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Abstract In this paper, the performance of linear pas- C Dimensionless essentially nonlinear
sive vibration absorbers and nonlinear passive vibration absorber stiffness, h2ks2

. . . mswg
absorbers or nonlinear energy sink (NES) on the stabil- £y Pitch mode dimensignless stiffness
ity properties and nonlinear behaviors of an aeroelastic Cyr2

.. . . . . o
model is investigated. For this purpose, an airfoil model C,-C Dimensionless linear absorber stiff-
subjected to quasi-steady aerodynamics flow is consid- ness. —X1 - ko .
ered. The results show that the linear absorbers with HOSCIC]
< dentical to the NES lead to b bili m Mass of airfoil
paramete.rs i entica tot. eN ea to : etter sta i ity Ch - Co Nonlinear heave and pitch mode
characteristics and nonlinear behaviors in comparison damping coefficients
with NES, and with optimizing the values of the lin-
. mg Mass of absorber

ear absorber’s parameters, they perform appropriately Absorber damping coefficient
in comparison W1tI} both single ar.ld multi-degree ?f ¢ Mass ratio of the absorber and the air-
freedom NESs. This performance is also observed in foil, m/m
the nonlinear characteristics of responses such as limit ol aCL
cycle oscillation CLa Lidt coefficent, da

) I, Mass moment of inertia with respect

to the elastic axis

Offset attachment of the absorber rel-
ative to the elastic axis
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tion, \/ I,/ (mbz)
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Xeg The wing center of gravity location
relative to elastic axis

o Pitch motion

wh VEKn/m

Absorber’s motion

VEKa/la
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y Dimensionless heave motion, / /b
Q

v
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Frequency ratio, wp/wy
Dimensionless absorber motion, z/b,
z1/b, 22/b, z3/b

Time

Linear heave mode stiffness
Dimensionless time, wqt

Linear pitch mode stiffness

Dynamic pressure

Absorber linear stiffness

Density ratio, psobS/2m

Absorber nonlinear stiffness
Freestream velocity

Dimensionless damping coefficient of

the absorber, ——
Mgy

V] V2 V3

wﬂ
=

o]

> S FT TR x o

©)

Flow reduced velocity, %

1 Introduction

Aeroelastic instabilities are important matters in
aerospace structure’s design. The flexible characteris-
tics of aeroelastic structures can result in catastrophic
behavior of the system. When the inherent structural
flexibility of an airplane interplays with the aerody-
namic and inertial forces, different aeroelastic phenom-
ena such as flutter, divergence, limit cycle oscillations
(LCO), quasi-periodic behavior and chaos can result.
In fact, for this kind of systems, there is a limit veloc-
ity above which the structure cannot damp the received
energy, so the system tends to a deformation or insta-
bilities.

Many passive and active control methods for sup-
pressing the aeroelastic instabilities have been intro-
duced. While active control has been shown to be effec-
tive in suppressing LCOs, these methods require the use
of external energy for actuating. Active methods also
require sensors capable of constantly providing accu-
rate measurements of the system’s state for feedback
into the controller, and the control devices are also high
maintenance, so using of passive devices with efficient
performance is desirable due to their inherent charac-
teristics. They are maintenance free, without any need
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to external energy input. Using the isolators and vibra-
tion absorbers is examples of the passive approaches.

Linear vibration absorbers are consisting of small
masses, linear springs and dissipation elements that
can be in different series and parallel configurations.
On the other hand, nonlinear vibration absorbers which
are introduced and developed recently have some non-
linear stiffness or damping elements. According to pre-
vious studies, these nonlinear vibration absorbers can
be effective in broadband frequency and act as a non-
linear energy sink based on the nonlinear energy pump-
ing, which is the one-way transferring of the vibration
energy from the main system to the passive nonlinear
vibration absorber [1]. Nonlinear energy sinks (NESs)
are single or multi-degree of freedom systems, com-
posed of essentially nonlinear damped oscillators that
are attached to the main system in order to absorb and
dissipate the energy through targeted energy transfers
(TETs).

The previous researches have shown that NES can
be designed to act as passive sinks of unwanted vibra-
tions generated by external impulsive excitations in a
linear subsystem [2]. The energy pumping is due to
resonance capture and the stiffness nonlinearity, which
enables NES to resonate with any mode of the linear
subsystem regardless of its frequency [3]. The inves-
tigations on the effectiveness of passive TET to miti-
gate the rotary vibration amplitude in rotor systems at
the critical velocities are performed by applying NES
to the rotor systems in [4]. It is shown that the NES
absorbs shock energy in a one-way, irreversible fashion
and dissipates this energy locally, without spreading it
back to the linear beam. Moreover, it is shown numer-
ically that an appropriately designed and placed NES
can passively absorb and dissipate a major part of the
shock energy of the beam, up to an optimal value of
87 % [5]. The steady-state dynamics of linear, Euler—
Bernoulli beam under harmonic excitation coupled to
an NES with nonlinear stiffness of order three is con-
sidered in [6]. To compare with the performance of
NES, a linear tuned mass damper (TMD) is designed.
The results show that the performance of NES is depen-
dent on designed force amplitude. The effect of NES on
the amplitude reduction of the forced system is investi-
gated in [7], and the results showed that the NES results
an increase in the vibration amplitude of the linear
subsystem, especially when the damping is low. They
demonstrate that there is no observation of nonlinear
energy pumping, which means the NES is not suffi-
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cient for mitigating the vibrations of the linear primary
system.

Similar to other engineering studies, the effective-
ness of the NES in aeroelastic systems has been inves-
tigated in some researches. The triggering mechanism
of LCOs of a wing due to aeroelastic instability was
studied in [8,9]. Mitigation of limit cycle oscillations
(LCO) in a 2-DOF rigid in-flow wing with nonlinear
heave and pitch stiffness in quasi-steady flow, through
the TET, is studied in [9,10]. With the addition of the
NES to the system they have predicted three different
mechanisms for suppressing the LCO. It was found
that the passive TETs are activated by transient reso-
nant interactions between the NES and the aeroelastic
modes. The passive nonlinear targeted energy transfer
between a 2-DOF model of a long-span bridge with an
SDOF NES prone to coupled flutter is studied in [11].
This study demonstrated that an NES could be able to
control the aeroelastic instability of a structure using
TET. Moreover, they showed that analytical method’s
results lead to an NES design which is able to effi-
ciently control the aeroelastic instability of the bridge.
The suppression of aeroelastic instabilities in a 2-DOF
wing system by means of passive, broadband, nonlin-
ear targeted energy transfers was investigated in [12].
It has been shown that it is possible to partially or com-
pletely suppress aeroelastic instability by transferring
vibration energy from the wing to the SDOF NES in a
one-way irreversible energy transfer. The robustness in
suppression of LCO to initial conditions and the para-
meters of the system were shown, accordingly. In the
second part of this study, the experimental results are
presented in [13]. The NES was attached to the heave
degree of freedom of arigid airfoil which was supported
in a low-velocity wind tunnel. The experimental results
validate some aspects of the theoretical analysis.

In a contrary and different research, the parame-
ters of the NES varied in order to test the passive
device efficiency in suppressing undesirable aeroelastic
behavior [14]. The results showed that the nonlinear-
ity of the NES influences the system behavior and can
cause undesirable responses. It was concluded that the
nonlinear energy sink influences the nonlinear dynam-
ics of the aeroelastic system. It changes the type of
Hopf bifurcation depending on its location and non-
linear parameters. A multi-degree of freedom (MDOF)
NES is applied to a 2-DOF wing model by [15]. The
results demonstrate that MDOF NES can enhance the
robustness of limit cycle oscillation suppression, com-

pared with SDOF NES under identical situations. The
effects of different system parameters on the LCO of
the system were investigated according to the bifurca-
tion analysis. They have shown that the reduced veloc-
ity for the Hopf bifurcation monotonously increases as
the mass ratio increases for a fixed offset and is almost
insensitive to the changes of the damping and essential
nonlinearity. A new method, which is the combination
of the harmonic balance and multiple scale methods,
is applied to an aeroelastic model and was presented
by Luongo and Zulli [16]. This method was applied
to a 2-DOF wing with an NES attached to it, which
is subjected to steady wind. The results obtained by
the application of this method to the aeroelastic model
showed good agreement with previous researches.

As previously mentioned, in the work presented by
Lee et al. [15], a detailed investigation of how the non-
linear energy sink affects the aeroelastic characteristic
of the model is provided. But surveys conducted in [15]
show that the nonlinear term has no effect on the flutter
velocity, and the important effect on the flutter velocity
is depended upon the mass and damping parameters of
the absorbers. The results presented in [15] represent
subcritical bifurcation behaviors. Hence, the stability
range added by NES is not reliable, because in this
subcritical range, there would be limit cycle oscillation
or any other type of nonlinear behaviors. Therefore,
although there is an improvement in the flutter velocity
range (i.e., linear stability), this range is not reliable
because in this added range, the system would have
high-amplitude oscillations for large initial conditions.
Ineffectiveness of the NES stiffness parameter on the
flutter velocity is a motivation to compare the perfor-
mance of linear and nonlinear absorbers.

In this study, different types of linear dynamic vibra-
tion absorbers (DVAs) are attached to the wing model
in order to compare their performance such as flutter
velocity, limit cycle oscillations (LCOs) and other types
of nonlinear behaviors with two types of NES consid-
eredin [15]. In order to achieve a higher flutter velocity,
an optimization method is presented to obtain system
parameter’s values. The method of optimization pro-
vided here is to find parameters of different types of
NES such that the magnitudes of system’s eigenvalues
in higher reduced velocity with desired stable eigen-
values are minimized.

In the following, at first modeling of the wing model
with different types of DVAs is presented. Then, con-
tinuously, flutter analysis is carried out and optimiza-
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tion problem is presented to find optimum parameters
of DVAs. Finally, by using Poincare section, nonlin-
ear time response analysis is presented to compare the
performance of NES and DVA at velocities higher than
flutter. All the system’s time responses and bifurcation
diagrams are derived from numerical analysis, using
MATLAB software. For this purpose the “event” option
in “odeset” of MATLAB ODE solver can be used.
This is an efficient option in ODE solver of MATLAB,
which can simply be used. For obtaining the bifurca-
tion diagrams, after diminishing the transient response,
the steady-state response is obtained and the amplitude
of related displacement is recorded at times with zero
velocity. With continuously changing reduced velocity,
the bifurcation diagram can be obtained. For reduc-
ing the computational time needed in constructing this
bifurcation diagram, the transient period of response
must be reduced. Hence the final state of the previ-
ously obtained response is used as the initial condition
for simulation with new reduced velocity. Accordingly
system will settle down in the steady state as soon as
possible.

2 System formulation

The model considered here is a two degree of freedom,
heave (positive downward) and pitch (positive clock-
wise), wing model which is subjected to the quasi-
steady aerodynamic model as shown in Fig. 1. The
quasi-steady aerodynamic model is a simple aerody-
namic model in which compressibility and viscosity
are ignored. The resultant lift force (L) and the moment
(M) about the elastic axis could be written as

L=gS—
9 aa“

M =eL (1)
As clear, there are different types of linear and nonlinear
vibration absorbers; among them some more familiar
cases are considered here.

2.1 Linear parallel DVA (Kelvin—Voigt model)

Kelvin—Voigt model DVA is an SDOF DVA with a lin-
ear spring and damper attached in parallel to a single
mass as shown in Fig. 2. Referring to [17], the cou-
pled equations of motions for wing and absorber are as
follows:
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Ky, = (h+ cyh®)

Fig.1 Two DOF wing model coupled with DVA

kz Hc |z

‘ms v

Fig. 2 Kelvin—Voigt model DVA

mh + Syé + Kp (h + chh3) +¢SCr.«

(a+§)+c(ﬁ—dd—z)
tk(h—da—z) =0
Ly + Syii + Ky (a+Caa3)

h .
—qeSCl.q (a+5) +dC (dé + z — h)
+dK (da+z—h)=0
mi+C(de+z—h)+Kda+z—h)=0 (2

and by introducing dimensionless parameters the equa-
tions are written to following form.
V' + xqo 4 2%y + Eyy3
+1CL.a® (Y 4+ Oa) + e (y) — ' — V)
+Ci(y —8ax—v)=0
réo// + xay”
120 + £qa’
—yuCra® (¥ + Oa) + dei (o’ + v — ')
+6C1 (b +v—y)=0
ev+er (v 48 — )
+Ci(w+sa—y)=0 3)
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Fig. 3 Maxwell model DVA

2.2 Maxwell model DVA

The Maxwell model is a simple model which consists of
alinear spring and a damper that is attached in series to a
mass as depicted in Fig. 3. The dimensionless equations
of motion for the wing coupled with this DVA could
be derived as the previous model and are presented as
follows.
V' 4 %@+ @y + £ + 1Cro® (¥ + Oc)

+Ci(y —b6a—v2) =0
rozla + Xoy + %2105 + &1“3 —yuCr.q

O (y 4+ Oa)+8C1(Ba+v,—y) =0
eV +er (v —vy) =0

C
v{—vé—e—i(v2+8a—y)=0 4)

2.3 Two degrees of freedom DVA

Another model which is attached to the airfoil model is
a 2-DOF DVA with two linear springs, one damper and
two masses as shown in Fig. 4. In fact, this model is
the combination of a linear spring and a Kelvin—Voigt
element which is attached in series. The dimensionless
system’s equations of motion are presented as follows.

Y+ Xa@ + 2%y + &Y + uCrq® (¥ + Oa)
+Ci(y — 8o —v1) =0

rla 4 xgy + rio + o’
—yuCra® (¥ + ©a) +8C1 (S + vy — y) =0

Z3
v
Fig.4 Two degree of freedom model DVA
Z2
k
2
VA
1 k1 C
\4
[ ¢
Ve
Fig. 5 Maxwell-Voigt model DVA
L. . .
EEUI + el (v — V)
+C (v +da—y) +Co (v —1) =0
L. .
€y +er (W —v)+Co(v2—v) =0 &)

2

2.4 Maxwell-Voigt DVA

As shown in Fig. 5, this type of DVA consists of
both Maxwell and Kelvin—Voigt elements, which are
attached in parallel. The equations of motion of the
wing-absorber system can be derived similar to previ-
ous models and can be written in the following form.
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Fig.6 Linear spring parallel to the Maxwell element model DVA

V' +xe@” + 2%y + £,y + 1Cr.a® (¥ + Oc)
+C1 (y — 8o —v1) +€Arg (y’ — 8o’ — Vi)
+C(y —da —12) =0

rozloz + xqy + rozlcx + Eqa’ — yuCr.q® (y’ + ®05)
+8C1 (b + v — y)
+38er1 (8’ +v] — ) +8C2 B+ 12 —y) =0

ev] + C1 Ba + vy — y) + e (8’ +v] — )
+era (V] —1y) =0

C
r_ /:_ 5 _ 6
V=1 o (b +v2 — ) (6)

2.5 Linear spring and Maxwell DVA

Asdepictedin Fig. 6, this absorber is the combination of
alinear spring and the Maxwell element that is attached
in parallel.

V' 4 xq0” + 2%y + &, + uCra® (Y + Oa)
+Ci(y—8a—v)+Co(y —6a—12) =0
rla 4 xgy +ria + g’
—yuCra® (y' + Oa) 4+ 8Cy (Sa + vy — y)
+8C, (o +1v2—y) =0
ev] + Ci (Sa + v — y)
+era (V] —1y) =0

G

/ _ / _ =

vl V2 6)L2
ba+vy—y)=0 (7

@ Springer

Fig. 7 Single degree of freedom NES model

2.6 Single degree of freedom NES

This nonlinear absorber consists of a cubic nonlinear
spring, linear damper and a single mass. Figure 7 shows
the configuration of this nonlinear absorber. The vibra-
tion energy dissipates in a one-way transfer to this
absorber.

Dimensionless equations of motion for the wing
coupled with SDOF NES are as follows

V' + x00” + QPy + £,y + nCra® (Y + O«)
tea (Y — o’ =)
+C(y—da—v)° =0

rla’ 4 xoy" 4 rla + ga’
—yuCrqa® (' + Oa) + dei (3 +v' — ')
+8CBa+v—y)>=0

ev' +er (v +8d —y)+ Cv+da — y)? =0(8)

2.7 Multi-degrees of freedom NES

The multi-degree of freedom NES (MDOF NES) is
another type of nonlinear absorber, which is introduced
and applied to the wing model in [15]. This type of NES
is consisted on some SDOF NESs which are coupled in
series and attached to the wing through a linear spring
as depicted in Fig. 8.

The total mass of the MDOF NES is equal to total
mass of the SDOF NES, and the nonlinear coupling
between masses 1 and 2 should be greater than the one
between 2 and 3.
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Fig. 8 Multi-degree of freedom NES model

V' + %00 + QPy + £,y + uCra® (¥ + O«)
+Ci(y —86a—v1) =0
rad 4+ xqy" +rga 4+ £q0’ — yuCre®

(V' +©a) +8C; ba +v1 —y) =0
1
gevi’ + e (v — vj)
+C1 (1 +8a—y) +C (v — 1)’ =0

%evé/ + e (v — v)) + €r (V5 — vj)

1
+C (vy —v)* + %C (1 —13)°=0

%evé’ + ex (V5 —vj)

1
+%C%—wf=0 9)

Up to now, different forms of linear and nonlinear DVAs
are introduced, and the corresponding governing equa-
tions are derived. There could be numerous configura-
tions of absorbers, which can be used in different sys-
tems, but for the comparison study, few of them that
have acceptable perform on the considered aeroelastic
model are presented here.

3 Results and discussion

In this section, performance of different types of DVAs
in aeroelastic systems is compared with single and
multi-degree of freedom NESs reported in [15].

3.1 Linear stability analysis

Transforming equations of motion to the state space
form, the eigenvalues of the wing-absorber system
can be obtained. Flutter is a dynamic instability
and happens due to the interactions of the inertial,
elastic and aerodynamic forces. Flutter point is the
point at which the structure is undergoing a har-
monic motion, i.e., eigenvalues are purely imagi-
nary. Hence the point where the real part of eigen-
values passes through the reduced velocity axis and
has pure imaginary eigenvalue, gives flutter veloc-
ity.

The eigenvalues of the aeroelastic model with no
absorber are shown in Fig. 9. As it is seen from Fig. 9a,
by changing the velocity, at first there would be an
increase in the negative value of the real part of eigen-
values, so that in ® = 0.585 eigenvalues have the
largest negative real parts. In this situation, based on the
concepts of linear control, since the system’s dominant
poles are in the greatest distance from the imaginary
axis, system is in its most stable situation. By chang-
ing the velocity, the negative value of the real part of
the eigenvalues decreases, and the eigenvalues tend to
the positive values gradually. There is a bifurcation in
the intersection point of the eigenvalue branches with
velocity axis. This point, which is denoted by black
dot point in Fig. 9a, could be either a flutter (Hopf)
or divergence (saddle node) instability. If in the inter-
section point of real part of eigenvalues with real axis,
the imaginary part is nonzero, flutter instability will
occur, but if eigenvalue becomes zero, divergence will
occur. For the case shown in Fig. 9b, system has purely
imaginary eigenvalues; hence, its real part is zero and
at flutter velocity sustained oscillation will occur. After
that, system has complex eigenvalues with positive real
part, and the amplitude of system oscillatory grows
with time. Type of instability can be determined from
Fig. 9b, in which real and imaginary parts of eigenval-
ues are displayed. Form Fig. 9b, it can be understood
that instability is a flutter. For this figure, flutter veloc-
ity of ® = 0.87 is determined and shown by black dot

@ Springer
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Fig. 9 Variations of eigenvalues of wing model with reduced velocity, a real part of eigenvalues versus reduced velocity (filled circle
denotes the flutter points) and b imaginary part of eigenvalues versus their real parts

Table 1 Flutter margin of wing model for different DVAs with parameters mentioned in [15]

Type € 1) Cy Cy C A OF
SDOF NES 0.02 —0.98 0 0 10 0.4 0.9071
MDOF NES 0.014 —0.98 0.01 0 10 0.4 0.9228
Linear DVA 0.02 —0.98 0.01 0 0 0.4 0.994
2-DOF linear 0.014 —0.98 0.01 (both) 0 0 0.4 0.961
Maxwell-Voigt 0.02 —0.98 0.01 (both) 0 0 0.2 (both) 0.955
Maxwell 0.02 —0.98 0.01 0 0 0.4 0.913
Linear spring parallel to Maxwell 0.014 —0.98 0.005 0.005 0 0.4 1

point. More increase in the velocity causes the system to
be linearly instable, and its amplitude tends to infinity,
but because of the presence of structural nonlinearity,
limit cycle behavior or other type of nonlinear behav-
iors would be occurred in the system, which would be
discussed in the following.

In Fig. 9b the direction of change in imaginary part
of eigenvalues is shown with arrow. As it is clear from
this figure, for ® = 0, since aerodynamics damping
is zero, the only damping presented in the system is
due to the effect of linear damper, and eigenvalues are
located close to the imaginary axis, but with increase
in reduced velocity, more damping induces to the sys-
tem, and at ® = 0.585 eigenvalues have the greatest

@ Springer

negative real part and system is in higher state of stabil-
ity. But with increase in reduced velocity, eigenvalues
move toward the imaginary axis and at ® = 0.585
intersect with it, and flutter occurs. After flutter, linear
system is unstable. The flutter point is denoted by a
black dot in Fig. 9a.

To compare the performance of different linear
DVAs with NESs, in this part the optimum values deter-
mined in [15] are applied to obtain the flutter of lin-
ear absorbers. The obtained flutter values are shown in
Table 1.

It is observed from the results that the presented lin-
ear absorber models have a better performance in com-
parison with the single degree of freedom NES, and
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Table 2 The optimized value of the system’s parameters

Type € ) Cy Cy A OF
Kelvin—Voigt 0.02 —0.9861 0.01 0 0.1996 1.06
2-DOF linear 0.014 —0.9810 0.01(both) 0 0.6 0.9895
Maxwell-Voigt 0.02 —0.9844 0.01(both) 0 0.1 (both) 1.083
Maxwell 0.0178 —0.9833 0.01 0 2.1793 1.042
Linear spring parallel to Maxwell 0.0158 —0.98 0.005 0.005 0.6 1.058

except the Maxwell model, other four types of linear
absorbers also have a better performance comparing
multi-degree of freedom NES. It can be concluded here
that using the parameter values presented by Lee et al
[15], linear absorbers can be designed such that to have
a better performance comparing both SDOF NES and
MDOF NES in order to improve the stability charac-
teristics of the system.

According to the results shown in Table 1, it is nec-
essary to give point on the role of linear and nonlinear
stiffnesses and linear damping on flutter velocity. The
flutter is linear instability, and flutter instability can be
determined from linear system. After flutter velocity,
the amplitude of vibration for linear system continu-
ously grows with time, but for nonlinear systems, limit
cycle oscillations will occur. So the nonlinear part of
the system does not play a role in the flutter point.
This has been mentioned in page 1376 of Ref. [15] that
is “The bifurcation sets (Hopf and LPC) are almost
insensitive to the coefficient of the essential nonlin-
earity. The robustness of instability suppression is not
much affected by the essential nonlinearity if its magni-
tude is sufficiently large. The main role of the essential
nonlinearity is to provide broadband nonlinear reso-
nant interaction between the primary and NES sub-
systems.” This statement in Refs. [8,10,12] and [15]
confirmed our result in the role of essential nonlinear-
ity on flutter velocity. The increase in flutter velocity
in the works done by these authors is due to the effect
of damper and not essential stiffness nonlinearity. With
linearization, the nonlinear stiffness term of NES will
be diminished and it has no role in the linear region
of stability, and this is in confirmation with the above-
mentioned sentence in Ref. [15]. On the other hand,
in linear DVAs, both the stiffness and dissipation ele-
ment are effective in the flutter velocity. This cause the
linear DVAs to perform better from the flutter point of
view.
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Changes in real part of eigenvalues versus the
reduced velocity for mentioned DVAs are presented
in Fig. 10, and flutter velocity points of each DVA are
compared with both types of NESs.

In order to optimize the systems parameter values,
first parameter’s value ranges are defined, which means
the upper and lower values can be considered for the
parameters. Then, a set of stable eigenvalues from the
primary system is considered. For a higher flutter veloc-
ity achievement, it is necessary to optimize parameters
of DVA. For this purpose, an achievable targeted flutter
velocity 6f is considered, and then the norm of eigen-
values difference at O with some desirable eigenvalues
set is minimized. The set of targeted eigenvalues could
be considered as the most stable point of the primary
system (i.e., ® = 0.585). This point can be seen in
Fig. 9a. Attaching different type of absorbers to the
system and adding some degree of freedom to the sys-
tem, it is essential to add some extra eigenvalues to the
targeted eigenvalues set which is obtained from the pri-
mary system. For this purpose, other stable eigenvalues
can be added to the eigenvalues set. This approach is to
some extent similar to the pole assignment technique
used in modern control theory. Hence, if D is assumed
to be the set of targeted eigenvalues, which is obtained
from the stable point of the primary system, and Dy to
be the system’s eigenvalues set at desired flutter veloc-
ity Or, the optimization cost function will be:

f=> |- Dy (10)
and the DVA parameters are obtained such that to min-
imize the f.

The optimization procedure is based on the follow-
ing strategy. First we defined the parameter’s values
range, which means the upper and lower values can be
considered for the parameters. The bond of each value
is selected according to the parameters mentioned in
Refs. [8,10,12] and [15]. Then, a set of the most stable



Aeroelastic characteristics of a wing model

1085

()

0.8r

Imaginary part of Eigenvalus

-04 -0.2 0
Real part of Eigenvalus

0.2

~_~
)
~

0.6f
0.4f
0.2F

-0.2F

-0.4+

Imaginary part of Eigenvalus
(=)

=
N

-014 -0i2
Real part of Eigenvalus

ot

~
o
~

0.5F

T T T

Imaginary part of Eigenvalus
o

-0.6

-014 -0j2
Real part of Eigenvalus

s f\l“

0.2

Fig. 11 Real and imaginary parts of eigenvalues for wing model
with different linear and nonlinear DVAs. a SDOF NES. b MDOF
NES. ¢ Kelvin—Voigt DVA. d Maxwell DVA. e Two DOF DVA.

C

Imaginary part of Eigenvalus

Imaginary part of Eigenvalus
(=]

—_
=3
=

0.5r

Imaginary part of Eigenvalus
=

e

© oooomEmED o

-0.6

04 02 0 0.2
Real part of Eigenvalus

o o o o
[3S) — (=) [ee]

-0.2F
-0.4
-0.6f
-0.8F

-1t

=

-0.6

-04 02
Real part of Eigenvalus

0.8r

0.61

0.4r

0.2

. . v :
"/\

'\/

-0.6

-0;4 -012 0 0.2
Real part of Eigenvalus

f Maxwell-Voigt DVA. g Linear spring parallel to the Maxwell

DVA

@ Springer



1086

N. Ebrahimzade et al.

(® [ '

0.8f
0.6f
0.4
0.2r

TR O -

Imaginary part of Eigenvalus
=

-0.6 -0.4 -0.2 0 0.2
Real part of Eigenvalus

Fig. 11 continued

eigenvalues of the primary system was taken. This set
of stable eigenvalues is assumed to be targeted eigen-
value set and is denoted by Dr. The flutter velocity
is selected as ®p, whose eigenvalues are denoted by
Ds. Then according to the cost function mentioned in
Eq. (8), parameters of DVAs are selected. From Fig. 9
it is clear that at ® = 0.585, system has the best state
of stability, since in this reduced velocity, eigenvalues
have the greatest negative real parts. These eigenvalues
are selected as Ds. O must be selected, as our desired
flutter velocity, and Dr is determined from the eigen-
value solution for linear parts of equation of motion
in the selected ®p. Then with cost function of Eq. (8)
and using gradient-based optimization algorithm such
as MATLAB fmicon or fminsearch commands, para-
meters of DVAs are determined.

It is necessary to point out, with DVAs according to
cost function of (8), it is tried to use passive absorber
to optimize the locations of poles of total system. It
should be noticed that, with using passive vibration
absorber, complete pole assignment cannot occurred.
This point is described by Mottershead et al. [18]. They
described procedures for pole placement by passive
modification and active control using measured recep-
tance. For passive modification, they mentioned that
with passive structures, limited numbers of poles can
be assigned. For example, they pointed out that a sin-
gle added spring can assign only one eigenvalue exactly
and the other eigenvalues are then given by solving the
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characteristic equation. Also they mentioned that since
most practical passive modifications have considerably
higher rank, limitation of passive structures for accu-
rate pole assignment will be increased. Hence, they
proposed active control for pole assignment.

The limitation of passive absorber in complete pole
assignment is presented here. The main focus of the
work done by Mottershead et al. [18] is to accurately
assign the desired poles at some specific locations;
hence, finally they proposed active control for com-
plete pole assignment. Form modern control theory,
complete pole assignment is only possible, when the
controllability matrix has full rank, but this is not pos-
sible here, since passive vibration absorber is used.

In state space, the considered wing model with
attached linear and nonlinear absorbers has dimension
greater than 6, and with increase in degrees of free-
dom of absorber, dimension of total system will be
increased; accordingly, with limited number of para-
meters for absorber, complete assignments of eigenval-
ues are impossible. Since there are infinite choices for
selection of absorber parameters, an optimization pro-
cedure is proposed to obtain the parameters of different
absorbers. In this optimization, at first some desirable
eigenvalues and desired flutter velocity 6 are selected,
and according to the cost function mentioned in Eq. (8),
the parameters of absorbers are obtained. The flutter
velocity Or can be extended without limitation. But it
should be noticed that the desired 6 must be in the
domain of validity of aerodynamics model, and the
obtained parameters of linear DVAs are in the range of
parameters given for NES, since with arbitrary selec-
tion of linear DVAs, the flutter may extensively post-
poned, but the parameters of DVAs may not comparable
with NES parameters mentioned in Ref. [15].

In Eq. (8), Dt assumed to be the set of targeted
eigenvalues, which is obtained from the stable point of
the primary system, and Dy to be the system’s eigen-
values set at desired flutter velocity 6g. These are not
the same at all, since for Dt the distribution of eigen-
values is such that the maximum margin of stability is
obtained, i.e., they have eigenvalues with greatest neg-
ative real part, while for Ds the eigenvalues are located
close to the imaginary axis, and eigenvalue assignment
cannot occurred here. In Eq. (8) it is tried to optimize
the distance between the best stable conditions of sys-
tem with condition in which system is in the verge of
instability. In this optimization, upper and lower bonds
for absorber parameters are considered.
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Fig. 12 continued

Based on this method, the optimized parameter val-
ues will be obtained and the corresponding flutter
velocity, limit cycle oscillations and other nonlinear
responses are compared.

The optimal parameter’s values for linear DVAs and
the equivalent flutter velocities are presented in the next
table. It is obvious from Table 2 that after the optimiza-
tion, higher values in the system’s flutter velocities are
obtained. It should be mentioned that the NES values
which are presented in Table 1 are the optimized values,
as mentioned in [15].

It is obvious from the analysis of this section that the
linear DVAs can delay the flutter velocity in a better way
than both types of NESs, which means for considered
wing model attached to these mentioned linear DVAs;
flutter occurs in higher velocity. It should be pointed
that since for presented equations of motion the equilib-
rium state is equal to zero, the nonlinear stiffness term
is ineffective on the flutter velocity The flutter velocity
range order for the absorbers is as Oy > Ogy >
Orspm > OM > O2poF > OMDOFNES > ®SDOFNES-

Following the work done by Mottershead et al. [18],
it can be stated that the forced applied from DVAs to
the wing model is composed of stiffness and damp-
ing terms (i.e., damping and stiffness injection); hence,
DVAs can change both of these terms in the host struc-
ture, while the NES induces damping and nonlinear
stiffness terms. Since flutter is linear phenomenon,
DVAs can better control the flutter, due to change in
both linear stiffness and damping terms, while since
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NES can only change linear damping term of the pri-
mary system, hence it has lower authority to the flutter
margin.

The real and imaginary parts of eigenvalues for sys-
tems are presented in Fig. 11. Real part of the eigenval-
ues is plotted on the horizontal axis, and imaginary part
of the eigenvalues is plotted on the vertical axis. The
stability of the systems can be analyzed from these fig-
ures. Since none of the plot’s branches passes through
the real axis line, it can be concluded that the instabili-
ties of the systems are flutter and there is no happening
of other types of instability such as divergence.

The phase angle of the system’s dominant poles
varying with the reduced velocity is illustrated in
Fig. 12. Flutter occurs when the phase angle of the
dominant poles is equal to 4w /2. These points are
also denoted in Fig. 12. The flutter speeds obtained by
this analysis are identical to previously obtained flutter
velocity’s values.

3.2 Nonlinear response analysis

In the previous section, it was demonstrated that prop-
erly designed linear absorbers can have a better sta-
bility range. In this section, the time responses and
bifurcation diagrams of the nonlinear system would be
analyzed in order to compare the linear and nonlin-
ear vibration absorber’s performances in different spe-
cific reduced velocities. Numerical method is applied
to obtain the systems time responses and bifurcation
diagrams. Time responses of the wing-DVA systems
are derived for both heave and pitch modes and com-
pared with the wing-NES systems shown in Fig. 13.
For linear and nonlinear absorbers, the optimal values
of parameters are considered. All the initial conditions
set to be zero except the heave mode initial velocity,
which is considered to be y’(0) = 0.01.

It is obvious from the figures that according to [15],
MDOF NES performs better than SDOF NES, but what
is more important is that for ® = 1, the time response
amplitude for all the linear absorbers tends to zero,
while the nonlinear absorbers have limit cycle oscilla-
tions of higher periods.

Now the nonlinear behaviors of linear and non-
linear absorbers are investigated accurately. Since the
system of study has structural nonlinearities, different
nonlinear behaviors such as limit cycle, quasi-periodic
behaviors and multi-frequency behaviors could be
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Fig. 13 continued

occurred. Hence, the performances of linear and non-
linear absorbers are examined in this case to be
addressed to closer analysis.

In order to analyze the nonlinear behaviors of con-
sidered aeroelastic model, variation in pitch and heave
oscillation amplitudes versus reduced velocity of ® is
shown in Figs. 13 and 14. It is clear from the figures
that the presented linear DVAs could delay the Hopf
bifurcation points and Pitch mode LCOs occurrence.
As mentioned in [15] and seen in Fig. 13, both types
of NESs tend to subcritical behaviors. It is clear that
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for the system with absorbers, the pitch limit cycle
amplitude is smaller than the primary system with no
absorber.

The heave mode LCO amplitudes varying with
reduced velocity are illustrated in Fig. 15. Despite the
pitch mode, quasi- periodic, high frequency and maybe
chaotic behaviors may occur in heave mode for some
cases of DVA. Although there are chaotic behaviors in
SDOF NES, this nonlinear absorber could not perform
as well in delaying the flutter velocity and controlling
the LCOs.
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Fig. 14 Bifurcation diagram for LCO amplitude of pitch mode

It is obvious from the figures that the heave ampli-
tude of the primary system with no absorber increases
gradually. Initially, the frequency content of the pri-
mary system is one. As the reduced velocity increases,
its frequency content would be three, and all of these
three amplitudes increase. For the system with MDOF
NES there is a sudden jump in the heave amplitude
response after the flutter velocity, and hence there is a
nonlinear resonance. Increasing the velocity causes a
three frequency or three amplitude behaviors in the sys-
tem. Comparing the MDOF NES system results with
the primary system, clearly up to ® = 1 -5, the MDOF
NES system’s response is greater than the primary sys-
tem. For the SDOF NES model the heave amplitude
is greater than the primary system but smaller than
MDOF NES model. However, in SDOF NES system
the response’s frequency content is more than two past
systems which have three frequencies.

The heave mode behaviors for Maxwell DVA, linear
spring parallel to Maxwell DVA and two DOF linear
DVA are close to the MDOF NES. Hence, their perfor-
mances are similar. There is little difference in these
absorber’s response amplitudes that is after the flutter
point the MDOF NES response is greater than the lin-
ear spring parallel to Maxwell DVA ones, but after the
flutter takes to happen this behavior change and the lin-
ear spring parallel to Maxwell DVA response would be
greater. For Kelvin—Voigt DVA model, after the flutter
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the heave mode amplitude increases gradually and for
the ® > 1.3 the amplitude value tends to a constant
value. The Maxwell-Voigt DVA performance is simi-
lar to the Kelvin—Voigt model. It can be claimed from
the results that only the Kelvin—Voigt and Maxwell—
Voigt models would have single-frequency limit cycle
behaviors in the velocities after the flutter, while other
absorber models have higher-frequency content behav-
iors.

4 Conclusion

Both linear and nonlinear types of vibration absorbers
delay the flutter happening. From this point of view, the
linear vibration absorbers can perform better. Subcrit-
ical bifurcation behaviors occur in the analyzed non-
linear absorbers with the essentially third-order stiff-
ness nonlinearities; therefore, they should be designed
and used accurately. For the primary system with-
out any absorber, as the reduced velocity rises, the
heave and pitch mode amplitudes increase. In veloci-
ties over the flutter, every type of absorbers has smaller
pitch amplitudes than the primary system. Similar to
the stability range, linear absorbers perform in a bet-
ter way than nonlinear absorbers of study. In heave
mode, the absorber’s behaviors are different. In sys-
tems with SDOF NES, increase in reduced velocity
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causes a gradual increase in its maximum amplitudes,
and the frequency content would increase in some parts
and decrease in other. This clearly shows the incidence
of quasi-periodic behaviors due to the frequency con-
tent increase, existence of periodic windows as a result
of decrease in the frequency content and the system
tendency to chaotic behaviors due to high-density fre-
quency content in some parts. For MDOF NES model,
a nonlinear resonance behavior occurs right after the
flutter, and afterward the amplitude suddenly reduces.
Then with appearing a periodic behavior with three fre-
quency contents, amplitude increases slowly. Similar
behaviors are observed for two DOF linear DVA, linear
spring parallel to Maxwell DVA and Maxwell model
DVA.
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