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Abstract A modified KdV-type equation is studied
by using the bifurcation theory of dynamical system.
By investigating the dynamical behavior with phase
space analysis, all possible explicit exact travelingwave
solutions including peakon solutions, kink and anti-
kink wave solutions, blow-up wave solutions, smooth
periodic wave solutions, periodic cusp wave solutions,
and periodic blow-up wave solutions are obtained.
When the first integral varies, we also show the con-
vergence of the periodic wave solutions, such as the
smooth periodic wave solutions converge to the kink
and anti-kink wave solutions, the periodic cusp wave
solutions converge to the peakon solution, the periodic
blow-up wave solutions converge to the blow-up wave
solution, the blow-up wave solutions converge to the
blow-up wave solution, and the periodic blow-up wave
solutions converge to the periodic blow-up wave solu-
tion.
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1 Introduction

Travelingwaves appear inmany distinct physical struc-
tures in solitary wave theory, such as smooth peri-
odic waves, periodic cusp waves, periodic blow-up
waves, periodic loop solitons, periodic compactons,
solitary waves, kink and anti-kink waves, blow-up
waves, peakons, cuspons, compactons, loop solitons,
and many others [1–9]. Many powerful methods have
been presented for finding the traveling wave solutions
of nonlinear partial differential equations, such as the
Bäcklund transformation [10],Darboux transformation
[11], inverse scattering method [12], Hirota bilinear
method [13], Lie group analysis method [14–16], tanh
method [17], ansatz method [18,19], bifurcation the-
ory of dynamical system [20,21], exp-function method
[22,23], symbolic computation method [24–26], and
other methods [27–30].

It is well known that the KdV equation and its gen-
eralizations are probably the most popular nonlinear
evolution equations of physical interest, which not only
stem from realistic physical phenomena, but can also
bewidely applied to a lot of physically significant fields
such as plasma physics, fluid dynamics, crystal lattice
theory, nonlinear circuit theory, and astrophysics. A
modified KdV-type equation is given by [31–36]

uuxxt − uxuxt − 4u3ut + 4uuxxx

−4uxuxx − 16u3ux = 0, (1)

where u is a real-valued scalar function, t is time, and
x is a spatial variable. Equation (1) was proposed in
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[31] and was derived in [32] by using a spectral prob-
lem and the Lenard gradients as stated before. In [31],
Geng andXue obtained soliton solutions and quasiperi-
odic solutions. Wazwaz [33] found a variety of travel-
ing wave solutions such as kink, soliton, peakon, peri-
odic wave solutions. Some solitary wave, periodic, and
rational solutions are presented in [34]. Bogning [35]
obtained all possible solutions of shape “Sech” for Eq.
(1) by the Bogning–Djeumen Tchaho–Kofané method.
The optical soliton solutions are obtained in [36] by
using the ansatz method. Unfortunately, the dynamical
behavior of the traveling wave system for Eq. (1) is not
studied yet; the blow-up wave solution and the peri-
odic blow-up wave solution are also not found in the
literatures.

In this paper, we aim to investigate the dynamical
behavior of the traveling wave system and the limit
forms of the periodic wave solutions for Eq. (1), and
give all possible explicit exact parametric representa-
tions of various traveling waves using the bifurcation
theory of dynamical system [2,3,20,21].

2 Preliminaries

To investigate the traveling wave solution of Eq. (1),
let

u(x, t) = φ(ξ), ξ = x − ct, (2)

where c ( �= 0, 4) is the wave speed. Substituting (2)
into Eq. (1) yields

(4 − c)φφ′′′ − (4 − c)φ′φ′′ − 4(4 − c)φ3φ′ = 0, (3)

where “′” is the derivative with respect to ξ.

Integrating (3) once with respect ξ, we have

(4 − c)φφ′′ − (4 − c)
(
φ′)2 − (4 − c)φ4 = g, (4)

where g is the integral constant.

Letting y = dφ

dξ
,weget the following planar dynam-

ical system:

dφ

dξ
= y,

dy

dξ
= g + (4 − c)φ4 + (4 − c)y2

(4 − c)φ
. (5)

Using dξ = φdτ, it carries (5) into the Hamiltonian
system

dφ

dτ
= φy,

dy

dτ
= g

4 − c
+ φ4 + y2 (6)

with the following first integral:

H(φ, y) = φ−2
(
y2 − φ4 + g

4 − c

)
= h. (7)

For a fixed h, the level curve H(φ, y) = h defined
by (7) determines a set of invariant curves of system
(6) which contains different branches of curves. As h
is varied, it defines different families of orbits of system
(6) with different dynamical behaviors.

Obviously, system (6) has two equilibrium points at
(±φ1,0) in φ-axis and has two equilibrium points at
(0,±Ys) in y-axis when g(c − 4) > 0, where φ1 =
4
√

g
c−4 ,Ys =

√
g

c−4 , has only one equilibrium point at

(0, 0) when g = 0, and has no any equilibrium point
when g(c − 4) < 0.

From (7), we have

h1 = H(−φ1, 0) = H(φ1, 0) = − 2g√
g(c − 4)

. (8)

If let M(φe, ye) be the coefficient matrix of the
linearized system of system (6) at equilibrium point
(φe, ye), then

J (φe, ye) = det (M(φe, ye)) = 2y2e − 4φ4
e . (9)

For an equilibrium point (φe, ye) of system (6), we
know that (φe, ye) is a saddle point if J (φe, ye) < 0, a
center point if J (φe, ye) > 0, a cusp if J (φe, ye) = 0,
and the Poincaré index of (φe, ye) is zero.

Since both system (5) and system (6) have the same
first integral (7), then two systems above have the same
topological phase portraits. Therefore, we can obtain
the phase portraits of system (5) from that of system
(6). By using the properties of equilibrium points and
the bifurcation theory of dynamical system, we can
show the phase portraits of system (5) are as drawn in
Fig. 1.

The reminder of this paper is organized as follows.
In Sect. 3, we state our main results for Eq. (1). In
Sect. 4, we give the derivations for our main results. A
short conclusion is drawn in Sect. 5.

3 Main results

In this section, we state our main results. To relate con-
veniently, let
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Fig. 1 Phase portraits of system (5). Parameters: a g(c − 4) > 0. b g = 0. c g(c − 4) < 0

γ1,2 =

√
2(c − 4)

(
−h(c − 4) ± √

(c − 4)(h2(c − 4) − 4g)
)

2|c − 4| ,

δ1 = max{γ1, γ2}, δ2 = min{γ1, γ2}, T = 1

δ1

∣∣sn−1(1, k1)
∣∣ ,

k1 = δ2

δ1
, k2 = δ2√

δ21 + δ22

, k3 = δ1√
δ21 + δ22

,

φ∗ = 4

√
− g

c − 4
, ω1 = φ∗

√
2, ω2 =

√
δ21 + δ22 ,

φ1 = 4

√
g

c − 4
, n = 0, ±1, ±2, . . . ,

and sn(·, k), cn(·, k), ns(·, k) are the Jacobian elliptic
functions with the modulus k [37,38].

Proposition 3.1 If g(c − 4) > 0, then we have the
following results:

For h = h1, Eq. (1) has two kink and anti-kink wave
solutions

u1,2(x, t) = ±φ1 tanh (φ1(x − ct)) , (10)

has two peakon solutions

u3,4(x, t) = ±φ1 tanh (φ1|x − ct |) , (11)

and has two blow-up wave solutions

u5,6(x, t) = ±φ1 coth (φ1|x − ct |) . (12)

For h ∈ (−∞, h1), Eq. (1) has some smooth peri-
odic wave solutions

u7,8(x, t) = ±δ2sn (δ1(x − ct), k1) , (13)

has some periodic cusp wave solutions

u9,10(x, t) = ±δ2 |sn (δ1(x − ct − 2nT ), k1)|
for (2n − 1)T < x − ct < (2n + 1)T, (14)

and has some periodic blow-up wave solutions

u11,12(x, t) = ±δ1 |ns (δ1(x − ct), k1)| . (15)

Moreover, as h → h1, the smooth periodic wave solu-
tions u7(x, t), u8(x, t) converge to the kink and anti-
kink wave solutions u1(x, t), u2(x, t), respectively,
the periodic cusp wave solutions u9(x, t), u10(x, t)
converge to the peakon solutions u3(x, t), u4(x, t),
respectively, and the periodic blow-up wave solutions
u11(x, t), u12(x, t) converge to the blow-up wave solu-
tions u5(x, t), u6(x, t), respectively.

Proposition 3.2 If g = 0, then we have the following
results:

For h = 0, Eq. (1) has two blow-up wave solutions

u13,14(x, t) = ± 1

|x − ct | . (16)

For h ∈ (−∞, 0), Eq. (1) has some periodic blow-
up wave solutions

u15,16(x, t) = ±√−h
∣∣∣csc

(√−h(x − ct)
)∣∣∣ . (17)

Moreover, as h → 0, the periodic blow-up wave solu-
tions u15(x, t), u16(x, t) converge to the blow-up wave
solutions u13(x, t), u14(x, t), respectively.

For h ∈ (0,+∞), Eq. (1) has some blow-up wave
solutions

u17,18(x, t) = ±√
hcsch

(√
h|x − ct |

)
. (18)

Moreover, as h → 0, the blow-up wave solutions
u17(x, t), u18(x, t) converge to the blow-up wave solu-
tions u13(x, t), u14(x, t), respectively.
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Proposition 3.3 If g(c − 4) < 0, then we have the
following results:

For h = 0, Eq. (1) has two periodic blow-up wave
solutions

u19,20(x, t) = ±φ∗

∣∣∣∣
∣
ns

(

ω1(x − ct),

√
2

2

)∣∣∣∣
∣

×
√√√
√1 + cn2

(

ω1(x − ct),

√
2

2

)

. (19)

For h ∈ (−∞, 0), Eq. (1) has some periodic blow-
up wave solutions

u21,22(x, t) = ± |ns (ω2(x − ct), k2)|
×

√
δ21 + δ22cn

2 (ω2(x − ct), k2). (20)

Moreover, as h → 0, the periodic blow-up wave solu-
tions u21(x, t), u22(x, t) converge to the periodic blow-
up wave solutions u19(x, t), u20(x, t), respectively.

For h ∈ (0,+∞), Eq. (1) has some periodic blow-
up wave solutions

u23,24(x, t) = ± |ns (ω2(x − ct), k3)|
×

√
δ22 + δ21cn

2 (ω2(x − ct), k3). (21)

Moreover, as h → 0, the periodic blow-up wave solu-
tions u23(x, t), u24(x, t) converge to the periodic blow-
up wave solutions u19(x, t), u20(x, t), respectively.

4 The derivations to main results

The derivation on Proposition 3.1. When g(c− 4) >

0, system (6) has four equilibrium points (±φ1, 0) and
(0,±Ys); the (±φ1, 0) are two saddle points, and the
others are complex equilibrium points. From Fig. 1a,
we see that the graph defined by H(φ, y) = h1 con-
sists of two heteroclinic orbits connecting with the
saddle points (±φ1, 0), four heteroclinic orbits which
two of them connecting with the saddle point (φ1, 0)
and passing through the complex equilibrium points
(0,±Ys) and two others connecting with the saddle
point (−φ1, 0) and passing through the complex equi-
librium points (0,±Ys), and two open curves connect-
ingwith the saddle points (φ1, 0) and (−φ1, 0), respec-
tively. In (φ, y)-plane, their expressions are, respec-
tively,

y = ±
(
φ2
1 − φ2

)
, −φ1 < φ < φ1, (22)

y = ±
(
φ2
1 − φ2

)
, 0 ≤ φ < φ1, (23)

y = ±
(
φ2
1 − φ2

)
, −φ1 < φ ≤ 0, (24)

y = ±
(
φ2 − φ2

1

)
, φ1 < φ < +∞, (25)

y = ±
(
φ2 − φ2

1

)
, −∞ < φ < −φ1. (26)

From Fig. 1a, we also see that the graph defined by
H(φ, y) = h (h ∈ (−∞, h1)) consists of one peri-
odic orbit passing through the points (±δ2, 0), two
heteroclinic orbits connecting with the the complex
equilibrium points (0,±Ys) and passing through the
the points (±δ2, 0), respectively, and two open curves
passing through the point (±δ1, 0), respectively. In
(φ, y)-plane, their expressions are, respectively,

y = ±
√

(δ21 − φ2)(δ22 − φ2), −δ2 ≤ φ ≤ δ2, (27)

y = ±
√

(δ21 − φ2)(δ22 − φ2), 0 ≤ φ ≤ δ2, (28)

y = ±
√

(δ21 − φ2)(δ22 − φ2), −δ2 ≤ φ ≤ 0, (29)

y = ±
√

(φ2 − δ21)(φ
2 − δ22), δ1 ≤ φ < +∞, (30)

y = ±
√

(φ2 − δ21)(φ
2 − δ22), −∞ < φ ≤ −δ1.

(31)

Substituting (22) into the dφ

dξ
= y and integrating it

along the heteroclinic orbits, we have
∫ 0

φ

ds

φ2
1 − s2

= ±ξ. (32)

From (32) and (2), we obtain the kink and anti-kink
wave solutions as (10).

Substituting (23) and (24) into the dφ

dξ
= y and inte-

grating them along the heteroclinic orbits, respectively,
we have
∫ φ

0

ds

φ2
1 − s2

= |ξ |, (33)

∫ 0

φ

ds

φ2
1 − s2

= |ξ |. (34)

From (33), (34) and (2), we obtain the peakon solutions
as (11).

Substituting (25) and (26) into the dφ

dξ
= y and inte-

grating them along the open curves, respectively, we
have
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∫ +∞

φ

ds

s2 − φ2
1

= |ξ |, (35)

∫ φ

−∞
ds

s2 − φ2
1

= |ξ |. (36)

From (35), (36) and (2), we obtain the blow-up wave
solutions as (12).

Substituting (27) into the dφ

dξ
= y and integrating it

along the periodic orbit, we have

∫ 0

φ

ds
√

(δ21 − s2)(δ22 − s2)
= ±ξ. (37)

From (37) and (2), we obtain the smooth periodic wave
solutions as (13).

Substituting (28) and (29) into the dφ

dξ
= y and inte-

grating them along the heteroclinic orbits, respectively,
we have
∫ φ

0

ds
√

(δ21 − s2)(δ22 − s2)
= |ξ |, (38)

∫ 0

φ

ds
√

(δ21 − s2)(δ22 − s2)
= |ξ |. (39)

From (38), (39) and (2), we obtain the periodic cusp
wave solutions as (14).

Substituting (30) and (31) into the dφ

dξ
= y and inte-

grating them along the open curves, respectively, we
have
∫ +∞

φ

ds
√

(s2 − δ21)(s
2 − δ22)

= |ξ |, (40)

∫ φ

−∞
ds

√
(s2 − δ21)(s

2 − δ22)

= |ξ |. (41)

From (40), (41) and (2), we obtain the periodic blow-up
wave solutions as (15).
Letting h → h1, we have

δ1 → φ1, δ2 → φ1, k1 → 1, sn(·, k1) → tanh(·),
ns(·, k1) → coth(·), T → +∞.

Therefore, as h → h1, the smooth periodic wave solu-
tions u7(x, t), u8(x, t) converge to the kink and anti-
kink wave solutions u1(x, t), u2(x, t), respectively,
the periodic cusp wave solutions u9(x, t), u10(x, t)
converge to the peakon solutions u3(x, t), u4(x, t),
respectively, and the periodic blow-up wave solutions
u11(x, t), u12(x, t) converge to the blow-up wave solu-
tions u5(x, t), u6(x, t), respectively.

The derivation of Proposition 3.1 is completed.

Example 4.1 If c = 6.5, g = 1.0, then h1 ≈
−1.264911064. Taking h = −1.5, we have δ1 ≈

a b c d

Fig. 2 Profile of u1(ξ) and the limiting precess of u7(ξ) tends to u1(ξ) when h → h1. Parameters: a h = h1 ≈ −1.264911064.
b h = −1.5. c h = −1.269. d h = −1.26493

b c da

Fig. 3 Profile of u2(ξ) and the limiting precess of u8(ξ) tends to u2(ξ) when h → h1. Parameters: a h = h1 ≈ −1.264911064.
b h = −1.5. c h = −1.269. d h = −1.26493
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1.073830940 and δ2 ≈ 0.5889712325. Taking h =
−1.269, we have δ1 ≈ 0.8278855590 and δ2 ≈
0.7639407710. Taking h = −1.26493, we have δ1 ≈
0.7974495647 and δ2 ≈ 0.7930978445. The profiles
of u1(x, t) and u2(x, t) are shown in Figs. 2a and 3a,
respectively, the limiting process of u7(x, t) is similar
to that in Fig. 2b–d, and the limiting process of u8(x, t)
is similar to that in Fig. 3b–d.

Example 4.2 If c = −1.5, g = −1.0, then h1 ≈
−0.8528028654. Taking h = −1.2, we have δ1 ≈
1.010997469 and δ2 ≈ 0.4217631059. Taking h =
−0.86,wehave δ1 ≈ 0.6967884370 and δ2 ≈ 0.61195
25095. Taking h = −0.85281, we have δ1 ≈
0.6543311085 and δ2 ≈ 0.6516600344. The profiles
of u3(x, t) and u4(x, t) are shown in Figs. 4a and 5a,
respectively, the limiting process of u9(x, t) is similar
to that in Fig. 4b–d, and the limiting process of u10(x, t)
is similar to that in Fig. 5b–d.

Example 4.3 If c = 3.5, g = −0.5, then h1 = −2.0.
Taking h = −3.0, we have δ1 ≈ 1.618033989
and δ2 ≈ 0.6180339884. Taking h = −2.1, we
have δ1 ≈ 1.17053672, δ2 ≈ 0.8543089529. Taking
h = −2.000005, we have δ1 ≈ 1.001118658 and
δ2 ≈ 0.9988825912. The profiles of u5(x, t) and
u6(x, t) are shown in Figs. 6a and 7a, respectively, the

limiting process of u11(x, t) is similar to that in Fig. 6b–
d, and the limiting process of u12(x, t) is similar to that
in Fig. 7b–d.

The derivation on Proposition 3.2. When g = 0, sys-
tem (6) has only one equilibrium point (0, 0), and the
(0, 0) is a cusp. From Fig. 1b, we see that the graph
defined by H(φ, y) = 0 consists of two open curves
connecting with the cusp (0, 0), the graph defined
by H(φ, y) = h (h ∈ (−∞, 0)) consists of two
open curves passing through the points (±√−h, 0),
respectively, and the graph defined by H(φ, y) =
h (h ∈ (0,+∞)) consists of two open curves connect-
ing with the cusp (0, 0). In (φ, y)-plane, their expres-
sions are, respectively,

y = ±φ2, 0 < φ < +∞, (42)

y = ±φ2, −∞ < φ < 0, (43)

y = ±φ
√

φ2 + h,
√−h ≤ φ < +∞, (44)

y = ±φ
√

φ2 + h, −∞ < φ ≤ −√−h, (45)

y = ±φ
√

φ2 + h, 0 < φ < +∞, (46)

y = ±φ
√

φ2 + h, −∞ < φ < 0. (47)

Substituting (42) and (43) into the dφ

dξ
= y and inte-

grating them along the open curves, respectively, we
have

b c da

Fig. 4 Profile of u3(ξ) and the limiting precess of u9(ξ) tends to u3(ξ) when h → h1. Parameters: a h = h1 ≈ −0.8528028654.
b h = −1.2. c h = −0.86. d h = −0.85281

b c da

Fig. 5 Profile of u4(ξ) and the limiting precess of u10(ξ) tends to u4(ξ) when h → h1. Parameters: a h = h1 ≈ −0.8528028654.
b h = −1.2. c h = −0.86. d h = −0.85281

123



Three kinds of periodic wave solutions and their limit forms 817

a b c d

Fig. 6 Profile of u5(ξ) and the limiting precess of u11(ξ) tends to u5(ξ) when h → h1. Parameters: a h = h1 = −2.0.
b h = −3.0. c h = −2.1. d h = −2.000005

a b c d

Fig. 7 Profile of u6(ξ) and the limiting precess of u12(ξ) tends to u6(ξ) when h → h1. Parameters: a h = h1 = −2.0.
b h = −3.0. c h = −2.1. d h = −2.000005

∫ +∞

φ

ds

s2
= |ξ |, (48)

∫ φ

−∞
ds

s2
= |ξ |. (49)

From (48), (49) and (2), we obtain the blow-up wave
solutions as (16).

Substituting (44) and (45) into the dφ

dξ
= y and inte-

grating them along the open curves, respectively, we
have

∫ +∞

φ

ds

s
√
s2 + h

= |ξ |, (50)

∫ φ

−∞
ds

s
√
s2 + h

= −|ξ |. (51)

From (50), (51) and (2), we obtain the periodic blow-up
wave solutions as (17).

Substituting (46) and (47) into the dφ

dξ
= y and inte-

grating them along the open curves, respectively, we
have

∫ +∞

φ

ds

s
√
s2 + h

= |ξ |, (52)

∫ φ

−∞
ds

s
√
s2 + h

= −|ξ |. (53)

From (52), (53) and (2), we obtain the blow-up wave
solutions as (18). Letting h → 0, we have

√−h csc
(√−h|ξ |

)
= 1

|ξ |

( √−h|ξ |
sin

(√−h|ξ |)
)

→ 1

|ξ | ,

√
hcsch

(√
h|ξ |

)
= 1

|ξ |

(
2
√
h|ξ |

e
√
h|ξ |−e−√

h|ξ |

)

→ 1

|ξ |

×
(

2

e
√
h|ξ | + e−√

h|ξ |

)
→ 1

|ξ | .
Therefore, as h → 0, the periodic blow-up wave
solutions u15(x, t), u16(x, t) converge to the blow-up
wave solutions u13(x, t), u14(x, t), respectively, and
the blow-up wave solutions u17(x, t), u18(x, t) con-
verge to theblow-upwave solutionsu13(x, t), u14(x, t),
respectively.

The derivation of Proposition 3.2 is completed.

Example 4.4 The profiles of u13(x, t) and u14(x, t) are
shown in Fig. 8a, b, respectively. The limiting process
of u15(x, t) is similar to that in Fig. 9a–d, and the lim-
iting process of u16(x, t) is similar to that in Fig. 10a–
d. The limiting process of u17(x, t) is similar to that
in Fig. 11a–d, and the limiting process of u18(x, t) is
similar to that in Fig. 12a–d.

The derivation on Proposition 3.3. When g(c− 4) <

0, system (6) has no any equilibrium point. From
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Fig. 8 Profiles of u13(ξ)

and u14(ξ). Parameters: a
h = 0. b h = 0

a b

a b c d

Fig. 9 Limiting precess of u15(ξ) tends to u13(ξ) when h → 0. Parameters: a h = −3.0. b h = −1.0. c h = −0.20. d h = −0.0001

a b c d

Fig. 10 Limiting precess of u16(ξ) tends to u14(ξ) when h → 0. Parameters: a h = −3.0. b h = −1.0. c h = −0.20. d h = −0.0001

a b c d

Fig. 11 Limiting precess of u17(ξ) tends to u13(ξ) when h → 0. Parameters: a h = 1.0. b h = 0.2. c h = 0.02. d h = 0.0001

Fig. 1c, we see that the graph defined by H(φ, y) = 0
consists of two open curves passing through the points
(±φ∗, 0), respectively, the graph defined by H(φ, y) =
h (h ∈ (−∞, 0)) consists of two open curves pass-
ing through the points (±δ1, 0), respectively, and the

graph defined by H(φ, y) = h (h ∈ (0,+∞)) con-
sists of two open curves passing through the points
(±δ2, 0), respectively. In (φ, y)-plane, their expres-
sions are, respectively,
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a b c d

Fig. 12 Limiting precess of u18(ξ) tends to u14(ξ) when h → 0. Parameters: a h = 1.0. b h = 0.2. c h = 0.02. d h = 0.0001

Fig. 13 Profiles of u19(ξ)

and u20(ξ). Parameters: a
h = 0. b h = 0

a b

y = ±
√

(φ2 − φ2∗)(φ2 + φ2∗), φ∗ ≤ φ < +∞, (54)

y = ±
√

(φ2 − φ2∗)(φ2 + φ2∗), −∞ < φ ≤ −φ∗,
(55)

y = ±
√

(φ2 − δ21)(φ
2 + δ22), δ1 ≤ φ < +∞, (56)

y = ±
√

(φ2 − δ21)(φ
2 + δ22), −∞ < φ ≤ −δ1,

(57)

y = ±
√

(φ2 − δ22)(φ
2 + δ21), δ2 ≤ φ < +∞, (58)

y = ±
√

(φ2 − δ22)(φ
2 + δ21), −∞ < φ ≤ −δ2.

(59)

Substituting (54) and (55) into the dφ

dξ
= y and inte-

grating them along the open curves, respectively, we
have
∫ +∞

φ

ds
√

(s2 − φ2∗)(s2 + φ2∗)
= |ξ |, (60)

∫ φ

−∞
ds

√
(s2 − φ2∗)(s2 + φ2∗)

= |ξ |. (61)

From (60), (61) and (2), we obtain the periodic blow-up
wave solutions as (19).

Substituting (56) and (57) into the dφ

dξ
= y and inte-

grating them along the open curves, respectively, we

have
∫ +∞

φ

ds
√

(s2 − δ21)(s
2 + δ22)

= |ξ |, (62)

∫ φ

−∞
ds

√
(s2 − δ21)(s

2 + δ22)

= |ξ |. (63)

From (62), (63) and (2),we obtain the periodic blow-
up wave solutions as (20).

Substituting (58) and (59) into the dφ

dξ
= y and inte-

grating them along the open curves, respectively, we
have
∫ +∞

φ

ds
√

(s2 − δ22)(s
2 + δ21)

= |ξ |, (64)

∫ φ

−∞
ds

√
(s2 − δ22)(s

2 + δ21)

= |ξ |. (65)

From (64), (65) and (2), we obtain the periodic blow-up
wave solutions as (21).
Letting h → 0, we have

δ1 → φ∗, δ2 → φ∗, ω2 =
√

δ21 + δ22 → ω1,

k2 = δ2√
δ21 + δ22

→
√
2

2
, k3 = δ1√

δ21 + δ22

→
√
2

2
.
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a b c d

Fig. 14 Limiting precess of u21(ξ) tends to u19(ξ) when h → 0. Parameters: a h = −11.0. b h = −7.0. c h = −4.0. d h = −0.001

a b c d

Fig. 15 Limiting precess of u22(ξ) tends to u20(ξ) when h → 0. Parameters: a h = −11.0. b h = −7.0. c h = −4.0. d h = −0.001

a b c d

Fig. 16 Limiting precess of u23(ξ) tends to u19(ξ) when h → 0. Parameters: a h = 20.0. b h = 10.0. c h = 4.0. d h = 0.001

Therefore, as h → 0, the periodic blow-up wave solu-
tions u21(x, t), u22(x, t) converge to the periodic blow-
upwave solutionsu19(x, t), u20(x, t), respectively, and
theperiodic blow-upwave solutionsu23(x, t), u24(x, t)
converge to the periodic blow-up wave solutions
u19(x, t), u20(x, t), respectively.

The derivation of Proposition 3.3 is completed.

Example 4.5 If c = 4.5, g = −2.0, then φ∗ ≈
1.414213562. Taking h = −11.0, we have δ1 ≈
3.369324851, δ2 ≈ 0.5935907300. Taking h = −7.0,
we have δ1 ≈ 2.744290230, δ2 ≈ 0.7287858905. Tak-
ing h = −4.0, we have δ1 ≈ 2.197368226, δ2 ≈

a b c d

Fig. 17 Limiting precess of u24(ξ) tends to u20(ξ) when h → 0. Parameters: a h = 20.0. b h = 10.0. c h = 4.0. d h = 0.001
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0.9101797215. Taking h = −0.001, we have δ1 ≈
1.414390350, δ2 ≈ 1.414036797. The profiles of
u19(x, t) and u20(x, t) are shown in Fig. 13a, b, respec-
tively. The limiting process of u21(x, t) is similar to that
in Fig. 14a–d, and the limiting process of u22(x, t) is
similar to that in Fig. 15a–d. Taking h = 20.0, we
have δ1 ≈ 4.494222850, δ2 ≈ 0.4450157637. Tak-
ing h = 10.0, we have δ1 ≈ 3.222602180, δ2 ≈
0.6206164732. Taking h = 4.0, we have δ1 ≈
2.197368227, δ2 ≈ 0.9101797210.Taking h = 0.001,
we have δ1 ≈ 1.414390350, δ2 ≈ 1.414036796.
The limiting process of u23(x, t) is similar to that in
Fig. 16a–d, and the limiting process of u24(x, t) is sim-
ilar to that in Fig. 17a–d.

5 Conclusion

In this paper, we have obtained many new results for
a modified KdV-type Eq. (1) by employing the bifur-
cation method of dynamical system. The results have
been given in propositions 3.1–3.3. The method can be
applied to many other nonlinear evolution equations,
and we believe that many new results wait for further
discovery by this method.
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