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Abstract The Bouc–Wen model was used to inves-
tigate nonlinear dynamical behavior of a wire-rope
isolator and an asymmetric Stockbridge damper. The
experimental vibration signals were acquired through
accelerometers placed along the sample. Thewire-rope
isolator system was excited using and electromechani-
cal shaker with constant values of acceleration, and the
Stockbridge damper was excited using a cam machine
with different profiles. The numeric and experimental
datawere approximatedusingparticle swarmoptimiza-
tion method. The agreement between numerical and
experimental data show that the model of Bouc–Wen
is well suited for dynamic analysis of such systems.
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1 Introduction

A recent survey of the hysteresis Bouc–Wen Model
[5,31] can be found in [16]. The nonlinear behavior
of the systems with hysteresis are encountered in a
wide variety of processes in which the input–output
dynamic relations between variables involve memory
effects. Examples are found in biology, optics, elec-
tronics, ferroelectricity, magnetism, mechanics, struc-
tures, among other areas. In mechanical and structural
systems, hysteresis appears as a natural mechanism of
materials to supply restoring forces against movements
and dissipate energy. In these systems, hysteresis refers
to the memory nature of inelastic behavior where the
restoring force depends not only on the instantaneous
deformation, but also on the history of the deformation.
The detailed modeling of these systems using the laws
of Physics is an arduous task, and the obtained models
are often too complex to be used in practical applica-
tions involving characterization of systems, identifica-
tion or control [16].

The Bouc–Wen model for smooth hysteresis has
received an increasing interest in the last few years due
to the ease of its numerical implementation and its abil-
ity to represent a wide range of hysteresis loop shapes.
This model consists of a first-order nonlinear differ-
ential equation that contains some parameters that can
be chosen, using identification procedures, to approxi-
mate the behavior of given physical hysteretic system
[13–16].
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Fig. 1 Wire ropes:
a Helical isolator [2].
b Polycal isolator [2]

Fig. 2 Stockbridge damper.
a Front view and b top view

Efficient formulations for the response and dissi-
pated energy of Bouc–Wen hysteretic model are shown
in [6–11,13–16,18–20,22,24,26,27,32].

Wire cable vibration isolators (Fig. 1) are typical
nonlinear hysteretic damping devices, which have the
advantages of large resonant damping, good capabili-
ties in resisting heat and corrosion, etc.

Under large structural deformation, they exhibit
softening or soft-hardening stiffness property. There-
fore, wire cable vibration isolators are able to absorb
efficiently impact energy and provide broadband vibra-
tion isolation. In the past decade, theyhavebeen applied
widely in the engineering fields such as aerospace, ship,
civil engineering and automobile. As the damping is
exerted by sliding, rubbing and extruding among wire
strands, the hysteretic properties of restoring force-

deformation for wire cable isolators are similar with
that of stress–strain for elastoplastic material. It is
important for response prediction and design improve-
ment of isolation systems to identify accurately the
hysteretic restoring forces of wire cable vibration isola-
tors [12]. Several applications of this vibration isolation
mechanism can be found at [1,2,6–8,12,25,29,30].

The Stockbridge damper [28] (Fig. 2) is presently
the most common type of transmission line damper. In
general, the absorber consists of two weights attached
to the end of stranded cables, which are known asmes-
senger wires.

In Stockbridge dampers of transmission line, mech-
anical energy is dissipated in wire cables (damper or
messenger cables). The damping mechanism is due to
statical hysteresis resulting from Coulomb (dry) fric-
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Wire-rope isolator and Stockbridge damper 503

Fig. 3 Prototype wire-rope
isolator system and
geometric data

tion between the individual wires of the cable undergo-
ing bending deformation. In order to test this dynamical
model of Stockbridge damper, the typical experimental
impedance curves are compared with numeric results.
This procedure is vastly used considering the Mas-
ing model for modeling the nonlinear damping behav-
ior of the damper cable of the Stockbridge damper
[3]. Nonlinear mathematical models for simulating the
dynamic behavior of Stockbridge damper can be found
in [3,4,23].

PSO is a population-based stochastic optimization
technique developed by Eberhart and Kennedy in [17],
inspired by social behavior of bird flocking or fish
schooling. Sometimes it is related to the Evolutionary
Computation (EC) techniques, basically with Genetic
Algorithms (GA) and Evolutionary Strategies (ES), but
there are significant differences with those techniques.
The PSO algorithm is population-based: a set of poten-
tial solutions evolves to approach a convenient solution
(or set of solutions) for a problem. Being an optimiza-
tion method, the aim is finding the global optimum of
a real-valued function (fitness function) defined in a
given space (search space).

In thiswork, the physical parameters used in aBouc–
Wen model are adjusted using PSO method through
the comparison between numerical and experimental
results for two different systems: wire-rope isolator and
Stockbridge damper. The numerical model of a Stock-
bridge damper is obtained using the Finite Element
Method. The experimental results are obtained using
an electromechanical shaker (with constant accelera-
tion) or a cammachine with five different eccentricities
(constant displacement). The experimental results are

compared with nonlinear numerical results. The non-
linear system contains nonlinear stiffness and damping
elements.

2 Mathematical models

2.1 Wire-rope isolator

TheBouc–Wenmodel has beenwidely used to describe
nonlinear hysteretic systems. The differential equation
model is phenomenological and reflects local memory-
dependent hysteresis. For a given time history of the
displacement, the hysteretic restoring force canbe com-
pletely specified by this analytical model. The left side
of Fig. 3 shows the built prototype and in the right side
the geometric dimensions (in mm) .The wire-rope pro-
totype consists of four identical steel bases withmasses
of 1.3 kg, four steel cables of 0.5 in. diameter and four
stainless steel screws. The prototype was built without
taking into account specific technical considerations.
They were simply used components available on the
market (cable) and screws.

Figure 4 shows the equivalent sdof (single degree-
of-freedom) system used by [21]. The system con-
sists of a wire-rope isolator with restoring force F(t)
and a mass M on top of the isolator. The excitation
u(t) is applied to the base of the isolator through an
electromechanical shaker. Hence, the wire-rope deflec-
tion d(t) is determined by the difference between posi-
tion of the mass x(t) and base displacement u(t), that
is d(t) = x(t) − u(t). The equation of motion is:
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Fig. 4 Single degree-of-freedom model

Mẍ(t) = −F(d, ḋ, z, t) + Mg (1)

The differential motion equation with three state
variables: x1 = x ;x2 = ẋ and x3 = z, is:

⎛
⎝
ẋ
ẍ
ż

⎞
⎠=

⎛
⎜⎝
x2
1
M

[
−bcd

[
x3 + k1d + k2d

2sign(d) + k3d
3
]]

ḋ
[
α − [

γ + βsign(ḋ)sign(x3)
] |x3|n
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⎞
⎟⎠

(2)

The term bcd is used as a sort of shaping function,
which also assures the hardening overlapping loading
envelope, in this case, b and c are parameter to be
adjusted and d is the relative displacement between x(t)
and u(t).

In this casewasused theBouc–Wenmodel expressed
by

ż = α ẋ(t) − β |ẋ(t)| z(t) |z(t)|n−1 − γ ẋ(t) |z(t)|n
(3)

where x(t) is the displacement and z(t) is the hysteretic
force; b, c, α, β, γ , k1, k2, k3 and n are model parame-
ters. The slope of the hysteresis loops governed by the
Bouc–Wen model can be derived as

dz

dx
= α − [

γ + βsign(ẋ)sign(z)
] |z(t)|n (4)

2.2 Stockbridge damper

To obtain the mathematical model of the Stockbridge
damper system [3] is necessary to analyze separately
the components showed in Fig. 5.

The messenger wire is modeled by the Euler–
Bernoulli beam finite element. In this element, the
transversal displacement is interpolated using the well-
known Hermitian interpolation polynomials with C1

continuity, and the degrees of freedom (d f ) in each
node are the transversal displacement and the rotation,
{v,θ}. The dynamic equation for this element can be
written as:
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ÿ0 (5)

whereρA is the linear density of the cable, L is thefinite
element length, E I is the cable flexural (bending) stiff-
ness, and ÿ0 is the base acceleration (the acceleration
imposed by the cam machine).

The suspended masses of the Stockbridge damper
aremodeledwith a rigid body planemotion hypothesis,
and the admissible displacements are shown in Fig. 5.

After assembling all the elements of the messen-
ger wire, each weight of the Stockbridge damper con-
tributes to two terms of the dynamical equilibrium.
The first contribution is in the mass matrix (inertia
force)

[MS] {q̈n} =
[
m mx̄
mx̄ In

]{
v̈n
θ̈n

}
(6)

and another parcel is in the vector force due to base
acceleration

{ fs} = −
{
m
mx̄

}
ÿ0 (7)
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Fig. 5 References and
admissible displacements

wherem is the mass of the Stockbridge damper weight,
x̄ is the center of mass coordinate and In is the inertia
moment with the reference fixed in node n.

The Stockbridge damper dynamical equilibrium
equation is obtained after assembling all finite ele-
ments, and it can be conventionally written as

[M] {q̈} + [K ] {q} = { f0} ÿ0(t) (8)

where [M] and [K ] are the mass and stiffness matrices,
respectively, and { f0} is the force vector. The vector
components {q} are the finite element node displace-
ments and rotations, ν and θ , and ÿ0 is the acceleration
in node 1 (base shaker acceleration).

In order to take into consideration the cable hys-
teretic damping in Eq. (8), it is enough to consider the
flexural stiffness as:

E I = E I0(1 + ηi) (9)

where η is the hysteretic damping constant and i =√−1.
The nonlinear systemmodel can be obtained includ-

ing the cubic stiffness matrix in (8):

[M] {q̈} + [K1] {q} + [K3] {q3} = { f0} ÿ0(t) (10)

To simplify the mathematical model and the com-
putational simulations, it was considered only the main
diagonal of the nonlinear stiffness matrix [K3].

3 Results

3.1 Wire-rope isolator

The experimental vibration data of wire-rope isola-
tor were obtained taking account different base exci-
tation levels of constant acceleration varying from 0.1
to 1m/s2 with increment of 0.1 m/s2(step sine). The
electromechanical shaker was used in the step sine test
with the frequency range varied from 8 to 25Hzwith an
increment of 0.12 Hz. Two accelerometers were used
to collect the vibration data. One accelerometer was
placed at the base excitation point (input signal) and
the second accelerometer at the other base. Computa-
tional routines were developed in MATLAB for sim-
ulation of differential equations. The numeric signals
were obtained in the time domain and were consid-
ered only the stationary signals to obtain the difference
dmax − dmin (without initial transitory part). Figure 6
shows the experimental curves of acceleration for ten
steps with constant values of the base acceleration.

The frequency–response curves show clearly the
nonlinear behavior of the wire-rope isolator. The har-
monic resonance frequency shifts to the left for increas-
ing amplitude of excitation, indicating softening stiff-
ness. The isolator was tested up to very large defor-
mations. It was observed that the isolator exhibited
asymmetric hysteresis loops, and the asymmetry was
enhanced with an increase in displacement amplitude.
Both the effective stiffness and the energy dissipation of
the wire-rope isolator decrease when the amplitude of
excitation increases [21]. It is possible to notice that the
peak value varies according the amplitude of the base
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Fig. 6 Acceleration
amplitude (experimental
data). Each curve represents
one level of base
acceleration varying from
0.1 to 1 m/s2 with increment
of 0.1 m/s2. The amplitude
peaks increase with
increasing acceleration level
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Fig. 7 Acceleration
amplitude (experimental
data—solid line; adjusted
data—solid line with symbol
asterisk)
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acceleration. For base acceleration of 0.1m/s2, the peak
value is obtained in 14.2 Hz and for base acceleration
of 1.0 m/s2 the peak value is obtained in 10.32 Hz.

Satisfactory results were obtained using the PSO
method to make the approximation of the numeric and
experimental values. The PSO parameters used in this
application are: particles number = 20; iterations =
150; acceleration constants= [2.1; 2.1]; inertiaweights
= [0.9;0.6];. The global objective function is defined
by:

f =
nc∑
j=1

( np∑
i=1

∣∣Aexp . − AFEM
∣∣
)

(11)

where Aexp is the experimental acceleration amplitude;
AFEM is the same numeric acceleration amplitude esti-
mated using PSO; and np is the number of points (nor-
mally np varies from 50 to 100 points around the peak
values of the curves); nc is the number of experimental
curves (in this case nc = 10).
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Fig. 8 Objective function
value
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Table 1 Optimized parameters of the Bouc–Wen model

k1 (N/m) b (–) c (m−1) α (N/m) β (N1−n /m) γ (N1−n /m) n (–) k3 (N/m3)

6781.8 2.523 1863.45 546.52 1083.25 −27,311.31 0.0062 2.152 × 1010

Figure 7 shows the adjusted numeric curves for three
values of base acceleration of 0.1, 0.5 and 1 m/s2 and
the corresponding experimental curves. Figure 8 shows
the variation of the objective function. It can be noted
that the values of experimental and numeric curves
have good agreement. The great differences occur for
low and high values of base acceleration. The objective
function rapidly converges to the final value. This fact
is due to previously adjustment of the initial values of
the optimized parameters showed in Table 1.

Figure 9 shows the adjusted numeric curves of accel-
eration for ten steps with constant values of the base
acceleration. In Table 1 are shown the optimized para-
meters using the Bouc–Wen model. The k2 parameter
was neglected in all analysis. It is clear in Fig. 7 and
comparing the curves of Figs. 6 and 9 that the curves
obtained for the larger excitation levels exhibit jump
that is probably due to an unstable behavior. The exper-
imental curves do not show jumps. The experimental
response is more damped with respect to numerical
identification. This fact may be related with the signal
acquisition system that failed to capture these varia-
tions (jumps).

Figure 10 shows the restoring force F(d, ḋ, z, t)
presents in the right side of Eq. (1) for three values
of base acceleration of 0.1, 0.5 and 1 m/s2 with iden-
tified parameters of Table 1 at the displacement ampli-
tudes corresponding to maximum resonance response
of Fig. 7. The frequencies used are 10.0, 12.04 and
13.86 Hz.

3.2 Stockbridge damper

Figure 11 [3] shows the schematic representation of
the machine cam used in the experimental testing of
the Stockbridge damper with controlled oscillation
(displacement). The experimental data are obtained
through three accelerometers placed in the half sam-
ple. One accelerometer was placed in the center (A2)
and another at the end of the messenger wire (A3). A
third accelerometer (reference) was placed on the con-
necting rod (A1).

Figure 12 shows the cam machine with Stockbridge
damper coupled and two accelerometers positioned on
the weight. The data acquisition system is composed
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Fig. 9 Acceleration
amplitude (numeric data).
Each curve represents one
level of base acceleration
varying from 0.1 to 1 m/s2

with increment of 0.1 m/s2.
The amplitude peaks
increase with increasing
acceleration level
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Fig. 10 Restoring force
with three levels of base
acceleration (0.1, 0.5 and 1
m/s2)
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Fig. 11 Schematic cam
machine

of a signal analyzer (HP 3567) and modal accelerome-
ters (PCB 333AX, sensitivity ≈100 mv/g). The cam
machine with radial flat-faced follower is manually
operated.

Five different disk cams with eccentricities of 0.25,
0.5, 0.75, 1.25, 1.5 mm were used. The tests were car-
ried out varying the excitation frequency between 5
and 17 Hz with increments of 0.25 Hz. This lower fre-
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Fig. 12 Cam machine with Stockbridge coupled

quency rangewas used due to themechanical limitation
of the excitation system. Figure 13 shows the exper-
imental curves of the acceleration ratio obtained for
the accelerometer at the end (accelerometer 2) of the
messenger wire. The natural frequency changes with
the variation of the amplitude of the input signal (base
excitation).

Excellent results were obtained using the PSO to
make the approximation of the numeric and experimen-
tal values. The PSO parameters used in this application
are: particles number = 20; iterations = 150; accelera-
tion constants = [2.1; 2.1]; inertia weights = [0.9;0.6];.
The objective function is defined by:

f =
np∑
i=1

∣∣Paaexp . − PaaFEM
∣∣ (12)

where Paaexp is the acceleration ratio (acceleration of
the reference sensor/acceleration of the accelerometer
on the cable); PaaFEM is the same acceleration ratio
estimated using PSO; and np is the number of points
(normally np = 47);

Figure 14 shows the numeric adjusted curves of
the acceleration ratio obtained for the position of the
accelerometer at the end (accelerometer 2) of the mes-
senger wire.

In Table 2 are shown the optimized parameters using
the Bouc–Wen model. The parameters were adjusted
separately for each eccentricity of the cam. The varia-
tion of the parameter EI (flexural stiffness) and the loss
factor η with the variation of the base displacement can
be noted.

Figure 15 shows the adjusted numeric curves for
three values of base displacement of 0.25, 0.75 and
1.5 mm and the corresponding experimental curves.
Figure 16 shows the variation of the objective func-
tion for the case in which the base excitation is 0.25
mm. It can be noted that the values of experimental
and numeric curves have good agreement. The objec-
tive function rapidly converges to the final value. Sim-
ilar curves are obtained for the other cases of base
excitation

Fig. 13 Acceleration ratio
curves of accelerometer 2
(experimental data)
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Fig. 14 Acceleration ratio
curves of accelerometer 2
(numeric data)
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Table 2 Optimized parameters of the Bouc–Wen model

Ecc. (mm) EI (Nm2) η b (–) c m−1 α (N/m) β (N1−n /m) γ (N1−n /m) n (–) k3 (N/m3)

0.25 1.9393 0.1472 0.5643 0.1100 1.6433 0.8151 −0.6382 10.8945 2.1655 × 103

0.50 1.7484 0.0912 0.6012 0.1118 1.3996 0.9595 −0.5826 10.5954 2.2084 × 103

0.75 1.6654 0.0656 0.6640 0.1279 1.2226 0.9295 −0.7439 12.1188 1.3816 × 103

1.25 1.5454 0.0472 0.6668 0.1312 1.6941 0.8930 −0.6186 8.2112 2.2566 × 103

1.50 1.4546 0.0413 0.6591 0.1241 1.0918 0.7676 −0.6113 11.3392 1.3150 × 103

Fig. 15 FRF amplitude
(experimental data—solid
line; adjusted data—dotted
line with symbol asterisk)
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Fig. 16 Objective function
value
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4 Conclusion

In this work, the physical parameters used in a Bouc–
Wen model were adjusted using PSO method through
the comparison between numerical and experimental
results for two different systems: wire-rope isolator and
Stockbridge damper

For both systems was possible to adjust the parame-
ters used in themathematical model of Bouc–Wen. The
results show that fine adjustments were efficient, i.e.,
the numerical and experimental results are close.

A global objective function was set to wire-rope
model taking into account the experimental data obtai-
ned for ten different constant acceleration values from
the base excitation. The great differences occurs for
low and high values of base acceleration. The objec-
tive function rapidly converges to the final value. The
frequency–response curves show clearly the nonlinear
behavior of the wire-rope isolator. The harmonic reso-
nance frequency shifts to the left for increasing ampli-
tude of excitation, indicating softening stiffness.

The objective function to adjust the Bouc–Wen
model parameters and the linear flexural stiffness was
applied separately for five different vibration data
obtained to five displacements of the base excitation of
a Stockbridge model. The frequency–response curves
show clearly the nonlinear behavior of the Stockbridge
damper. The harmonic resonance frequency shifts to
the left for increasing amplitude of excitation, indi-
cating softening stiffness. The results showed that the

flexural stiffness and the loss factor varies with the base
displacement.
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