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Abstract Theparametric instability of a rotor-bearing
system with coupling faults of crack and rub-impact
under nonlinear oil-film force is studied in this paper.
A model considering time-varying crack stiffness, rub-
impact force and nonlinear oil-film force is put for-
ward to analyze the complicated nonlinear behaviors
of the rotor-bearing system. The numerical simulation
focuses on the effects of crack depth and the stator stiff-
ness on the onset of instability and nonlinear responses
of the rotor-bearing system by using bifurcation dia-
grams, Poincaré maps, largest Lyapunov exponent and
frequency spectrum. The multiple periodic, quasiperi-
odic and chaoticmotions are observed in this study. The
results indicate that crackdepth and stator stiffness have
influences on the vibration and instability of the rotor-
bearing system with varied rotating speed. The motion
of the systemwith coupling faults shows strong nonlin-
earity and instability in high speed region. Moreover,
crack depth and stator stiffness interfere with the for-
mation of oil whirl, thus, making the oil whirl appear
later. There also exists interaction among couplingmul-
tiple faults. The research discloses the worthy energy
exchange phenomenon of multi-fault system and is
helpful for fault diagnosis and vibration control of real
rotor-bearing systems.
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1 Introduction

Rotating dynamic system has widely applied in duty
industrial machineries. The stability of system is a very
important issue for design, manufacturing and control
of rotating machinery. The instability of bearing-rotor
system will bring strong vibration and even disastrous
accident of machinery. For decades, a lot of research
efforts have been devoted to study the stability and non-
linear dynamic analysis of flexible rotor-bearing sys-
tem. Crack and rub-impact are two important faults in
rotatingmachines. The rub-impact usually results from
excessive vibration caused by other faults in practical
rotor systems, such as imbalance, rotor crack, and oil-
film instability. The rotor-bearing model takes the non-
linear oil force into account, but the other fault such as
rub impact force may be neglected. An ever-increasing
pursuit of higher power and efficiencyhas lead to highly
stressed condition of rotatingmachine elements. Rotor-
bearing system is becoming more flexible and operat-
ing under tighter clearances and harsh environment.
Under these circumstances, the rotor-bearing system is
likely to develop more faults, e.g., crack, rub, whip.
The faults of these machineries are becoming compli-
cated, and the multiple or coupled faults often occur
at the same time. When two faults happen at the same
time, richer and more complex nonlinear behavior of
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the rotor system will emerge. So the dynamic behav-
iors of the bearing-rotor should be studied considering
crack and rub-impact under nonlinear oil-film forces.

The vibration dynamics of cracked rotor system
have been intensively studied by many researchers.
Dimarogonas [1] presented an extensive review of the
literature on vibration of cracked shaft. A comprehen-
sive survey of simple rotors with transverse crack has
been presented by Gash [2]. Jun et al. [3] analyzed the
vibration of a simple rotor with breathing crack. Sekhar
and Prabhu [4] have analyzed the transient response of
cracked rotor passing through critical speed and investi-
gated the effects of crack depth, unbalance eccentricity
with phase and acceleration. Sinou and Lees [5] stud-
ied the influences of cracks in rotating shafts. Chan
and Lai [6] reported digital simulation of a rotating
shaft with a transverse crack. Darpe et al. [7] studied
dynamics of two crack rotor. They modeled one crack
as breathing fatigue crack and other as open crack to
simulate the rotor stiffness asymmetry. They also inves-
tigated the effect of bow on the nonlinear nature of
the crack response [8]. Meng [9] has researched the
dynamic response in the subcritical and supercritical
speed ranges, and he used the cross-coupling stiffness
terms to detect crack. George [10] has presented a new
method to identify the crack depth and the location of
a transverse surface crack by measuring the coupled
response of rotating shafts. These works demonstrated
that it is important to study the dynamic response of
cracked rotor, but the continuous work is necessary to
be developed, in which the analysis should be made
taking into account the dynamic behavior of a rotat-
ing system with coupling faults under the rub-impact
phenomenon, considering the influence of model para-
meters and other fault force.

The dynamics of rotor to stator contact dynam-
ics have been investigated extensively in the past by
many researches. Muszynska [11] reported a compre-
hensive literary survey on rub-related phenomena. In
the nineties, a great deal of work treated the nonlinear
analysis on rotor to stator contact dynamics. Studies on
these rubbing phenomena revealed that the rotating sys-
tem showed a rich class of nonlinear related dynamics
such as sub- and super-synchronous responses, quasi-
periodic responses and even chaotic motions. Chu and
Zhang [12] studied the nonlinear vibration characteris-
tics of a rub-impact Jeffcott rotor. They also found that
when the rotating speed is increased, the grazing bifur-
cation, the quasiperiodic motion and chaotic motion

occur in the process of the rub-impact. Goldman and
Muszynska [13] presented that the chaotic motion in
a nonlinear study is more likely to occur if a proper
impact model is employed. Issam [14] used numer-
ical analysis and evolutionary algorithms to analyze
the nonlinear dynamics of a rotor with rub-impact. Liu
et al. [15] analyzed dynamic characteristics of a disk–
drum–shaft rotor system with rub-impact. Lahriri [16]
conducted the theoretical modeling, analysis and vali-
dation of the shaft motion and dynamic forces during
rotor–stator contact.

Of the existing work, some works have thrown light
to nonlinear coupled or interaction dynamics consid-
ering multi-fault forces. The research [17] performed
a dynamic analysis of the rub-impact rotor supported
by two couple stress fluid film journal bearings, and
the strong nonlinear couple stress fluid film force and
nonlinear rub-impact force are presented and coupled
together. Shen et al. [18] presented experimental and
numerical analysis of nonlinear dynamics of system
considering rub-impact and oil-film forces. Wan et
al. [19] used harmonic wavelet transform to analyze
the vibration characteristics of cracked rotor sliding
bearing system with rotor–stator rubbing. Ren et al.
[20] applied multi-degrees of freedom system to study
dynamic characteristics of rotor-bearing system with
coupling faults of rub-impact and crack. The works
[19,20] have focused on the interaction of crack and
rub-impact in rotor-bearing system, but the detailed
research should be carried out on nonlinear dynam-
ics of a rotor-bearing system with coupling faults of
crack and rub-impact under nonlinear oil-film force.All
these researches have helped the identification of state
for rotor-bearing system. But the coupling dynamics of
crack and rub-impact under nonlinear oil-film force is
the keystone of this paper. The orbits of shaft, Poincare
maps, frequency spectrum and bifurcation diagrams,
etc., are constructed to analyze the dynamic character-
istic of rotor-bearing system. Numerous results reveal
a nonlinear dynamic process including periodic, qua-
siperiodic and multi-periodic.

The remainder of this paper is organized as fol-
lows: Sect. 2 describes the mathematical model of the
rotor-bearing system with coupling fault of crack and
rub-impact under nonlinear oil-film force. Section 3
presents the numerical analysis results which include
effects of crack and rub-impact on the dynamics of
the rotor-bearing system. Finally, Sect. 4 presents some
brief conclusions.
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Fig. 1 Rotor-bearing system with coupling fault of crack and
rub-impact

2 Mathematical model

As shown in Fig. 1, the model consists of one disk
and a massless shaft supported by two symmetrical oil-
film journal bearings. The oil-film journal bearing has
a lumped mass m1 at its geometric center O1, while
the disk at the center of the shaft takes a lumped mass
m2 at its geometric center O2. O3 is the centroid of
the disk. There is a transverse bow crack near the disk.
The impact of shear deformation, torsional vibration
and gyroscopic couple is all neglected for highlighting
the effect of oil-film force.

Where x1 and y1 are the radial displacements of
the left shaft neck, and x2 and y2 are the radial dis-
placements of the disk. The equations of motion for the
cracked rotor-bearing system based on rotor dynamics
theory can be written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m1 ẍ1 + c1 ẋ1 − 1
2kxx (x1 − x2) − 1

2kxy(y1 − y2)
= Fx

m1 ÿ1 + c1 ẏ1 − 1
2kyx (x1 − x2) − 1

2kyy(y1 − y2)
= Fy − m1g

m2 ẍ2 + c2 ẋ2 + kxx (x1 − x2) + kxy(y1 − y2)
= m2eω2 cos(ωt − β) + Px

m2 ÿ2 + c2 ẏ2 + kyx (x1 − x2) + kyy(y1 − y2)
= m2eω2 sin(ωt − β) + Py − m2g

(1)

where Fx , and Fy are the nonlinear oil-film forces, Px
and Py are the rub-impact forces, ci (i = 1, 2) is the
structure damping, and ki j (i, j = x, y) is the shaft
stiffness considering crack.

Fig. 2 Schematic diagram of switching crack model

2.1 Stiffness of the crack shaft

Figure 2 shows the cross section of the crack in the
rotating shaft. The coordinate system ξo′η fixes on the
disk and rotates with the disk. The direction of crack
propagation is o′ξ , while o′η is the vertical direction
of crack propagation. k0 is the stiffness of a non-crack
shaft. e is the eccentricity. β is the angle between the
direction of crack and the direction of unbalance. The
stiffness matrix of the rotating shaft with the breathing
crack can be expressed as

[K ] =
[
kxx kxy
kyx kyy

]

=
[
k0 k0
0 0

]

− f (φ)

×
[

�kξ cos2 ϕ+�kη sin2 ϕ
(
�kξ −�kη

)
sin ϕ cosϕ

(
�kξ −�kη

)
sin ϕ cosϕ �kξ sin2 ϕ+�kη cos2 ϕ

]

(2)
f (φ) = [(1 + cosφ) /2]A (3)

where ϕ = θ + β, A = a/R. �ks (s = ξ, η) is the
change of the shaft stiffness caused by crack in ξ and
η directions, and A is the nondimensional crack depth.

2.2 Rub-impact forces

It is assumed that the rub-impact occurs with a Hertz
contact and aCoulomb friction. Then,when rub-impact
occurs, two forces can be integrated for rub-impact
force as shown in Fig. 1. One is called striking force Pn
which is caused by the contact of the rotor against sta-
tor. It can be represented by using linear elastic defor-
mation theory. Another is frictional force Pr , which is
brought up by Coulomb law.

123



1060 L. Xiang et al.

Pn = (r − δ) kc (r ≥ δ)

Pr = f · Pn (4)

where δ is the initial clearance between rotor and stator.
r is the displacement of shaft center in radial direction

and r = √
x2 + y2.

The equations of rub-impact forces in x and y direc-
tion are formulated as follows:
[
Px
Py

]

= − (r − δ)kc
r

[
1 − f
f 1

] [
x
y

]

, (r ≥ δ)

Px = Py = 0, (r < δ) (5)

2.3 Model of oil-film forces

In this paper, the oil-film force generated by the sliding
bearing is highly nonlinear, and the classical Capone
circle bearing theory is applied in the theoretical analy-
sis. The Reynolds equation can be modified and per-
formed as [21] in Eq. (6). Integrating the Reynolds
Eq. (6), the distribution of oil-film pressure is given
as in Eq. (7). The nondimensional oil-film force com-
ponents f x and f y can be written as in Eq. (8).

(
R

L

)2
∂

∂Z

(

h3
∂p

∂Z

)

= x sin θ − y cos θ

−2(x ′ cos θ + y′ sin θ) (6)

p = 1

2

(
L

D

)2
(x − 2y′) sin θ − (y + 2x ′) cos θ

(1 − x cos θ − y sin θ)3
(7)

{
fX = σ f̄x ;
fY = σ f̄Y

σ = μωRL

(
R

c

)2 (
L

2R

)2

[
f̄x
f̄ y

]

= −
[
(x − 2 ẏ)2 + (x + 2ẋ)2

]1/2

1 − x2 − y2

×
[
3xV (x, y, α) − sin αG (x, y, α) − 2 cosαS (x, y, α)

3xV (x, y, α) + cosαG (x, y, α) − 2sinαS (x, y, α)

]

(8)

where R is the radius of the bearing, c represents the
bearing radial clearance, μ indicates the lubricating oil
viscosity described, and L expresses the length of bear-
ing.

The nondimensional parameters of the system are
introduced as below

α = arctan
y + 2ẋ

x − 2 ẏ
− π

2
sin

(
y + 2ẋ

x − 2 ẏ

)

−π

2
sin (y + 2ẋ)

V (x, y, α) = 2 + (y cosα − x sin α)G (x, y, α)

1 − x2 − y2

G (x, y, α) = 2

(1 − x2 − y2)1/2
[
π

2
+ arctan

y cosα − x sin α

1 − x2 − y2

]

S (x, y, α) = x cosα + y sin α

1 − (x cosα + y sin α)2
(9)

The dynamics equations of the rotor-bearing sys-
tem are given in Eq. (1), which have considered the
influences of crack stiffness [Eqs. (2), (3)], rub-impact
forces [Eq. (5)] and oil-film forces [Eq. (8)]. Nondi-
mensional transformations of the system are given as

x̄1 = x1/c, ȳ1= y1/c, x̄2 = x2/c, ȳ2 = y2/c, τ = ωt,

ξ1 = c1
m1ω

, ξ2= c2
m2ω

, η1= k0
m1ω2 , η2= k0

m2ω2 , ē= e

c
,

G0 = g

cω2 , M= σ

cm1ω2 , γ = �kξ −�kη

�kξ

, �k̄ξ = �kξ

k0
,

λ1 = (1 − γ sin2 τ)(x̄1 − x̄2) + γ sin τ cos τ(ȳ1 − ȳ2),

λ2 = γ sin τ cos τ(x̄1 − x̄2) + (1 − γ sin2 τ)(ȳ1 − ȳ2)

Then, the nondimensional dynamics equation can be
expressed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẍ1 = −ξ1 ẋ1 + 1
2η1(x1 − x2) − 1

2 f (φ) η1�k̄ξ

×λ1 + fx · M
ÿ1 = −ξ1 ẏ1 + 1

2η1(y1 − y2) − 1
2 f (φ) η1�k̄ξ

×λ2 + fy · M − G0

ẍ2 = −ξ2 ẋ2 − η2(x1 − x2) + f (φ) η2�k̄ξ

×λ1 + e cos(τ − β) + Px
ÿ2 = −ξ2 ẋ2 − η2(y1 − y2) + f (φ) η2�k̄ξ

×λ2 + e sin(τ − β) + Py − G0

(10)

3 Nonlinear dynamic analysis

The numerical solution of Eq. (10) is performed by
using fourth-order Runge–Kuttamethod. The results of
the first 300 cycles are neglected to eliminate transient
response. The time step for direct numerical integration
is specified as π/100. The simulated model parameters
of rotor-bearing system are given in Table 1. Bifurca-
tion diagrams, time series, axis orbits, frequency spec-
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Table 1 The simulated model parameters of rotor-bearing sys-
tem

Parameters Values

m1,m2 (kg) 4, 32

k0 (Nm−1) 2.5 × 107

f 0.1

R, L , c (mm) 25, 12, 0.11

μ (Pa s) 0.018

c1, c2 (N sm−1) 1050, 2100

e (mm) 0.05

Fig. 3 Bifurcation diagram at A = 0, kc = 3.5 × 106 Nm−1

tra and Poincare maps are acquired by numerical inte-
gration. The largest Lyapunov exponent (LLE) can
provide a quantitative analysis of motion state of the
system, which is obtained unsuccessfully from neither
the shaft orbit nor the frequency spectra of the rotor
response.

3.1 Effect of rotational speed to the system

The bifurcation diagram of rotor-bearing system is
shown in Fig. 3 with ω as control parameter. All the
parameters are taken from Table 1. The largest Lya-
punov exponent of rotor-bearing system is shown in
Fig. 4. The rotor-bearing system is found to display
a rich diversity of responses when A = 0 and kc =
3.5 × 106 Nm−1. There exist three motions which are
the stable period-one (P1) motion, multiple periodic
and quasiperiodic motions at ω = [200−2000] rad/s.
The dynamic motion of the rotor system is synchro-
nous with P1 before ω = 700 rad/s. Then, it takes the

Fig. 4 Largest Lyapunov exponent at A = 0, kc = 3.5 ×
106 Nm−1

800 1000 1200
-1

-0.5

0

0.5

1

t/s

x
-0.5 0 0.5 1

-1.5

-1

-0.5

0

0.5

1

x

y

0 2 4
0

0.2

0.4

f/fr

A
m
pl
itu

de

-1 -0.5 0
0

0.1

0.2

0.3

0.4

x
x’

Fig. 5 Time series, axis orbit, frequency spectra and Poincare
map at ω = 705 rad/s

general form {P2 → P4 → P8 → P16 → P8 →
P4 → P2} as the rotating speed is varied between the
values [700 → 1225] rad/s. The corresponding value
of LLE from Fig. 4 is zero at the bifurcation point from
Fig. 3. It can be seen that the Poincare map has two
isolated points in Fig. 3, so the axis orbit has two oval
and the frequency spectra has two discrete frequency
components in Fig. 5. The system is in a state of P2
motion, where the oil whirl and rub-impact exist at the
same time. When ω = 1050 rad/s, the axis orbit of
the classic oil whirl has turned up in Fig. 6. Multi-
ple frequency components exist in the frequency spec-
tra, and the half-frequency amplitude almost equals
the amplitude of fundamental frequency. There are 16
phase points on the Poincare map. Therefore, the oil
whirl and rub-impact get stronger. As rotating speed
increases, transient quasiperiodic motion happens at
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Fig. 6 Time series, axis orbit, frequency spectra and Poincare
map at ω = 1050 rad/s
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Fig. 7 Time series, axis orbit, frequency spectra and Poincare
map at ω = 1550 rad/s

ω = [1255−1360] rad/s, and the LLE in Fig. 4 is
equal to zero. Then the system reenter into the P1
motion region, thus, returning to a relatively stable
state. When ω = 1505 rad/s, the system goes into a
long-term quasiperiodic motion after Hopf bifurcation.
Distinct “beat” signals appear in time series in Fig. 7.
The amplitude of oil whip frequency is considerably
greater than that of fundamental frequency. A closed
loop emerges on the Poincare map. It also can be con-
cluded that the system is in quasiperiod motion. Here
the oil whirl becomes into oil-whip, and rub-impact is
still severe.

Fig. 8 Bifurcation diagram at A = 0.5, kc = 3.5 × 106 Nm−1

Fig. 9 Largest Lyapunov exponent at A = 0.5, kc = 3.5 ×
106 Nm−1

3.2 Effect of crack depth to the system

Figure 8 shows the bifurcation diagram, and Fig. 9 rep-
resents the LLE at a higher crack depth (A = 0.5)
in comparison with Fig. 3 (A = 0). In this case,
the responses of the system exhibit similar dynamic
phenomena. It is found that the system works in P1
motion (see Fig. 10) until the first bifurcation happens
at ω = 715 rad/s, which appears later compared with
Fig. 3 (A = 0). FromFigs. 8 and9, it canbe seen that the
system takes a series of motions {P2 → P4 → P8 →
P8 → P4 → P2} at ω = [715−1140] rad/s. Although
oil whirl and rub-impact have influences on the sys-
tem, the existence of crack has weakened the fault level
(see Fig. 11). The system begins the long-term quasi-
periodic motion from ω = 1460 rad/s (see Fig. 8).
Time series, axis orbit, frequency spectra and Poincare
map at ω = 1550 rad/s are shown in Fig. 12. It can
be seen that partial quasiperiodic window evolves into
somemulti-periodicwindows after the oil-whip occurs.

123



Nonlinear dynamics of an asymmetric rotor-bearing system 1063

800 1000 1200

-0.5

0

0.5

t/s

x

-0.5 0 0.5 1

-1

-0.5

0

0.5

x

y

0 2 4
0

0.2

0.4

f/fr

A
m
pl
itu

de

-0.4 -0.3 -0.2
0

0.2

0.4

x

x’

Fig. 10 Time series, axis orbit, frequency spectra and Poincare
map at ω = 705 rad/s
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Fig. 11 Time series, axis orbit, frequency spectra and Poincare
map at ω = 1050 rad/s

It can also be found in Fig. 9 that the values of the
LLE proceed to the change {negative number → 0 →
negative number → 0 → negative number → 0}.
The result illustrates that the crack can enhance the
nonlinearity of the system in the region high rotating
speed.

Figure 13 shows the bifurcation diagram, andFig. 14
represents theLLEat a higher crack depth (A = 0.9). In
this case, the responses of the system exhibit complex
nonlinear phenomena. It is found that the systemworks
in P1motion (see Fig. 10) until the first bifurcation hap-
pens at ω = 770 rad/s, which appears later compared
with Fig. 3 (A = 0) and Fig. 8 (A = 0.5). It can be
seen from the results that the instability speedof the sys-
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Fig. 12 Time series, axis orbit, frequency spectra and Poincare
map at ω = 1550 rad/s

Fig. 13 Bifurcation diagram at A = 0.9, kc = 3.5×106 Nm−1

tem increases as the crack depth growing. This lagged
bifurcation indicates that the crack interferes with the
formation of oil whirl and there exists the interaction
between faults. This is the same as the results obtained
from the Ref. [20]. However, this phenomenon does
not mean the increase of crack depth is benefit for the
system.When the crack depth hits a certain level, a seri-
ous accident may happen. Then, after several period-
doubling bifurcations because of the oil-film force, the
system runs into chaos (see Fig. 15), whose LLE is
greater than zero. As the rotational speed increases,
the unbalance force becomes the main factor affecting
the system, thus, making the system exit chaos and go
back to the periodic motion. In the high speed area,
the long-term quasiperiodic motion turns into intermit-
tent chaos where the multi-periodic motion and chaos
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Fig. 14 Largest Lyapunov exponent at A = 0.9, kc = 3.5 ×
106 Nm−1
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Fig. 15 Time series, axis orbit, frequency spectra and Poincare
map at ω = 960 rad/s

appear alternately (see Figs. 16, 17). It also can be seen
from Fig. 14 that the value of the LLE has more fluctu-
ation. This indicates the crack depth has more impacts
on the response of the system in high speed area. The
crack strengthens the oil whip and rub-impact faults,
and the system takes on strong nonlinearity and insta-
bility.

3.3 Effect of stator stiffness to the system

The stator stiffness, which is in proportion to rub-
impact force of the rotor system shown in Eq. (5),
plays a significant role in dynamic analysis of rotor
system. Bifurcation diagram for stator stiffness para-
meter kc = 7 × 106 Nm−1 is shown in Fig. 18.
The largest Lyapunov exponent for this parameter of
the system is shown in Fig. 19. From Fig. 18, it
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Fig. 16 Time series, axis orbit, frequency spectra and Poincare
map at ω = 1245 rad/s
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Fig. 17 Time series, axis orbit, frequency spectra and Poincare
map at ω = 1760 rad/s

Fig. 18 Bifurcation diagram at A = 0.5, kc = 7 × 106 Nm−1
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Fig. 19 Largest Lyapunov exponent at A = 0.5, kc = 7 ×
106 Nm−1
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Fig. 20 Time series, axis orbit, frequency spectra and Poincare
map at ω = 705 rad/s

can be seen that the system goes through dynamic
motions {P1 → P2 → quasiperiodic motion →
P1 → intermittent quasiperiodic motion}. Compared
with Fig. 8 (kc = 3.5 × 106 Nm−1), bifurcation times
in this situation decreases, and the first bifurcation
point occurs at ω = 805 rad/s, which lags the first
bifurcation point in Fig. 8. The system is in a steady
state before this speed (see Fig. 20). When the rotating
speed gets higher values than 1530 rad/s, several multi-
periodic motions appear among the long-term quasi-
periodic motion, which also can be observed in Fig. 19.
And the oil-film instability and rub-impact exist at the
same time and become aggravating as speed increases
(see Figs. 21, 22).

To further study the dynamical influence of the sta-
tor stiffness on this coupled system, the stator stiff-
ness is added to kc = 1.8 × 107 Nm−1. Bifurcation
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Fig. 21 Time series, axis orbit, frequency spectra and Poincare
map at ω = 1550 rad/s
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Fig. 22 Time series, axis orbit, frequency spectra and Poincare
map at ω = 1595 rad/s

Fig. 23 Bifurcation diagram at A = 0.5, kc = 1.8×107 Nm−1
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Fig. 24 Largest Lyapunov exponent at A = 0.5, kc = 1.8 ×
107 Nm−1
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Fig. 25 Time series, axis orbit, frequency spectra and Poincare
map at ω = 705 rad/s

diagram for this parameter of the system is shown in
Fig. 23, and the largest Lyapunov exponent is shown in
Fig. 24. Compared with Fig. 18 (kc = 7×106 Nm−1),
the dynamic behavior of the system at kc = 1.8 ×
107 Nm−1 gets much simpler. This means increasing
the stator stiffness value can enhance the stability of
the system. The motions of the system go through a
process {P1 → quasiperiodic motion}. The oil whirl
motion does not occur. In Figs. 23 and 24, it is obvi-
ous that the system works in the stable P1 motion from
ω = 200 rad/s to 1810 rad/s (see Fig. 25). The quasi-
periodic motion comes out at ω = 1815 rad/s. Time
series, axis orbit, frequency spectra and Poincare map
at ω = 1830 rad/s and ω = 1950 rad/s are shown in
Figs. 26 and 27, respectively. The two motions of the
system are the quasiperiodic motion.
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Fig. 26 Time series, axis orbit, frequency spectra and Poincare
map at ω = 1830 rad/s
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Fig. 27 Time series, axis orbit, frequency spectra and Poincare
map at ω = 1950 rad/s

4 Conclusion

A nonlinear model is built to study dynamic behaviors
of the single disk rotor-bearing system with interac-
tion among crack, rub-impact and oil-film force. This
modeling strategy has adopted the time-varying stiff-
ness model to simulate the stiffness of a crack rotor
and employed the short bearing theory to describe the
oil-film force. The numerical simulation results reveal
that this system exists rich nonlinear phenomena, such
as the period-doubling bifurcation, the multi-period
and the quasiperiodic motions. The comparisons of the
dynamic behaviors of different parameters indicate that
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crack depth and stator stiffness influence the vibra-
tion and instability of the system with varied rotat-
ing speed. In summary, the system has strong non-
linearity and instability in high speed region. More-
over, crack depth and stator stiffness can interfere with
the formation of oil whirl, thus, making the oil whirl
appear later. The results demonstrate that the stabil-
ity of the system is affected by the system parameters,
and there exists interaction among all fault forces. We
have conducted experiments on the rotor-bearing sys-
tem with rub-impact and oil-film instability [22]. And
the conclusion about the effect of stator stiffness on
the system is consistent with the results from exper-
iments. Next we will employ the experiment on the
test rig to study the effects of various parameters on
the response of the system and verify the numerical
results.
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