Ξ ′ + M1ΔL N1 + N T
1 ΔL MT

1

≤ Ξ ′ + ε−1
1 M1Δ

2
L MT

1 + ε1 N T
1 N1

≤ Ξ ′ + ε−1
1 M1L2

1 MT
1 + ε1 N T

1 N1

= Ξ ′ + ε−1
1 S1ST

1 + ε1 N T
1 N1.

Clearly, Ξ ′ + ε−1
1 S1ST

1 + ε1 N T
1 N1 < 0 is identical

to inequality (61). Using the similar steps, inequalities
(62) and (63) can be obtained. This proof is concluded.

On the basis of Corollary 1, the entire frequency case
with unknown actuator faults is given by the following
corollary.

Corollary 2 For unknown matrix L, by means of
the dynamic output control law (10) with parameters
shown in (54)–(58), the closed-loop system (16) is sta-
ble and guarantees system performances (14) and (15),
if there exist the scalars γ > 0, ε > 0, δ > 0, εi > 0
(i=1,2), positive-definite matrices P11, P22, Q11, Q22,
R11, R22, general matrices P21, Q21, R21, K1, K2, K3,
K4, M, U11, V11, which ensure the following LMIs

⎡
⎣

Ξ ′
e � �

ST
e1 −ε1 I �

ε1 Ne1 0 −ε1 I

⎤
⎦ < 0, (64)

⎡
⎣

Γ ′
e � �

ST
e2 −ε2 I �

ε2 Ne2 0 −ε2 I

⎤
⎦ < 0, (65)

are feasible, where Ξ ′
e and Γ ′

e are the matrices Ξe and
Γe in Corollary 1 in which L is replaced by L0, and

Se1 = Me1L1, Se2 = Me2 L1,

Me1 = [
BT U11 BT BT U11 BT 0 0 0 0

]T
,

Me2 = [
I 0 0

]T
,

Ne1 = [
0 0 0 0 0 K3 0 0

]
,

Ne2 = [
0 0

√
εK3

]
.

Proof Following the proof of Theorem 2, we have

Ξe = Ξ ′
e + Me1ΔL Ne1 + N T

e1ΔL MT
e1

≤ Ξ ′
e + ε−1

1 Me1L2
1 MT

e1 + ε1 N T
e1 Ne1

= Ξ ′
e + ε−1

1 Se1ST
e1 + ε1 N T

e1 Ne1.

It is easy to find that Ξ ′
e + ε−1

1 Se1ST
e1 + ε1 N T

e1 Ne1 < 0
follows the equivalence with inequality (64). Employ-
ing the similar steps, inequality (65) can also be pro-
cured. Such that this proof is completed.

3.2 Robust fault-tolerant sampled-data controller
design

The main purpose of this subsection is to design the
robust fault-tolerant sampled-data controller for uncer-
tain closed-loop system (11). First the finite frequency
control strategy is given as following theorem.

Theorem 3 Given the scalars γ > 0, ε > 0, δ > 0,
μi > 0, κi > 0 (i = 1, 2, 3), positive-definite matrices
X11, X22, Y11, Y22, Z11, Z22, G11, G22, R11, R22, T11,
T22, Q11, Q22, symmetric matrices P11, P22, general
matrices X21, Y21, Z21, G21, R21, T21, Q21, P21, K1,
K2, K3, K4, M, U11, V11. With known fault matrix L,
the control law (10) with parameters shown in (20)–
(24) can be established to ensure the specifications
(13), (15), and stability for uncertain closed-loop sys-
tem (11), if the LMIs depicted below

Γ < 0, (66)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξ � � � � � �

H
T
1 −μ1 I � � � � �

μ1 E1 μ1 J −μ1 I � � � �

H
T
2 0 0 −μ2 I � � �

μ2 E2 0 0 μ2 J −μ2 I � �

H
T
3 0 0 0 0 −μ3 I �

μ3 E3 0 0 0 0 μ3 J −μ3 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(67)
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω � � � � � �

H̃ T
1 −κ1 I � � � � �

κ1 Ẽ1 κ1 J −κ1 I � � � �

H̃ T
2 0 0 −κ2 I � � �

κ2 Ẽ2 0 0 κ2 J −κ2 I � �

H̃ T
3 0 0 0 0 −κ3 I �

κ3 Ẽ3 0 0 0 0 κ3 J −κ3 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(68)

are feasible, whereΞ ,Ω ,Γ are described in Theorem 1
and

H1 = [
H T U11 H T H T U11 H T 0 0 0 0

]T

H2 = [
0 H T 0 H T 0 0 0 0

]T

H3 = [
H T U11 H T H T U11 H T 0 0 0 0

]T

H̃1 = [
H T U11 H T H T U11 H T 0 0

]T

H̃2 = [
0 H T 0 H T 0 0

]T

H̃3 = [
H T U11 H T H T U11 H T 0 0

]T

E1 = [
E A 0 0 0 0 0 0 0

]
,

E2 = [
0 E A N11 0 0 0 0 0 0

]
,

E3 = [
0 0 0 0 0 EB L K3 0 0

]
,

Ẽ1 = [
E A 0 0 0 0 0

]
,

Ẽ2 = [
0 E A N11 0 0 0 0

]
,

Ẽ3 = [
0 0 0 0 0 EB L K3

]
.

Proof In Theorem 1, replacing matrices A and B by Ã
and B̃, respectively, in matrices Ξ and Ω , we obtain
the matrices Ξ̂ and Ω̂ , which are able to be further
rewritten as

Ξ̂ = Ξ + H1Δ(t)E1 + H2Δ(t)E2 + H3Δ(t)E3,

Ω̂ = Ω + H̃1Δ(t)Ẽ1 + H̃2Δ(t)Ẽ2 + H̃3Δ(t)Ẽ3.

Invoking Lemma 4, it is apparent that Ξ̂ < 0 and Ω̂ <

0 follow the equivalence with inequalities (67) and (68),
respectively. This completes the proof.

For comparison, the entire frequency control strat-
egy for uncertain flexible spacecraft is given as follow-
ing corollary.

Corollary 3 Given the scalars γ > 0, ε > 0, δ > 0,
μi > 0 (i = 1, 2, 3), positive-definite matrices P11,
P22, Q11, Q22, R11, R22, general matrices P21, Q21,
R21, K1, K2, K3, K4, M, U11, V11. With known fault
matrix L, the control law (10) with parameters shown

in (54)–(58) can be established to ensure the specifica-
tions (14), (15), and stability for uncertain closed-loop
system (11), if the LMIs depicted below

Γe < 0, (69)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ξe � � � � � �

H
T
e1 −μ1 I � � � � �

μ1 Ee1 μ1 J −μ1 I � � � �

H
T
e2 0 0 −μ2 I � � �

μ2 Ee2 0 0 μ2 J −μ2 I � �

H
T
e3 0 0 0 0 −μ3 I �

μ3 Ee3 0 0 0 0 μ3 J −μ3 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

<0,

(70)

are feasible, where Ξe and Γe are described in Corol-
lary 1 and

He1 = [
H T U11 H T H T U11 H T 0 0 0 0

]T

He2 = [
0 H T 0 H T 0 0 0 0

]T

He3 = [
H T U11 H T H T U11 H T 0 0 0 0

]T

Ee1 = [
E A 0 0 0 0 0 0 0

]
,

Ee2 = [
0 E A N11 0 0 0 0 0 0

]
,

Ee3 = [
0 0 0 0 0 EB L K3 0 0

]
.

Proof In Corollary 1, replacing the matrices A and B
by Ã and B̃, respectively, in matrix Ξe, we obtain
matrix Ξ̂e which is able to be further expressed
as

Ξ̂e =Ξe+He1Δ(t)Ee1+He2Δ(t)Ee2+H e3Δ(t)Ee3.

Clearly, based on Lemma 4, Ξ̂e < 0 is identical to
inequality (70). Such that, this proof is concluded.

4 Illustrative example

This section exhibits a practical example along with
simulation results capable of highlighting the advan-
tages of proposed finite frequency algorithm. The
configuration of flexible spacecraft is illustrated in
Fig. 1.

In this figure, rigid hub and flexible beam refer to
the main body and elastic appendage of spacecraft,
respectively. r and Jh denote the radius and moment
of inertia of hub, E , cs and ρb, Ib and w(x, t) repre-
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Fig. 1 The configuration of flexible spacecraft

sent the elasticity modulus, damping coefficient, mass
density, area moment of inertia, deformation of flexi-
ble beam, respectively, and mt is tip mass. According
to Hamilton’s extended principle, the dynamics of flex-
ible spacecraft is obtained as (1) with

J = Jh +
∫ l

0
ρb(r + x)2dx + mt (r + l)2,

H =
∫ l

0
ρb(r + x)φi (x)dx + mt (r + l)φi (l),

Ms =
∫ l

0
ρbφi (x)φ j (x)dx + mtφi (l)φ j (l),

Cs =
∫ l

0
cs Ibφi

′′(x)φ j
′′(x)dx,

Ks =
∫ l

0
E Ibφi

′′(x)φ j
′′(x)dx, i, j = 1, 2, . . . , n̂,

w(x, t) =
n̂∑

i=1

φi (x)ηi (t),

where φi (x) = [cos (ϕi x)− cosh (ϕi x)]
− cos (ϕi l)+cosh (ϕi l)

sin (ϕi l) + sinh (ϕi l) × [sin (ϕi x)−
sinh (ϕi x)] denotes the modal function which is sub-
ject to the boundary conditions of the structure shown in
Fig. 1,ϕi is determined by cos(ϕi l)×cosh(ϕi l)+1 = 0,
and n̂ is the number of elastic modes to be taken care
of here.

In this case, considering the first two low-order elas-
tic modes of flexible spacecraft (̂n = 2) and set-
ting Jh = 11 kg m2, r = 0.5, l = 2 m, mt =
1 kg, ρ = 1.66 kg/m, Ib = 1.5 × 10−10 m4, E =
6.895 × 1010 N/m and cs = 2.966 × 105 N/m, we have
J = 25.8268 kg m2,

Ms =
[

7.3200 −4.0036
−4.0036 7.3273

]
,

Cs =
[

0.0001 0
0 0.0027

]
,

Ks =
[

15.9821 0
0 627.6884

]
,

H = [−10.0768 3.6815
]
,

and the disturbance input matrix is defined as L =
[1 1]T for simplicity. The first two nature frequencies
ω1 = 2.1577 rad/s and ω2 = 11.4551 rad/s can be
inferred from above parameter matrices. For this case,
we want the frequency range of finite frequency algo-
rithm merely covers these two nature frequencies, such
that the chosen frequency region are set as (2, 12 rad/s),
which means 
1 = 2 rad/s and 
2 = 12 rad/s in (13).
We assume that the attitude angle θ , angle rate θ̇ , tip
deflectionw(l, t) = φ1(l)η1(t)+φ2(l)η2(t) and its rate
ẇ(l, t) = φ1(l)η̇1(t) + φ2(l)η̇2(t) can be measured in
practice; furthermore, attitude angle θ is chosen as the
target to be stabilized, such that the output matrices are
addressed as,

C =

⎡
⎢⎢⎣

1 0 0 0 0 0
0 −2 2.0018 0 0 0
0 0 0 1 0 0
0 0 0 0 −2 2.0018

⎤
⎥⎥⎦ ,

Cz = [
1 0 0 0 0 0

]
.

Moreover, the external disturbance signal w(t) acted
on flexible appendage directly is assumed to be of the
nonlinear form as follows,

w(t) =
{

0.5 sin(2t), (0 ≤ t ≤ 1.5 s)
0, (t > 1.5 s)

(71)

The following discussion will be divided into two
cases. In Case 1, we cope with the fault-tolerant con-
trol for flexible spacecraft without uncertainty and the
system with LFT uncertainty is discussed in Case 2.

Case 1 For the closed-loop system without uncertainty
(16), we first consider the situation in which fault matrix
L is known. By setting L = 0.5, h = 5 ms, δ = 100
and solving the LMIs in Theorem 1, the finite fre-
quency controller (10) will be obtained with parame-
ters Ak f , Aτ f , Bk f , Ck f shown in “Appendix.” Then,
by setting L = 0.5, h = 5ms, δ = 100 and solv-
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Fig. 2 The magnitude–frequency response of system from w(t)
to z(t) (L = 0.5)
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Fig. 3 The magnitude–frequency response of system from w(t)
to z(t) (0.3 < L < 0.9)

ing the LMIs in Corollary 1, the entire frequency con-
troller (10) will be obtained with parameters Ake, Aτe,
Bke, Cke shown in “Appendix.” Applying the finite and
entire frequency controller to the open-loop system,
Fig. 2 depicts the frequency responses of open-loop
and closed-loop systems from w(t) to z(t). From this
figure, it can be seen that the response curve (black
solid line) of finite frequency system has the lowest
vibration magnitude over the entire frequency band.
The resonance peaks of open-loop system are per-
fectly suppressed under −26.8490 dB line by proposed
finite frequency method; however, only −15.3131 dB
line is achieved by entire frequency method. Figure 5
shows the time responses of attitude angle, angle rate,
and actuator torque with w(t) shown in (71). Clearly,
the time response of finite frequency system achieves
the lowest vibration amplitude and least stabilization
time.

If the fault matrix L is unknown, by setting 0.3 <

L < 0.9, h = 5 ms, δ = 100 and solving the LMIs
in Theorem 2 and Corollary 2, we can obtained the
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Fig. 4 The magnitude–frequency response of system from w(t)
to z(t) (LFT uncertainty, L = 0.5)

corresponding finite and entire frequency output feed-
back controller (10), whose parameters are given in
“Appendix.” The magnitude–frequency responses of
systems are presented in Fig. 3. Clearly, this plot tells
that the vibration peaks of open-loop system are per-
fectly reduced under −17.6555 dB line by presented
finite frequency method, but only −13.4013 dB line is
achieved by entire frequency approach. Furthermore,
Fig. 6 gives the time responses of attitude angle, angle
rate, and actuator torque with w(t) shown in (71). It is
clear that the proposed finite frequency controller also
achieves the best vibration suppression performance
when actuator faults are unknown.

Case 2 Now, we will take into account the flexible
spacecraft model with LFT uncertainty. In this case,
the parameters of LFT uncertainty in (8) are chosen as

H = σH I, J = σJ ,

E A = σA ×

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 1 0 1 1
0 1 1 0 1 1
0 1 1 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦
,

EB = σB ×

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎦
.
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Fig. 5 Time response of attitude angle, angle rate, and control
torque (L = 0.5)

where σH , σJ , σA, and σB are all set at 0.05 for the
purpose of simplifying discussion. By calculating out
the LMIs presented in Theorem 3 and Corollary 3 with
L = 0.5, h = 5ms and δ = 100, the correspond-
ing finite and entire frequency controller (10) can be
achieved, whose parameters are given in “Appendix.”
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Fig. 6 Time response of attitude angle, angle rate, and control
torque (0.3 < L < 0.9)

Then, employing the two controllers to open-loop sys-
tem, respectively, the magnitude–frequency responses
of systems are given in Fig. 4, and time responses of
attitude angle, angle rate, and actuator torque are exhib-
ited in Fig. 7. Obviously, in presence of LFT uncer-
tainty, the finite frequency system is also capable of
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Fig. 7 Time response of attitude angle, angle rate, and control
torque (uncertain case, L = 0.5)

obtaining the best attitude angle stabilization perfor-
mance.

5 Conclusion and future work

In this work, we studied the problem of reliable
sampled-data vibration control for uncertain flexible
spacecraft. A finite frequency H∞ output feedback
controller is constructed to suppress the vibration of
attitude angle caused by elastic appendages. Differing
from classic entire frequency method, the concerned
frequency region of proposed approach only covers
major vibration modes of flexible spacecraft. In addi-
tion, the actuator failure, input sampling and limita-
tion, and LFT uncertainty are also considered in this
paper. The results of simulation confirm that the pro-
posed algorithm is capable of achieving better vibration
attenuation performance.

This work only takes care of passive fault-tolerant
control case. To procure a large capability of fault tol-
erance, it is of significance to investigate the active
fault-tolerant control case with frequency range lim-
itation in the future work. Moreover, how to imple-
ment finite frequency vibration control for uncertain
flexible spacecraft under unreliable communication
links [27] is another interesting research topic to be
studied.

Appendix

Case 1 The parameters of finite frequency controller
with known actuator faults are given as,
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Ak f =

⎡
⎢⎢⎣

−1.9084 −0.5485 −2.2618 4.7793 −5.3205 5.5982×104

−0.3644 −1.1119 0.2949 −5.7501 −1.6501 −1.4542×105

−2.1981 −1.0246 −4.4853 −4.1386 −9.3016 −1.6853×105

−2.3774 −0.9291 −7.8587 4.4295 6.8004 2.9858×105

1.5242 0.4157 8.5532 −11.4473 −20.4866 −6.0065×105

0.1042 −0.0427 2.2619 −11.2116 −3.7486 −3.1226×105

⎤
⎥⎥⎦

Bk f =
⎡
⎢⎣

−0.2614 0.4596 0.4904 0.2835
0.1238 0.4374 −1.3896 0.1913

−0.3950 0.5624 −2.4488 −0.2903
0.8451 0.5588 0.5419 −0.5421
0.5398 −0.2855 −0.3518 0.6883

−0.0000 −0.0000 −0.8193 0.1680

⎤
⎥⎦ × 106

Ck f = [
0 0 0 0.0014 0 39.0605

]
,

Aτ f =

⎡
⎢⎢⎣

0.1002 −0.6474 −0.5648 36.8033 −1.2979 1.012×106

−0.0860 0.5556 0.4847 −31.5829 1.1138 −8.6859×105

−0.0392 0.2535 0.2212 −14.4102 0.5082 −3.9631×105

0.0083 −0.0535 −0.0466 3.0396 −0.1072 8.3593×104

−0.0015 0.0097 0.0085 −0.5509 0.0194 −1.5149×104

0 0 0 −0.0004 0 −12.0251

⎤
⎥⎥⎦ .

The parameters of entire frequency controller with
known actuator faults are given as,

Ake =

⎡
⎢⎢⎣

−7.5595 −4.0848 −6.5670 −4.0654 30.6147 −2.0082×108

1.8485 −1.2923 0.1648 −0.3071 15.1398 −5.8785×107

9.1490 4.5842 0.4777 0.6544 76.4976 −2.7089×108

0.5217 0.0866 3.8286 −1.2898 35.4406 −1.3394×108

1.5002 −1.9475 −9.6072 −7.3491 141.2726 −6.6249×108

0.1372 −0.4602 0.7063 −2.0482 61.8560 −2.6860×108

⎤
⎥⎥⎦

Bke =
⎡
⎢⎣

−0.6489 0.1281 −1.6354 −0.2057
−0.9687 0.7333 −0.7875 0.4680
−0.4744 −1.1976 −0.0590 0.3968
0.8568 0.3328 −0.7629 −0.0094
0.5501 0.0532 −0.0631 0.9923
0.0195 0.0011 −0.5158 0.2205

⎤
⎥⎦ × 108

Cke = [
0 0 0 0 0 32.7613

]
,

Aτe =

⎡
⎢⎢⎣

−0.0596 −0.0237 0.7586 −0.1098 8.5522 −3.3663×107

−0.0245 −0.0098 0.3122 −0.0452 3.5196 −1.3854×107

−0.0479 −0.0191 0.6097 −0.0883 6.8740 −2.7057×107

−0.1229 −0.0490 1.5653 −0.2266 17.6463 −6.9458×107

0.0681 0.0271 −0.8674 0.1256 −9.7785 3.8489×107

0 0 0 0 0 8.7615

⎤
⎥⎥⎦ .

The parameters of finite frequency controller with
unknown actuator faults are exhibited as,

Ak f =

⎡
⎢⎢⎣

−0.8201 0.06506 6.3185 28.3590 −1.3034×106 −5.1594×106

−0.0111 −0.8366 6.2913 10.0456 −2.5424×105 −1.0060×106

0.09703 −0.6153 −194.9919 −312.5761 1.7059×106 6.7569×106

−0.0579 0.5034 106.2091 67.2846 −1.3178×106 −5.1872×106

−0.5429 1.4823 275.8638 613.6358 −1.6773×107 −6.6399×107

−0.3123 0.8539 158.9534 352.9242 −9.6451×106 −3.8182×107

⎤
⎥⎥⎦

Bk f =
⎡
⎢⎣

−1.0100 −0.0040 −0.9836 0.0506
0.0171 0.4343 0.0161 0.4809−0.0185 −0.1543 2.0560 0.9519
0.0129 0.0004 −0.9999 −0.4948

−0.0224 0.0015 1.3474 −0.5009
−0.0128 0.0009 0.7706 −0.2898

⎤
⎥⎦ × 108

Ck f = [
0 0 0 0 −0.9191 −7.7810

]
, Aτ f =

⎡
⎢⎣

0 0 0 0.0001 −13.2195 −35.2674
0 0 0 −0.0001 3.8839 9.9619
0 0 0 0.0008 −108.3447 −317.7968
0 0 0 −0.0002 38.3949 116.3583
0 0 0 0 −0.9020 −4.8692
0 0 0 0 0.0392 −0.3660

⎤
⎥⎦ .

123



1134 S. Xu et al.

The parameters of entire frequency controller with
unknown actuator faults are exhibited as,

Ake =

⎡
⎢⎢⎣

−1.9176 0.0570 45.1981 200.8648 1.0985×106 1.4919×107

−0.4629 −1.5166 1.0054 −147.6034 −6.9664×105 −9.4316×106

−0.4488 −3.1324 −245.4182 190.8722 −1.5363×106 −2.0839×107

−0.3115 −1.0115 −91.9749 −103.9126 −7.6268×105 −1.0421×107

1.0608 3.3786 290.7369 825.19449 6.0406×106 8.1933×107

−1.0339 −3.2930 −283.4022 −803.6034 −5.8825×106 −7.9789×107

⎤
⎥⎥⎦

Bke =
⎡
⎢⎣

−0.8598 1.1179 −0.2875 0.4324
1.6197 0.6221 0.5496 0.1125
0.0186 −0.1750 2.2413 1.1957
0.0069 0.0000 0.6529 0.4051−0.0115 0.0046 1.2581 −0.5546
0.0113 −0.0044 −1.2211 0.5418

⎤
⎥⎦ × 108

Cke = [
0 0 0 0 0.3667 5.5185

]
,

Aτe =
⎡
⎢⎣

0 0 0 0 −0.0465 −8.2361
0 0 0 −0.0001 −0.2861 −26.9659
0 0 0 0.0001 0.3826 14.9930
0 0 0 −0.0001 −0.2783 −38.2843
0 0 0 0 0.1485 1.6116
0 0 0 0 −0.0729 −1.0502

⎤
⎥⎦ .

Case 2 The parameters of finite frequency controller
for system with LFT uncertainty are given as,

Ak f =
⎡
⎢⎣

−0.1999 −0.4158 −0.0543 0.1084 −0.2977 2.1492
−0.1525 −1.1674 0.0162 0.9697 −1.0464 7.7376
−0.0268 −0.4417 −0.4588 0.5287 −0.6117 4.5844
−0.1758 1.0414 0.0412 −1.4142 1.2317 −8.9301
0.0319 −0.8673 −0.0185 0.9488 −1.5780 8.2205
0.0071 0.2740 0.0568 −0.2898 0.3284 −2.2539

⎤
⎥⎦ × 105

Bk f =
⎡
⎢⎣

−0.4041 0.5281 −0.2757 0.0836
0.2327 0.4674 −0.3559 0.5663
0.5950 0.1351 −1.9036 −0.3664

−1.1911 0.3667 0.7553 −0.5119
−1.7558 −0.2613 −1.1571 0.2813
−0.0758 −0.0297 0.3656 −0.0565

⎤
⎥⎦ × 107

Ck f = [
0.3934 0.3355 −0.0688 −1.2613 1.2271 −8.2417

]
,

Aτ f =
⎡
⎢⎣

0.6842 0.5841 −0.1187 −2.1935 2.1336 −14.2853
−1.8527 −1.5776 0.3232 5.9354 −5.7756 38.8423
−0.9534 −0.8114 0.1665 3.0538 −2.9718 20.0023
0.8113 0.6891 −0.1423 −2.5974 2.5283 −17.0758

−1.2700 −1.0804 0.2220 4.0676 −3.9586 26.6640
−0.1456 −0.1249 0.0252 0.4677 −0.4545 3.0247

⎤
⎥⎦ .

The parameters of entire frequency controller for
system with LFT uncertainty are given as,

Ake =
⎡
⎢⎣

−0.0058 0.0147 0.0157 −0.0620 0.7735 −3.6935
0.0083 −0.0232 0.0146 −0.0553 0.6648 −3.2361

−0.0012 −0.0003 −0.0343 0.0008 −0.0113 0.0506
0.0088 0.0139 0.0185 −0.1039 0.8365 −4.0756
0.0054 −0.0189 −0.0289 0.1077 −1.2886 6.1717
0.0013 0.0015 0.0073 −0.0332 0.3452 −1.6683

⎤
⎥⎦ × 105

Bke =
⎡
⎢⎣

−1.7257 −0.3345 −4.6848 0.2467
−1.9493 −0.1454 1.7504 2.6243
2.4390 −2.5322 0.2752 0.0822
6.3127 0.7547 −3.0940 1.1231
2.1842 0.2484 6.6670 −0.8867
0.3408 0.0253 −1.0382 0.5539

⎤
⎥⎦ × 105

Cke =[
0.0170 −0.0481 −0.0442 0.1454 −1.8322 7.8578

]
,

Aτe =
⎡
⎢⎣

0.0089 −0.0256 −0.0220 0.0972 −0.8880 4.7125
−0.0092 0.0262 0.0239 −0.0812 0.9865 −4.3344
−0.0010 0.0028 0.0025 −0.0097 0.1012 −0.4902
−0.0129 0.0367 0.0334 −0.1147 1.3768 −6.0978
0.0362 −0.1030 −0.0926 0.3370 −3.8046 17.5208
0.0067 −0.0190 −0.0170 0.0627 −0.6982 3.2470

⎤
⎥⎦ .
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