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Abstract We investigate the (3 + 1)-dimensional
coupled nonlocal nonlinear Schrödinger equation in the
inhomogeneous nonlocal nonlinear media and derive
analytical vector spatiotemporal localized solution.
Based on this solution, Gaussian solitons and some
symmetricmultipole patterns around the point (x, y) =
(0, 0) can be constructed. The change trends of the
amplitude and width of solitons are opposite, and they
finally tend to a certain value. The compression and
expansion of spatiotemporal localized structures are
also studied in an exponential diffraction decreasing
system.

Keywords Vector spatiotemporal solitons · (3 + 1)-
dimensional coupled nonlocal nonlinear Schrödinger
equation · Strongly nonlocal nonlinear media

1 Introduction

The characteristics of solitons are their sustainability
in time, localization in space and stability along propa-
gating distance. Different soliton structures have been
investigated in various physical fields including plasma
physics, condensedmatter physics and nonlinear optics
[1–11].
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In optics, abundant localized structures in local and
nonlocal nonlinear media have been intensively stud-
ied. In local nonlinear media, spatial and spatiotem-
poral soliton [12–15], vortex solitons [16], light bullet
[17,18] and breather [19,20] have been produced and
play important roles in dense wavelength division mul-
tiplexing, soliton supercontinuum generation, and new
soliton lasers design, etc. In nonlocal nonlinear media,
two-dimensional Hermite–Gaussian solitons [21] and
rotating azimuthons [22] and three-dimensional neck-
lace solitons [23] and Hermite–Bessel solitons [24]
have also been extensively studied.

In the nonlocal nonlinear media, nonlocality means
that the nonlinearity of a material at a particular point
depends on the wave intensity at all other material
points, and thus, the nonlinear term in the nonlocal
nonlinear Schrödinger equation (NNSE) is the nonlo-
cal form associated with a symmetric and real-valued
response kernel. For the strongly nonlocal case, the
NNSE can be simplified into the standard Snyder–
Mitchell model (a linear model) [25].

The nonlocality produces some new interesting
effects. In Refs. [26,27], authors reported that nonlo-
cality can prevent beam collapse and stabilize multi-
dimensional solitons. Moreover, nonlocality can also
promote the stability of vector solitons [28]. However,
three-dimensional vector solitons are hardly reported in
the inhomogeneous nonlocal nonlinear media. In this
paper, we investigate a (3 + 1)-dimensional coupled
NNSE with variable coefficients and obtain analytical
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vector spatiotemporal localized solution. Based on this
solution, the compression and expansion of spatiotem-
poral localized structures are studied in an exponential
diffraction decreasing system.

2 Vector spatiotemporal localized solution

In general, an essential requirement of vector solitons
is the absence of any interference between the single
components. This requirement can either be realized by
using beams of different polarization [29] or just mutu-
ally incoherent beams [30]. In (3 + 1)-dimensional
inhomogeneous nonlocal nonlinear media, the prop-
agation of vector optical solitons is governed by the
following coupled NNSE

iut + β(t)

2
∇2u − �n1(r, t)u = iγ (t)u,

ivt + β(t)

2
∇2v − �n2(r, t)v = iγ (t)v, (1)

where u(r, t) and v(r, t) denote two normalized com-
plex mode components with r = (x, y, z), x, y rep-
resent dimensionless transverse coordinates, t is the
evolution coordinate, which corresponds to the propa-
gation distance in optics and the time in BEC, the three-
dimensional “transverse” Laplacian operator ∇ =
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
. Functions β(t) and γ (t) are coef-

ficients of diffraction and gain/loss, respectively. The
nonlocal nonlinear term �n1(r, t) = S(t)

∫ +∞
−∞ R(r −

r′)(a1|u|2+a|v|2)dr and�n2(r, t) = S(t)
∫ +∞
−∞ R(r−

r′)(a|u|2+a2|v|2)drwith the response function R(r−
r′) = exp

[
−|r−r′|2

σ 2

]
/(πσ 2). The constants a, a1 and

a2 determine the ratio of the coupling strengths of the
cross-phase modulation to the self-phase modulation.
The limit σ → 0 corresponds to the case of local
cubic nonlinearity, whereas σ → ∞ corresponds to
the strongly nonlocal case.

By means of the following transformation

{
u
v

}

=
⎧
⎨

⎩

√
| a2−a
a1a2−a2

|
√

| a1−a
a1a2−a2

|

⎫
⎬

⎭
ψ, (2)

Equation (1) changes into

iψt + β(t)

2
∇2ψ − �n(r, t)ψ = iγ (t)ψ. (3)

In the strongly nonlocal medium, the degree of nonlo-
cality σ is far more than wave characteristic width w.

In this case, one expands the response function in Tay-
lor’s series, and then the nonlinear refraction index in
Eq. (3) is �n(r, t) ≈ s(t)r2 with r2 = x2 + y2 + z2.

Considering the relation between diffraction and
nonlocal nonlinearity as

s(t) = εβ(t)

W 4(t)
, (4)

and using the transformation

ψ = A0

W 3/2(t)
	

[

T ≡ Ω(t)Θ(t)

W 2
0

, X ≡ x

W (t)
,

Y ≡ y

W (t)
, Z ≡ z

W (t)

]

exp

[∫ t

0
γ (τ)dτ

− i
s0Ω(t)

2
r2

]

, (5)

with thewidthW (t) = W0
Ω(t) , the chirp functionΩ(t) =

[1 − s0Θ(t)]−1, the accumulated diffraction Θ(t) =∫ t
0 β(τ)dτ and constants A0,W0, s0, Eq. (3) changes
into

i	T + 1

2
(	XX + 	YY + 	Z Z )

− ε(X2 + Y 2 + Z2)	 = 0, (6)

whose solutions have been reported in Ref. [23]. How-
ever, we follow the procedure in Ref. [23] to obtain
more general solutions and use these general solutions
to produce solutions of Eq. (1).

From transformations (2) and (5) with soliton solu-
tion of Eq. (6), we obtain exact solution of Eq. (1)
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⎩
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√
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⎫
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ω3/2(t)W 3/2(t)
[cos(mφ)

+ iq sin(mφ)]Pm
l (cos θ)

[

d1M

(

−n, l+3

2
,

R2

ω2(t)

)

+ d2U (−n, l + 3

2
,

R2

ω2(t)
)

](
R

ω(t)

)l

exp

{
1

2

− R2

2ω2 +
∫ t

0
γ (τ)dτ + i [b(t)

− s0Ω(t)

2
r2 + c(t)R2

]}

, (7)

where M(·) and U (·) are Kummer M and U functions
[31], Pm

l (cos θ) are the associated Legendre function
with the degree l and order m satisfying l ≥ m ≥ 0
[23], and cos(θ) = Z/R, ω(t) = ω0[1 + (λ −

123



Vector spatiotemporal localized structures 1001

1) sin(2Ξ)], b(t)=− (2n+l+3/2) arctan[√λ tan(2Ξ)]
2
√

ελω4
0

, c(t) =
√

εω2
0(λ−1) sin(4Ξ)

1+λ−(λ−1) cos(4Ξ)
with R2=X2+Y 2+Z2, λ=1/(2εω4

0),

Ξ(t)=√
εω2

0T, k =
√

2l−n+2(2l+1)(l−m)!(2l+2n+1)!!
4π

√
π(1+q2)n!(l+m)![(2l+1)!!]2 , the

modulation depth of the pulse intensity q ∈ [0, 1], the
azimuthal angle φ in the transverse plane (X,Y ) and
three constants ω0, d1 and d2.

3 Dynamical characteristics and evolution of
spatiotemporal localized structures

In the following, the propagation behaviors of spa-
tiotemporal localized structures are discussed in an
exponential diffraction decreasing system [32,33]

β(t) = β0 exp(−σ t), (8)

Fig. 1 (Color online) Spatiotemporal localized structures of
I = |u|2 for q = 0.9 at t = 50: a–c l = 0, 1, 2 with
m = 0, n = 1, d–f l = 1, 2, 3 with m = n = 1, and g–

i l = 2, 3, 4 with m = 2, n = 1. Parameters are chosen as
a1 = 0.98, a2 = a = 1, ε = 1, s0 = 0.03, β0 = 0.5, σ =
0.05, A0 = 0.8, ω0 = 0.4,W0 = 0.5, d1 = 0, d2 = 1
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Fig. 2 (Color online) Spatiotemporal multipole structures for q = 0 at t = 50: a–c l = 2, 3, 4 with m = 1 and d–f l = 4, 5, 6 with
m = 2. Parameters are chosen as the same as those in Fig. 1

where β0 and σ are two positive parameters related to
diffraction. When σ > 0, this system is the diffraction
decreasing system.

At first, we discuss the case of q = 0.9, and other
parameters are chosen as a1 = 0.98, a2 = a = 1, ε =
1, s0 = 0.03, β0 = 0.5, σ = 0.05, A0 = 0.8, ω0 =
0.4,W0 = 0.5, d1 = 0, d2 = 1. When m = 0,
Gaussian solitons are exhibited in Fig. 1a–c. In partic-
ular, if l = 0, a sphere light bullet forms.With the addi-
tion of l, the sphere in Fig. 1a turns into a torus-shaped
structure in Fig. 1b, and then a pair of drip-shaped
structures appears above and below the torus-shaped
structure in the middle [see Fig. 1c]. When m = 1,
some pair-like structures exist. With the addition of l,
a pair of ellipsoids in Fig. 1d changes into a pair of
torus-shaped structures in Fig. 1e, and then a pair of
drip-shaped structures also appears above and below
the pair of torus-shaped structures in the middle [see
Fig. 1f].Whenm = 2,with the addition of l, some layer
structures along the vertical direction are produced in
Fig. 1g–i.

Next, we discuss spatiotemporal multipole struc-
tures for the case of q = 0. Some symmetric multipole
patterns around the point (x, y) = (0, 0) can be con-
structed in Fig. 2. When m = 0, four solitons exhibit
layout around the point (x, y) = (0, 0). With the addi-
tion of l, another layer of solitons appears gradually
from Fig. 2b–c. When m = 1, four solitons in Fig. 2a–
c split into eight solitons in Fig. 2d–f; that is, every
soliton splits into two parts. Similarly, with the addi-
tion of l, the layer of multipole soliton structures also
increases from Fig. 2e, f.

At last, we discuss dynamical evolution of spa-
tiotemporal localized structures. As an example, the
compression and expansion of spatiotemporal struc-
ture corresponding to Fig. 1f are exhibited in Fig. 3.
From Fig. 3a, the width and amplitude are decided
byW (z)ω(z) and A0k

ω3/2(z)W 3/2(z)
, respectively. Although

W (z) changes as an exponential form in the exponential
dispersion decreasing system (8), ω(z) changes with
sin-function as sin(2Ξ). Therefore, the amplitude and
width changeperiodically andfinally tend to somefixed
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Fig. 3 (Color online) a The
change of amplitude and
width, b–d the compression
and expansion of
spatiotemporal structure
corresponding to Fig. 1f at
t = 8, 50, 120. Parameters
are chosen as the same as
those in Fig. 1 except for
ω0 = 0.9
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values.Note that the change trends of the amplitude and
width are opposite, namely, the amplitude reveals an
adding oscillation and finally tends to a certain value,
while the width exhibits a decreasing oscillation and
finally tends to a certain value. These changes are ver-
ified by the evolutional plots shown in Fig. 3b–d. Spa-
tiotemporal soliton is compressed from z = 8 in Fig. 3b
to z = 50 in Fig. 3c and then is expanded from z = 50
in Fig. 3c to z = 120 in Fig. 3d.

Compared with these compression and expansion
behaviors of spatiotemporal structure, we can also dis-
cuss the compression behavior (only compression and
no expansion). As another example, we study spa-
tiotemporal structure with m = 2, l = 5, n = 1. When
λ = 1, the dispersion/diffraction of pulse is exactly bal-
anced by the nonlinearity. In this case,ω(z) = ω0 (con-
stant); thus, the width and amplitude both change as an
exponential form in the exponential dispersion decreas-
ing system (8). Their changes are shown in Fig. 4a; that
is, the width decreases and amplitude increases expo-

nentially, and ultimately incline to some certain values.
From Fig. 4b–d, the spatiotemporal multipole structure
is compressed with the increase of the evolution coor-
dinate.

4 Conclusions

In short, we investigate the (3 + 1)-dimensional cou-
pled NNSE in the inhomogeneous nonlocal nonlin-
ear media and derive analytical vector spatiotempo-
ral localized solution built out of spherical harmon-
ics and Kummer’s functions. Based on this solution,
Gaussian solitons and some symmetric multipole pat-
terns around the point (x, y) = (0, 0) can be con-
structed. The change trends of the amplitude and width
of solitons are opposite, and theyfinally tend to a certain
value. The compression and expansion of spatiotempo-
ral localized structures are also studied in a exponen-
tial dispersion decreasing system. These results may

123



1004 C.-Q. Dai et al.

Fig. 4 (Color online) a The
change of amplitude and
width, b–d the compression
of spatiotemporal multipole
structure with
m = 2, l = 5, n = 1 at
t = 8, 40, 120. Parameters
are chosen as the same as
those in Fig. 3 except for
λ = 1
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give new insight into laser devices emitting ultra-short
pulses, all-optical networks and experimental realiza-
tion in nonlocal nonlinear BEC.
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