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Abstract The effectiveness of the nonlinear energy
sink in controlling the limit cycle oscillations of a non-
linear aeroelastic system is assessed. The system con-
sists of a rigid airfoil elastically mounted on linear and
nonlinear springs. The coupled equations of the air-
foil and sink are derived using Lagrange’s equations.
The nonlinear quasi-steady aerodynamics are used to
model the aerodynamic loads. Parameters including the
mass and placement of the passive controller are var-
ied in order to test its efficiency in suppressing undesir-
able aeroelastic behavior under varying conditions. The
nonlinear normal form governing the responses of the
airfoil and the energy sink is derived. The contribution
of the aerodynamic, structural and sink nonlinearities
to the type of instability is quantified. The results show
that the nonlinear energy sink has a limited impact on
the system’s response in terms of effectively delaying
the onset of flutter, changing the type of instability or
reducing the amplitude of the limit cycle oscillations.
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Abbreviations

h Plunge motion
θ Pitch motion
y2 NES motion
α0 Preset angle of attack
αeff Effective angle of attack
m1 Mass of the airfoil
m2 Mass of the NES
e Position of the center of gravity relatively to

the elastic axis
d Position of the NES relatively to the elastic

axis
Icg Massmoment of inertia of the airfoil relatively

to the center of gravity
kh0 Airfoil linear plunging stiffness
kh1 Airfoil quadratic plunging stiffness
kh2 Airfoil cubic plunging stiffness
Ch Airfoil plunging motion viscous damping

coefficient
kθ0 Airfoil linear pitching stiffness
kθ1 Airfoil quadratic pitching stiffness
kθ2 Airfoil cubic pitching stiffness
Cθ Airfoil pitchingmotion viscous damping coef-

ficient
kn0 NES linear plunging stiffness
kn1 NES quadratic plunging stiffness
kn2 NES cubic plunging stiffness
Cy2 NES plunging motion viscous damping coef-

ficient
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L Aerodynamic lift force
M Aerodynamic moment
b Semi-chord
Clα Lift coefficient
Cmα Moment coefficient
cs Nonlinear aerodynamic coefficient
U Freestream velocity
ρ Air density

1 Introduction

Flutter control and suppression of limit cycle oscilla-
tions have been objectives of many investigations of
aeroelastic systems. The interest is in expanding the
flight boundary and enhancing aircraft performance.
Furthermore, successful robust control strategies can
be used to reduce the number of required flight tests for
different configurations. Different strategies, includ-
ing active and passive controls, have been proposed to
increase the flutter speed or suppress limit cycle oscilla-
tions. The use of active control strategies requires exter-
nal actuators and sensors. These requirements are not
needed in passive control strategies. This is an impor-
tant advantage in terms of keeping the payload to a
minimum and avoiding issues associated with control
surfaces.

We focus in this work on one mechanism that has
been proposed as a passive control strategy, namely
the nonlinear energy sink (NES), to suppress or reduce
the amplitude of limit cycle oscillations of aeroelastic
systems. The NES has been proposed to suppress the
vibrations of different mechanical systems. It is com-
posed of a secondary system with a nonlinear stiffness
that is attached to the main system. The idea behind
it is to pump the energy of the main system to the
NES and, as such, limit the amplitude of its motion.
One advantage of having a nonlinear stiffness is that
the passive pumping of energy would take place irrele-
vant of the frequency of the motion of the main system.
Although successful in some applications, the NES has
been shown to have some shortcomings in terms of
yielding multiple solutions and practicality especially
when it comes to specific types of instabilities. Lee
et al. [1] showed that the NES causes a delay in flut-
ter and a reduction in the amplitudes of oscillations.
Jiang et al. [2] experimentally and theoretically inves-
tigated the dynamics of an NES that is weakly coupled
to a linear structure that was harmonically forced. They

determined that, due to the nonlinearity, the NES can
vibrate with any mode of the primary system.Malatkar
and Nayfeh [3] investigated the system considered by
Jiang et al. [2] and showed that multiple solutions for
undamped or slightly damped linear subsystems exist.
They also showed that, for lightly damped subsys-
tems, the NES increases the amplitude of oscillations
when increasing the mass. Recently, Mehmood et al.
[4] investigated the use of the NES to suppress the
vortex-induced vibrations of a circular cylinder. They
determined that there is a critical mass ratio 3% below
which the NES is ineffective. When the mass ratio was
set between3 and6%, the results showedmultiple solu-
tions and a strong dependence on the initial conditions
such as gust, which eliminates its effectiveness. As the
mass ratio was increased to 10%, the vibrations were
significantly reduced. However, this reduction may be
more due to the change in the density ratio of the com-
bined cylinder and NES masses to the density of the
surrounding fluid, which affects the lock-in region of
the vortex-induced vibrations. They also determined
that placing the secondary mass within the main cylin-
der may be impractical.

The above studies and notions about the response of
systems controlled by an NES show that there is a need
for careful examination of the response of aeroelastic
systems including aircraft wings when combined with
a nonlinear energy sink. This is especially true because
the payload increase in terms of the mass of the NES
and its placement along the chord must be carefully
considered. Furthermore, gust effects could cause a
change in the initial conditions and unexpected or unde-
sirable responses. The introduction of the NES, which
is essentially a cubic nonlinearity to the aeroelastic sys-
tem, could lead to multiple stable responses depending
on such conditions. The objective of this work is to
assess the effectiveness of the NES in controlling the
flutter and ensuing limit cycle oscillations of a two-
dimensional aeroelastic system. Particular attention is
placed on its effects on the flutter delay, type of insta-
bility and reduction of the ensuing LCO amplitudes.
This will be achieved by investigating the dependence
of controlled responses on the placement location along
the chord of theNES, itsmass and the initial conditions.
In the following section, we use the energy approach to
derive the governing coupled equations of the airfoil-
NES system. The aerodynamics are modeled using the
nonlinear quasi-steady aerodynamics. In Sect. 3, we
perform a linear analysis to determine the effects of

123



Effectiveness of a nonlinear energy sink 2163

the NES on the onset of flutter. We use, in Sect. 4, the
normal form to analytically determine the nonlinear
response characteristics of the coupled system and the
effects of combining the sink nonlinearity with the sys-
tem’s nonlinearities. In Sect. 5, we present and discuss
the results for different systems and NES parameters.
Finally, we give in Sect. 6 the conclusions and some
remarks.

2 Aeroelastic model

The aeroelastic systemunder investigation is composed
of a rigid wing supported by torsional and flexural
springs, as shown in Fig. 1. This wing is allowed to
move with two degrees of freedom: (a) a vertical trans-
lational motion referred to as plunge and denoted by
h and (b) a clockwise rotational motion referred to as
pitch and denoted by θ . The relative displacement of
theNESmasswith respect to thewing is denoted by y2.
In Fig. 1, the plunge is considered positive in the down-
ward direction and the pitch is assumed positive in the
clockwise direction. The position of the center of grav-
ity, leading and trailing edges, etc. are measured with
respect to the elastic axiswhich is the origin of the trans-
lating frame. The parameters kh(h), kθ (θ) and kn(y2)
are used to respectively represent the stiffness of the
plunge, pitch and NES. The pitch and plunge stiffness
are assumed to have polynomial forms and given by

kh(h) = kh0 + kh1 h + kh2 h
2

kθ (θ) = kθ0 + kθ1 θ + kθ2 θ2

and the NES stiffness is of the form

kn(y2) = kn2 y
2
2

Next, we use the energy approach to derive the equa-
tions of motion governing the coupled wing/NES sys-
tem. The details of the derivation are given in the
“Appendix”. Based on this derivation, the following
set of ordinary differential equations is obtained:

ḧ [m1 + m2] + θ̈ [e m1 + m2 d] cos(α0 + θ) + m2 ÿ2
− e θ̇2 m1 sin(α0 + θ) − m2 d θ̇2 sin(α0 + θ)

+ kh0 h + kh1 h
2 + kh2 h

3 + Ch ḣ = −L (1)

ḧ [m1 e + m2 d] cos(α0 + θ) + ÿ2 m2 d cos(α0 + θ)

+ θ̈
[
m1 e

2 + Icg + m2 d
2
]

+ kθ0 θ + kθ1 θ2 + kθ2 θ3 + Cθ θ̇ = M (2)

m2 ḧ + θ̈ [m2 d cos(α0 + θ)]

+m2 ÿ2 − 2m2 d θ̇2 sin(α0 + θ)

+ kn2 y
3
2 + Cy2 ẏ2 = 0 (3)

These equations were derived assuming that y2 is
computed from the mid thickness of the airfoil. How-
ever, if we assume that y2 is computed from a fixed
point (i.e. the origin of the frame), the following equa-
tions are obtained

m1ḧ + eθ̈m1 cos (θ) + kh0h + kh1h
2 + kh2h

3

− kn (−y2 − d sin θ + h)3

+Chḣ − Cy2

(
ẏ2 + dθ̇ cos θ − ḣ

) = −L (4)(
Icg + m1e

2
)

θ̈ + m1eḧ cos (θ)

+m2d
2θ̈ + kθ0θ + kθ1θ

2 + kθ2θ
3

− knd cos θ (−y2 − d sin θ + h)3 + Cθ θ̇

+Cy2d cos θ
(
ẏ2 + dθ̇ cos θ − ḣ

) = M (5)

m2 ÿ2 + kn (y2 + d sin θ − h)3

+Cy2

(
ẏ2 + dθ̇ cos θ − ḣ

) = 0 (6)

When non-dimensionalized, these equations yield:

h
′′ + e∗θ ′′

cos (θ) + σ 2

V 2

(
h + ηh1h

2 + ηh2h
3
)

+ η
σ 2

V 2

(−y2 − d∗ sin θ + h
)3 + C1

V
h

′

+Cy2
σ

V

(
y

′
2 + d∗θ ′

cos θ − h
′) = −L (7)

r2θ
′′ + e∗ cos (θ) h

′′ + εd∗2θ ′′

+ r2

V 2

(
θ + ηθ

1θ
2 + ηθ

2θ
3
)

− η
σ 2

V 2 d
∗ cos θ (−y2 − d sin θ + h)3

C2

V
θ

′

+Cy2
σ

V
d∗ cos θ

(
y

′
2 + d∗θ ′

cos θ − h
′) = M (8)

εy
′′
2 + η

σ 2

V 2

(
y2 + d∗ sin θ − h

)3

+Cy2
σ

V

(
y

′
2 + d∗θ ′

cos θ − h
′) = 0 (9)

where ε is the mass ratio of the NES relative to the
total mass of the system, σ is the frequency ratio, V is
the reduced velocity, d is the nondimensional location
of the NES with respect to the elastic axis, η is the
nondimensional stiffness associated with the NES, e∗
is the eccentricity, ηhi=1,2 are the quadratic and cubic

plunging stiffness, ηθ
i=1,2 are the quadratic and cubic
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Fig. 1 Schematic of the airfoil-NES system

pitching stiffness, L is the nondimensional lift and M
is the nondimensional moment.

Figure 2 shows a comparison of the amplitudes of
the limit cycle oscillations obtained using themodels of
Lee et al. [1] and Guo et al. [5] and the current model
for an NES mass ratio of 5%. The observed differ-
ences in the amplitude values are due to the different
assumptions made regarding the representation of the
aerodynamic forces and moments. In the current work,
we use a nonlinear quasi-steady representation. Lee et
al. used a linear quasi-steady aerodynamicmodel while
Guo et al used the aerodynamic formulation of Fung
et al. [6]. This difference along with the difference in
the approximations of the cos θ and sin θ terms and the
solution approach yield the observed differences in the
LCO amplitudes. Still, the common observation from
the three models is that the effect of the NES on delay-
ing flutter is negligible.

In the rest of the work, we make use of Eqs. (1),
(2) and (3), assume zero preset angle of attack α0 (i.e.
α0 = 0) and a small pitch angle (θ ) to obtain

ḧ [m1 + m2] + θ̈

(
1 − θ2

2

)
[e m1 + m2 d]

+m2 ÿ2 − e θ̇2 m1 θ − m2 d θ̇2 θ + kh0 h + kh1 h
2

+kh2 h
3 + Ch ḣ = −L

(10)

ḧ

(
1 − θ2

2

)
[m1 e + m2 d] + ÿ2 m2 d

(
1 − θ2

2

)

+ θ̈
[
m1 e

2 + Icg + m2 d
2
]

+ kθ0 θ + kθ1 θ2 + kθ2 θ3 + Cθ θ̇ = M (11)

m2 ḧ + θ̈

(
1 − θ2

2

)
[m2 d] + m2 ÿ2 − 2m2 d θ̇2 θ

+ kn2 y
3
2 + Cy2 ẏ2 = 0 (12)

To model the limit cycle oscillations, one needs to
account for the aerodynamic nonlinearities resulting
from flow separation, which depends on the effective
angle of attack. For accurate evaluation of the non-
linear effects, one would need to solve the Navier-
Stokes equations and couple them with the equa-
tions of motion of the nonlinear energy sink and
airfoil section. Still, such a high-fidelity approach
would need to be validated and is computationally
expensive. More importantly, it would be impossi-
ble to pinpoint underlying physics from such sim-
ulations that have a large number of degrees of
freedom. As such, we opted for using a reduced-
order model of the aerodynamic loads that would
allow for the evaluation of the underlying stabil-
ity and effects of different parameters of the NES,
which is the objective of this work. Reduced-order
models have their own shortcomings. For instance,
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(a) (b)

Fig. 2 Comparison of the results of Lee et al. [1] (−o−), Guo et al. [5] (− ∗ −) and the current model (− + −) for the a plunge and b
pitch response

unsteady aerodynamic models are mostly linear and
are, thus, limited to small angles of attack, which
may limit their applicability to the problem consid-
ered in this study. As such, we model the aero-
dynamic loads by a nonlinear quasi-steady approxi-
mation [7,8], where the lift and moment are given
by:

L = ρ U 2 b Clα

(
αeff − cs α3

eff

)

M = ρ U 2 b2 Cmα

(
αeff − cs α3

eff

) (13)

where cs is the nonlinear aerodynamic coefficient,
Clα = 2π is the lift coefficient, Cmα = ( 1

2 + a
)
Clα

is the moment coefficient, and αeff = θ + ḣ
U +( 1

2 − a
) b

U θ̇ is the effective angle of attack.

3 Linear analysis

To study the effects of the NES parameters on the onset
of flutter, we eliminate all nonlinear terms of the equa-
tions, which yields

Mmat︷ ︸︸ ︷⎛
⎝

m1 + m2 m1 e + m2 d m2
m1 e + m2 d m1 e

2 + Icg + m2 d
2 m2 d

m2 m2 d m2

⎞
⎠

⎛
⎝

ḧ
θ̈

ÿ2

⎞
⎠

+

Kmat︷ ︸︸ ︷⎛
⎝
kh0 0 0
0 kθ0 0
0 0 0

⎞
⎠

⎛
⎝

h
θ

y2

⎞
⎠

+
⎛
⎝
Ch 0 0
0 Cθ 0
0 0 Cy2

⎞
⎠

︸ ︷︷ ︸
Cmat

⎛
⎝

ḣ
θ̇

ẏ2

⎞
⎠ =

⎛
⎝
0 ρU2bClα 0
0 ρU2b2Cmα 0
0 0 0

⎞
⎠

︸ ︷︷ ︸
Ka
mat

⎛
⎝

h
θ

y2

⎞
⎠

+
⎛
⎝

ρUbClα ρUb2Clα ( 12 − a) 0
ρUb2Cmα ρUb3Cmα ( 12 − a) 0

0 0 0

⎞
⎠

︸ ︷︷ ︸
Ca
mat

⎛
⎝

ḣ
θ̇

ẏ2

⎞
⎠ (14)

Using the state variable

Y = (
h θ y2 ḣ θ̇ ẏ2

)T
(15)

we rewrite Eq. (14) as

Ẏ = B(U ) Y (16)

where

B(U ) =(
03×3 I3×3

−M−1
mat × (Kmat − Ka

mat ) −M−1
mat × (Cmat − Ca

mat )

)

(17)

Figure 3 shows the variations of the real and imag-
inary parts of the eigenvalues of the aeroelastic sys-
tem, having the parameters presented in Table 1, as the
freestream velocityU is increased. The plot shows that
the flutter speed is 18.16 m

s .
To investigate further the behavior of the system

when the NES is attached, we conduct various sim-
ulations. Figures 4a–c, show the effects of the mass
m2 and location of the NES relative to the elastic axis
of the airfoil, as defined by the parameter d in semi-
chords on the flutter speed, for damping coefficients
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Fig. 3 Variation of the eigenvalues of the aeroelastic system for
U ∈ [0, 30m

s ]

Table 1 Numerical parameters of the aeroelastic system

Considered values Unit

m1 2.049 kg

ρ 1.225 kg
m3

b 0.135 m

Ie 0.0558 kgm2

kθ0 6.833 N

kh0 2844.4 N
m

kθ1 0 N

kh1 0 N
m2

Cθ 0.036 Ns
m

Ch 27.43 Ns
m

a −0.6847

xθ 0.0447

Cy2 = 0.01, 0.1 and 1 Ns
m , respectively. It is noted that

all of these parameters affect the onset of the flutter.
Although increasing the mass causes a small delay in
the flutter speed when the NES is placed in front of
the elastic axis, the increased mass actually causes the
flutter to take place at a lower speed when the NES
is placed behind the elastic axis. However, a general
observation is that the impact of the NES on the flutter
speed is negligible.

4 Nonlinear analysis: normal form of the Hopf
bifurcation

Todetermine the effects of the different nonlinear terms
on the type of instability, the energy exchange between
the wing and the NES and the amplitude of the limit
cycle oscillations, we derive the normal form of the
Hopf bifurcation [9] of the coupled airfoil-NES system
near Uf . For this purpose, we add a perturbation term
ε2 σU Uf to Uf and seek a first order solution of the
form:

X = ε X1 + ε2 X2 + ε3 X3 (18)

where σU is a variable small positive number and X
stands for any of the outputs of the system (i.e. X = h,θ
or y2). We also rewrite the time derivative as:

d

dt
= ∂

∂τ0
+ ε2

∂

∂τ2
= D0 + ε2 D2 (19)

where τn = εn t .
Next, we introduce the matrix F whose columns are

the eigenvectors of B(Uf ), the corresponding eigen-
values are ± j ω1 − μ1, ± j ω2, −μ2 and 0. Then, we
define the vector V such that Y = F V. Under these
assumptions, and using the state variable Y defined in
Eq. (15), Eqs. (10), (11), (12) and (13) lead to a set
of three nonlinear coupled ordinary differential equa-
tions defined by the order of ε, namely ε, ε2 and ε3 and
written as:

Order (ε)

D0 V1 = JU V1 (20)

Order (ε2)

D0 V2 = JU V2 + Qε2(V1, V1) (21)

Order (ε3)

D0 V3 = −D2 V1 + JU V3+σU R V1+Ca(V1, V1, V1)

+ Cb(D0 V1, V1, V1) (22)

where JU=F−1 B(Uf ) F is a diagonal matrix whose
elements are the eigenvalues of B(Uf ) namely :
± j ω1 − μ1, ± j ω2 , −μ2 and 0, R = F−1 B1(Uf ) F .
We note that Vi (2) = Vi (1) and Vi (4) = Vi (3) (where
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Fig. 4 Effect of the mass ratio m2
m1

, 1%(-*-), 3%(-+-), 5%(-o-) and location of the NES on the flutter speed of the airfoil-NES system
for a Cy2 = 0.01, b Cy2 = 0.1 and c Cy2 = 1

i = 1, 2, 3 and Vi ( j) is the j th component of the vec-
tor Vi ); the homogenous solution of Vi (1) and Vi (5)
are decaying solutions. Consequently, Eqs. (20), (21)
and (22) are simplified to

Order (ε)

D0 v13 − j ω2 v13 = 0

D0 v16 = 0
(23)

Order (ε2)

D0 v23 − j ω2 v23 = Q̂ε2

3 (v13, v13)

D0 v26 = Q̂ε2

6 (v16, v16)

(24)

Order (ε3)

D0 v33 − j ω2 v33 = −D2 v13 + σU R v1

+ Q̂ε3

3 (v13, v23) + Ĉa
3 (v13, v13, v13)

+ Ĉb
3 (D0 v13, v13, v13) + cc + NST

D0 v36 = −D2 v16 + σU R v1 + Q̂ε3

6 (v16, v26)

+ Ĉc
6(v16, v16, v16)

+ Ĉd
6 (D0 v16, v16, v16) + cc + NST (25)

where vi j = Vi ( j), Q̂εi

3 (v, v) and ˆCa,b,c,d
3 (v, v, v) are

bilinear and trilinear functions of v, respectively and
where NST stands for nonsecular terms and cc stands
for complex conjugate of the preceding terms in the
equation. The solution of Eq. (23) is given by:

v13(τ0) = G(T2)e
jω2 τ0

v16(τ0) = H(T2)
(26)

where G denotes the complex amplitudes of the pitch
and plunging motions of the airfoil section and H
denotes the amplitude of the NES oscillations. Substi-
tuting Eqs. (26) into (24) and solving for the particular
solution, we obtain:

v23 = e jω2 τ0

∫
e− jω2 x Q̂ε2

3 (v13(x), v13(x)) dx

v26 = Q̂ε2

6 (v16, v16) τ0

(27)

Substituting Eqs. (27) into (25) and removing the secu-
lar terms, the complex-valued normal form of the Hopf
bifurcation is obtained as
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D2 G = ηG + φe G
2 G + γ H2 G (28)

D2 H = κ G G H + λ H3 (29)

The complex coefficient η represents the growth rate
and frequency of the oscillations of the airfoil section.
The effective nonlinearityφe denotes the role of the dif-
ferent system’s nonlinearities in limiting the amplitude
of the motion of the airfoil section. H is a real num-
ber and, as such, λ is directly related to the nonlinear
stiffness of the energy sink. The parameters γ and κ

are related to the energy exchange between the airfoil
section and the nonlinear energy sink.

By letting G(T2) = 1
2 w eiζ(T2) and separating the

real and imaginary parts of Eqs. (28) and (29), we
obtain the following real-valued normal form of the
Hopf bifurcation:

w
′ = ηr w + 1

4
φer w

3 + 1

2
γr H

2 w (30)

ζ
′ = ηi + 1

4
φei w

2 + γi H
2 (31)

H
′ = 1

4
κr w2 H + 1

4
λr H

3 (32)

0 = 1

4
κi w

2 + λi H
2 (33)

where w is the amplitude of oscillations and ζ is the
shifting angle whose time variation is related to the fre-
quency of the oscillations. The signs ofηr andφer deter-
mine the type of bifurcationNayfeh et al. [10]. A super-
critical Hopf bifurcation is obtained for ηr > 0 and
φer > 0 and a subcritical Hopf bifurcation is obtained
for ηr < 0 and φer > 0. The two parameters, γr and
κr are of particular importance to the current prob-
lem because they represent the rate of energy exchange
between the airfoil section and the nonlinear sink. As
expected, both of these parameters would depend on
the nonlinear stiffness of the energy sink with a coeffi-
cient that depends on the mass ratio and the amplitude
of the limit cycle oscillations.

5 Results and discussion

We consider the effects of a nonlinear energy sink on a
wing section having the parameters shown in Table 1.
For this wing the expression of the effective nonlinear-
ity and growth rate without NES are given by

ηr = 0.433987 σU Uf

φer = 0.0000213689 − 0.00657702 cs

− 1.24153 × 10−15 k2h1 − 1.68515 × 10−10 kh2

− 7.14763 × 10−10 kh1 kθ1

− 0.0000171762 k2θ1 + 0.000213956 kθ2 (34)

As explained above, the signs of ηr and φer deter-
mine whether the instability is supercritical or sub-
critical. We note that the cubic pitch nonlinearity
kθ2 contributes to a subcritical Hopf bifurcation since
it contributes to a positive φer. However, the pitch
quadratic nonlinearity, kθ1 , as well as the cubic aero-
dynamic nonlinearity, cs , have a negative contribu-
tion to ηr which lead to a supercritical instabil-
ity.

Next we add a nonlinear energy sink to the airfoil
section. Two different cases of mass ratios, namely, 5
and 3% are considered. For each of these cases, three
cases for the location of the sink along the chord are
considered. These include placing the sink at the elastic
axis, d = 0, ahead of the elastic axis, d = −0.3 b, and
behind the elastic axis, d = 0.3 b. The growth rates of
the amplitudes of the oscillations for these cases are
ηr = 0.267653 × σU U f for d = 0, ηr = 0.272251 ×
σU U f , for d = −0.3 b and ηr = 0.265612 × σU U f ,
for d = 0.3 b.

5.1 Case of 5% mass ratio

The coefficients of the effective nonlinearity of the sys-
tem and the other terms of the normal form as derived
above for an NES mass of 5 % are given by

φer = −0.00157815 − 0.0181067 cs − 7.94452

× 10−12 k2h1 − 1.59542 × 10−7 kh2

− 3.86976 × 10−7 kn2 − 5.2063 × 10−8 kh1 kθ1

− 0.0000218303 k2θ1 + 0.000502663 kθ2

γr = −0.00476769 kn2
κr = −0.000973996 kn2
λr = −2 kn2
κi = 0

λi = 0

(35)

for d = −0.3 b,
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φer = −0.00154919 − 0.0179625 cs − 7.5623

× 10−12 k2h1 − 1.53456 × 10−7 kh2

− 7.11105 × 10−8 kn2 − 5.13344 × 10−8 kh1 kθ1

− 0.0000216527 k2θ1 + 0.000494614 kθ2

γr = −0.00146539 kn2
κr = −0.000582321 kn2
λr = −2 kn2
κi = 0

λi = 0

(36)

for d = 0, and

φer = −0.00154374 − 0.0180555 cs − 7.40378

× 10−12 k2h1 − 1.5157 × 10−7 kh2

− 8.40011 × 10−9 kn2 − 5.13289 × 10−8 kh1 kθ1

− 0.0000216049 k2θ1 + 0.000491564 kθ2

γr = −0.000344654 kn2
κr = −0.000292471 kn2
λr = −2 kn2
κi = 0

λi = 0

(37)

for d = 0.3 b
In all cases, the energy sink is helpful in terms of

contributing toward a supercritical bifurcation. As for
the energy transfer between the airfoil section and the
nonlinear sink, we note that the value of γr is nega-
tive in all cases indicating that the nonlinear energy
sink can reduce the growth rate of the oscillations,
depending on the value of the nonlinear stiffness of
the energy sink and the amplitude of the limit cycle
oscillations and the sink’s oscillations. It is impor-
tant to note here that the sink does not contribute to
decreasing the amplitude of oscillations unless the sys-
tem starts to oscillate. Furthermore, this contribution
is dependent on the amplitude of the NES itself. So, it
does not delay the flutter point. Rather, it can, once
the oscillations of the wing and NES have grown,
reduce the amplitude of the oscillations. On the other
hand, the values of κr and λr are negative which indi-
cates that the amplitude of the NES is decaying at the
same time that it draws energy from the wing. This
decay impacts its effectiveness in continuously draw-

ing energy from the wing to act like a sink. The rea-
son is that once the amplitudes go below a specific
value, the sink stops drawing energy which results
in a recovery of the original amplitudes of the wing
oscillations. So, the wing response exhibits modulated
rather than controlled characteristics as will be shown
below.

5.2 Case of 3% mass ratio

The expression of the effective nonlinearity of the sys-
tem and the other parameters of the normal form when
the NES mass is 3% are

φer = −0.00156868 − 0.0181215 cs − 7.9393

× 10−12 k2h1 − 1.5957 × 10−7 kh2

− 4.60049 × 10−7 kn2 − 5.2163 × 10−8 kh1 kθ1

− 0.0000218307 k2θ1 + 0.000502073 kθ2

γr = −0.0062891 kn2
κr = −0.000877802 kn2
λr = −2 kn2
κi = 0

λi = 0

(38)

for d = −0.3 b,

φer = −0.00155343 − 0.0180097 cs − 7.6002

× 10−12 k2h1 − 1.53984 × 10−7 kh2

− 1.81754 × 10−8 kn2 − 5.15074 × 10−8 kh1 kθ1

− 0.0000217267 k2θ1 + 0.000496234 kθ2

γr = −0.000416306 kn2
κr = −0.000523905 kn2
λr = −2 kn2
κi = 0

λi = 0

(39)

for d = 0, and
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φer = −0.00154457 − 0.0181065 cs − 7.46618

× 10−12 k2h1 − 1.52212 × 10−7 kh2

+ 4.60067×10−8 kn2−5.15131 × 10−8 kh1 kθ1

− 0.0000217138 k2θ1 + 0.000494204 kθ2

γr = 0.00209951 kn2
κr = −0.000262956 kn2
λr = −2 kn2
κi = 0

λi = 0

(40)

for d = 0.3 b
The results of this case, 3%, show similar responses

to those of the 5% case except for the case where the
NES is placed behind the elastic axis. Under these con-
ditions, the NES contributes to a subcritical response
as exhibited by the positive coefficient of kn2 in Eq. 40.
We should also note the positive sign of γr in the same
equation indicating that the energy can not be trans-
ferred to the NES under these conditions.

5.3 Case of the original system exhibiting subcritical
behavior

In this section, we choose the nonlinear parameters
of the system without NES such that a subcritical
Hopf bifurcation is obtained (i.e. kθ1 = 9.97Nm,
kθ2 = 67.69Nm and kh1 = kh2 = 0) We present in
Fig. 5 the bifurcation diagram for the system when the
NES is deactivated. The response is subcritical. which

Table 2 Numerical nonlinear parameters of the NES

Considered values Unit

m2 0.05 × m1 kg

Cy2 0.5 Ns
m

kn2 1.5 × 105 N
m3

cs 0

means that a reduction of the freestream velocity does
not lead to a decay of the amplitudes of oscillations.
This response is dependent on the initial conditions.
In fact, for velocities below flutter and for proper ini-
tial conditions, the system can exhibit large amplitudes
limit cycle oscillations.

Activating the NES, and using the parameters pre-
sented in Table 2 we obtain the results plotted in
Figs. 6a–c and 7a–c for the cases of m2 = 0.03m1

and m2 = 0.05m1 respectively. The results show that
adding the NES changed the subcritical response to a
supercritical one over a small region of velocities near
flutter. Unlike the subcritical response, the supercriti-
cal response is characterized by a progressive increase
in the amplitudes of the LCOs as the freestream veloc-
ity is increased. The main feature of this response is
the recovery, by the airfoil-NES system, of the decay-
ing solution when the freestream velocity is decreased.
On the other hand, the numerical solutions shows that
although the NES changed the type of instability near
the bifurcation point, the system recovered its subcriti-
cal property as the speed was increased slightly beyond
the initial region of supercritical instability. That is
the effect of the NES in changing the type of insta-

(a) (b)

Fig. 5 Bifurcation diagrams of the a plunge and b pitch
responses for the aeroelastic system having the parameters pre-
sented in Table 1 and without NES (kθ1 = 9.967Nm, kθ2 =

67.685Nm,). The continuous lines represent the stable solution,
the dotted line, the unstable solution
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(a) (b)

(c)

Fig. 6 Bifurcation diagrams for a the plunge, b the pitch and
c NES responses, when the NES is activated in the airfoil-
NES system having the parameters presented in Table 1 with
kθ1 = 9.967Nm, kθ2 = 67.685Nm, and kn2 = 150, 000 N

m2 .

The mass of the NES is 3% of the total mass of the wing. The
dots are numerical simulations and the solid line is the normal
form (valid only near bifurcation point)

bility was limited to a small region near the flutter
speed. We should note here that for the NES mass
of m2 = 0.01m1 the type of the Hopf bifurcation
remained subcritical. Therefore, the NES with a low
mass is ineffective. It is also noted that for the NES to
be effective a large value of the nonlinear stiffness kn2
is needed (1.5 × 105).

Figure 8 shows the time series and phase por-
traits of the plunge, pitch and NES responses at a
speed of 18.37m/s. The plots show a periodic response
with one frequency. However, as the speed is slightly
increased to 18.43 m/s, we observe a totally differ-
ent response as shown in Fig. 9. Particularly, as the
pitch and plunge amplitudes increase, the amplitude
of the NES increases, which indicates that the NES
is drawing energy from the motions of the primary
system. However, and as shown in the normal form
analysis presented above, once enough energy is drawn
and the amplitudes of the pitch and plunge oscillations
decrease, the NES does not draw any energy from the
main oscillations, which results in an increase of the
amplitudes of these oscillations of the primary system.

As such, these responses exhibit modulated behaviors
as predicted by the analysis presented in Sect. 5.1. It is
important to note that the coupled systems responses
exhibited different characteristics over the small region
between 18.26 and 18.5m/s.

5.4 Case of the original system exhibiting
supercritical behavior

In this section, we consider the case of an aeroelas-
tic system that exhibits a supercritical Hopf bifurcation
when the NES is deactivated. The consided parameters
are: kθ1 = 90Nm and kθ2 = kh2 = kh1 = 0. Figure 10
shows the bifurcation diagram for the system without
NES. The plots in Figs. 11 and 12 show the bifurcation
diagram when the NES is activated for the cases of 3
and 5% respectively. A comparison of the plots in the
three figures as presented in Fig. 13 shows that the NES
can reduce the amplitude of the wing oscillations as the
freestream velocity is increased. However, this reduc-
tion is effective over a very small region of incrased
freestream velocity. Beyond this limited region, the
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(a) (b)

(c)

Fig. 7 Bifurcation diagrams for a the plunge, b the pitch and
c NES responses, when the NES is activated in the airfoil-
NES system having the parameters presented in Table 1 with
kθ1 = 9.967Nm, kθ2 = 67.685Nm, and kn2 = 150000 N

m2 . The

mass of the NES is 5% of the total mass of the wing. The dots
are numerical simulations and the solid line is the normal form
(valid only near bifurcation point)

(a) (b) (c)

(d) (e) (f)

Fig. 8 Phase portrait and time series for the system with NES mass of 5% when U = 18.3861m/s, d = −0.3 × b and system
parameters of Fig. 7
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(a) (b) (c)

(d) (e) (f)

Fig. 9 Phase portrait and time series for the system with NES mass of 5% when U = 18.4261m/s, d = −0.3 × b and system
parameters of Fig. 7

(a) (b)

Fig. 10 Bifurcation diagrams for a the plunge, b the pitch responses, when the NES is deactivated. The airfoil-NES system parameters
are presented in Table 1 with kθ1 = 90Nm

wing oscillations recover their original amplitude val-
ues indicating the limited region of effectiveness of the
NES in terms of reducing the LCO amplitudes of the
original system.

6 Conclusions

We investigated the effectiveness of using a nonlin-
ear energy sink to passively control the response of
a pitching–plunging airfoil section. We used the nor-
mal form to quantify the contribution of the sink to
the system’s nonlinear response. We used numerical
integration to determine the system’s response over a
wide range of operating conditions. The results show

that depending on its mass and location along the air-
foil, the nonlinear sink can be more effective in terms
of changing a subcritical bifurcation to a supercritical
one. However, the change is very limited in that the sys-
tem recovers the subcritical response as the freestream
velocity is increased. For the case where the original
system exhibits supercritical behavior the results show
that the NES can reduce the pitch and plunge ampli-
tudes. However, this reduction is limited to a very small
region of freestream velocities above the flutter speed.
The results of the normal form show that the nonlinear
sink has a decaying characteristics and as such cannot
maintain the energy it draws from the airfoil section.
This results in modulated responses of both the airfoil
section and nonlinear sink.
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(a) (b)

(c)

Fig. 11 Bifurcation diagrams for a the plunge, b the pitch and c NES responses, when the NES is activated. The airfoil-NES system
parameters are presented in Table 1 with NES mass of 3%

(a) (b)

(c)

Fig. 12 Bifurcation diagrams for a the plunge, b the pitch and c NES responses, when the NES is activated. The airfoil-NES system
parameters are presented in Table 1 with NES mass of 5%
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(a) (b)

Fig. 13 Superposition of bifurcation diagrams for a the plunge
and b the pitch, when the NES is de/activated in the airfoil-
NES system having the parameters presented in Table 1 with

kθ1 = 90, kθ2 = 0, and kn2 = 150, 000. The mass of the NES is
0% (+), 3 % (∗) and 5% (o) of the total mass of the wing

Appendix: Derivation of the equations of motion

Position of the center of gravity of the airfoil:

R1 = hz + ei

where i = cos (α0 + θ) x + sin (α0 + θ) z

R1 = [h + e sin (α0 + θ)) z + e cos (α0 + θ) x
(41)

The velocity then given by

V1 = [
ḣ + eθ̇ cos (α0 + θ)

]
z − eθ̇ sin (α0 + θ) x

(42)

which yields

V 2
1 = [

ḣ + eθ̇ cos (α0 + θ)
]2 + e2θ̇2 sin2 (α0 + θ)

V 2
1 = ḣ2 + e2θ̇2 cos2 (α0 + θ) + 2eḣθ̇ cos (α0 + θ)

+ e2θ̇2 sin2 (α0 + θ)

V 2
1 = ḣ2 + e2θ̇2 + 2eḣθ̇ cos (α0 + θ)

The position of the NES mass is given by

R2 = hz + di + y2z

R2 = hz + d cos (α0 + θ) x

+ d sin (α0 + θ) z + y2z

R2 = [h + d sin (α0 + θ) + y2] z

+ d cos (α0 + θ) x (43)

its velocity is given by

V2 = [
ḣ + dθ̇ cos (α0 + θ) + ẏ2

]
z

− dθ̇ sin (α0 + θ) x (44)

which yields

V 2
2 = (

ḣ + dθ̇ cos (α0 + θ) + ẏ2
)2

+ d2θ̇2 sin2 (α0 + θ)

V 2
2 = ḣ2 + d2θ̇2 cos2 (α0 + θ) + ẏ22 + 2dθ̇ ḣ

cos (α0 + θ) + 2ḣ ẏ2 + 2dθ̇ cos (α0 + θ) ẏ2

+ d2θ̇2 sin2 (α0 + θ)

V 2
2 = ḣ2 + d2θ̇2 + ẏ22 + 2dθ̇ ḣ cos (α0 + θ)

+2ḣ ẏ2 + 2dθ̇ cos (α0 + θ) ẏ2

The distance separatingm2 and the elastic axis is given
by

r2 = d2 + y22 + 2dy2 sin (α0 + θ)

The kinetic energy of the system is

T = 1

2
m1V

2
1 + 1

2
m2V

2
2 + 1

2
Icgθ̇

2

The potential energy of the system
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PE = 1

2
kh h2 + 1

2
kθ θ

2 + 1

2
kn y

2
2

Rayleigh’s friction function

R = 1

2
Ch ḣ2 + 1

2
Cθ θ̇

2 + 1

2
Cy2 y

2
2

The Lagrange’s function

L = T − V

= 1

2
m1

[
ḣ2 + e2θ̇2 + 2eḣθ̇ cos (α0 + θ)

]

+ 1

2
m2

[
ḣ2 + d2θ̇2 + ẏ22 + 2dθ̇ ḣ cos (α0 + θ)

+ 2ḣ ẏ2 + 2dθ̇ ẏ2 cos (α0 + θ)

]

+ 1

2
Icgθ̇

2 − 1

2
khh

2 − 1

2
kθ θ

2 − 1

2
kn y

2
2

∂L

∂ ḣ
= 1

2
m1

[
2ḣ + 2eθ̇ cos (α0 + θ)

]

+ 1

2
m2

[
2ḣ + 2dθ̇ cos (α0 + θ) + 2 ẏ2

]

thus:

∂L

∂ ḣ
= m1ḣ + eθ̇m1 cos (α0 + θ) + m2ḣ

+m2dθ̇ cos (α0 + θ) + m2 ẏ2

∂L

∂θ̇
=1

2
m1

[
2e2θ̇ + 2eḣ cos (α0 + θ)

]

+ 1

2
m2

[
2d2θ̇ + 2dḣ cos (α0 + θ)

+ 2d ẏ2 cos (α0 + θ)
] + Icgθ̇

∂L

∂θ̇
= m1e2θ̇ + m1eḣ cos (α0 + θ)

+m2d2θ̇ + m2d ḣ cos (α0 + θ)

+m2d ẏ2 cos (α0 + θ) + Icgθ̇

∂L

∂ ẏ2
= 1

2
m2

[
2 ẏ2 + 2ḣ + 2dθ̇ cos (α0 + θ)

]

∂L

∂ ẏ2
= m2 ẏ2 + m2ḣ + m2dθ̇ cos (α0 + θ)

∂L

∂h
= −khh

∂L

∂θ
= 1

2
m1

[ − 2eḣθ̇ sin (α0 + θ)
]

+ 1

2
m2

[ − 2dθ̇ ḣ sin (α0 + θ)

− 2dθ̇ ẏ2 sin (α0 + θ)
] − kθ θ

∂L

∂θ
= −m1eḣθ̇ sin (α0 + θ) − m2dθ̇ ḣ sin (α0 + θ)

− m2dθ̇ ẏ2 sin (α0 + θ) − kθ θ

∂L

∂y2
= −kny2

∂L

∂y2
= −kn y2

d

dt

(
∂L

∂ ḣ

)
= m1ḧ + eθ̈m1 cos (α0 + θ) − eθ̇2m1

sin (α0+θ)+m2ḧ + m2d θ̈ cos (α0+θ)

− m2d θ̇
2 sin (α0 + θ) + m2 ÿ2

d

dt

(
∂L

∂θ̇

)
= m1e

2θ̈ + m1eḣ cos (α0 + θ)

− m1eḣθ̇ sin (α0 + θ) + m2
2d θ̈

+ m2d ḧ cos (α0 + θ) − m2d ḣθ̇

sin (α0 + θ) + m2d ÿ2 cos (α0 + θ)

− m2d ẏ2θ̇ sin (α0 + θ) + Icgθ̈
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d

dt

(
∂L

∂ ẏ2

)
= m2 ÿ2 + m2ḧ + m2d θ̈

cos (α0 + θ) − m2dθ̇
2 sin (α0 + θ)

The equations of motion of the aeroelastic system are:

m1ḧ + eθ̈m1 cos (α0 + θ) − eθ̇2m1 sin (α0 + θ)

+ m2ḧ + m2d θ̈ cos (α0 + θ)

− m2d θ̇
2 sin (α0 + θ) + m2 ÿ2 + khh + Chḣ = −L

(45)

m1e
2θ̈ + m1eḧ cos (α0 + θ) − m1eḣθ̇ sin (α0 + θ)

+ m2
2d θ̈ + m2d ḧ cos (α0 + θ) − m2d ḣθ̇ sin (α0 + θ)

+ m2d ÿ2 cos (α0 + θ) − m2d ẏ2θ̇ sin (α0 + θ)

+ Icgθ̈ + m1eḣθ̇ sin (α0 + θ)

+ m2d θ̇ ḣ sin (α0 + θ) + m2d θ̇ ẏ2 sin (α0 + θ)

+ kθ θ + Cθ θ̇ = M

m2 ÿ2 + m2ḧ + m2d θ̈ cos (α0 + θ)

− 2m2d θ̇
2 sin (α0+θ)−m2y2θ̇

2 + kn y2 + Cy2 ẏ2 = 0.

which can be written as:

m1ḧ + eθ̈m1 cos (α0 + θ) − eθ̇2m1 sin (α0 + θ) + m2ḧ

+ m2d θ̈ cos (α0 + θ) − m2d θ̇
2 sin (α0 + θ) + m2 ÿ2

+ kh0h + kh1h
2 + kh2h

3 + Chḣ = −L

m1e
2θ̈ + m1eḧ cos (α0 + θ) + m2

2d θ̈m2d ḧ cos (α0 + θ)

+ m2d ÿ2 cos (α0 + θ) + Icgθ̈ + kθ0θ + kθ1θ
2

+ kθ2θ
3 + Cθ θ̇ = M

m2 ÿ2 + m2ḧ + m2d θ̈ cos (α0 + θ) − 2m2d θ̇
2 sin (α0 + θ)

+ kn0 y2 + kn1 y
2
2 + kn2 y

3
2 + Cy2 ẏ2 = 0.
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