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Abstract In this paper, the nonlinear dynamic behav-
ior is investigated for a rotating pre-deformed pre-
twisted blade subjected to harmonic gas pressure. The
pre-deformation curve produced by thermal gradient is
derived. A novel nonlinear vibration system is estab-
lished by considering the influence of pre-deformation.
The combination of the Lagrange principle and the
assumed modes method is utilized to obtain the motion
equations, and then the equations are transformed into a
dimensionless form through introducing a set of dimen-
sionless parameters. For the purpose of ensuring high
precision in determination of the internal resonance
condition, the equations of motion are discretized by
adequate trial functions. An eigenvalue analysis is con-
ducted on the corresponding linear system to obtain the
natural frequencies and examine the possibility of the
2:1 internal resonance. The method of multiple scales
is developed to solve the resulting multi-degree-of-
freedom nonlinear ordinary differential equations. A
numerical integration by means of Runge–Kutta is per-
formed to establish the validity of the derived formula-
tions. The evolution of frequency response curves with
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the rotating speed is observed. The influences of the
thermal gradient, gas pressure and damping coefficient
on the resonant dynamics of the system are investigated
in detail. For the purpose of comparison, another distri-
bution profile of pre-deformation, which is frequently
used in previous literature, is also examined. It could be
found that not only the amplitude but also the distribu-
tion of the initial deflection could influence the steady-
state nonlinear response of the pre-deformed blade. A
series of interesting nonlinear dynamic phenomena are
discovered from the results.
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1 Introduction

Blade is a vital component in the turbomachine. It is
well known that blades are often exposed under a severe
thermal load and periodic gas pressure, especially in
the gas turbines. To design such structures properly,
we need a better understanding of their dynamic char-
acteristics to avoid some undesirable disasters such as
the resonance phenomena.

In the early studies, researchers focused their atten-
tion on the linear dynamic characteristics of various
rotating blade in order to obtain their natural frequen-
cies and mode shapes during past three decades. An
extensive list of the related papers was well reviewed
by Rao [1]. Yoo et al. [2] established the model for
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pre-twisted rotating blades with a concentrated mass
and analyzed the vibration characteristics of a rotat-
ing blade. Ramesh and Rao [3] extended the Yoo’s
modeling method for estimating the natural frequen-
cies of a functionally graded rotating pre-twisted can-
tilever beam. Piovan and Sampaio [4] made use of
the finite-element method and Hamilton’s principle to
examine the nonlinear dynamics of the rotating beam
made of the functionally graded materials. Banerjee [5–
8] applied the dynamic stiffness method combined with
the Wittrick and Williams’ algorithm to study the modal
characteristics of the rotating tapered Euler–Bernoulli,
Timoshenko and Rayleigh beams, respectively. Chu et
al. [9] studied the impact of vibration characteristics
on a shrouded blade under wake flow excitations. Chiu
and Yang [10] revealed the effects of lacing wire on the
natural frequencies of shift–disk–blade system.

In recent years, more and more reports on nonlin-
ear behavior of the rotating structures have appeared
in the literature. Zhang and Li [11] observed a series
of perturbation frequency components in the nonlinear
dynamic response of a rotating cracked shaft. Ham-
dan and Al-Bedoor [12] studied the free vibrations of
a rotating beam with nonlinear curvature via a single-
degree-of-freedom model by using a time transforma-
tion method. Turhan and Bulut [13] investigated the
in plane nonlinear bending vibrations of a rotating
beam. The integro-partial differential equation was dis-
cretized by means of Galerkin’s method. They studied
the frequency responses on the single- and two-degree-
of-freedom models. Yao et al. [14] adopted the method
of multiple scales to study the 1:1 internal resonance of
the rotating blade with varying speed. They observed
the periodic and chaotic motions in the nonlinear vibra-
tions. In their latter research work [15], the frequency
response curves are obtained for the 2:1 internal reso-
nance of rotating blade. In these two helpful works, the
authors used only one term of Galerkin truncation for
both the flapwise and chordwise vibrations and derived
a two-degree-of-freedom nonlinear motion equation.
This is a brief way to describe the vibration of the blade.
However, this will result in a rough estimation for the
equation coefficients and the internal resonance con-
dition. It will be demonstrated latter that the dynamic
behavior is very sensitive to the coefficients of gov-
erning equation, especially near the internal resonance
condition. So it is necessary to discretize the governing
equation to a higher-order degree-of-freedom system.
In the view of analytical approaches of nonlinear vibra-

tion, the two-degree-of-freedom is quite different from
the higher-number-degree-of-freedom system. Nayfeh
[16] pointed that the solvability condition in the method
of multiple scales may cast into different forms, and it
can be mathematically proved that the different forms
are equivalent only in the two-degree-of-freedom sys-
tems. Recently, Chen and Zhang [17] developed a gen-
eral framework of multiple scales analysis on the non-
linear gyroscopic system for the first time, and they
observed that the different forms of the solvability con-
dition for a four-degree-of-freedom system are equiv-
alent when studied the forced vibration of pipes con-
veying fluid [18,19]. In the present paper, Chen and
Zhang’s general framework is developed to analysis a
higher degree-of-freedom vibration system.

In all above valuable studies on rotating blade, the
axis of the blade is assumed to be perfectly straight.
However, during the operation of the gas turbine, high-
temperature-burned gas have impacts directly on the
concave airfoil surface of blade; however, the gas
temperature near the convex surface is relatively low.
Hence, there will exist a great thermal gradient along
the blade thickness, and slender blade will be pre-
deformed. The pre-deformation due to the dead load,
geometric imperfection or environmental factors has
been recognized for a long time as having a signifi-
cant effect on the linear and nonlinear dynamic behav-
ior. The initial deflections are usually of the order of
the structure thickness and sometimes even greater.
So influence of initial deflections has to be studied
within the framework of large deflection theory. Wedel-
Heinen [20] proposed a general theory for analysis of
the effect of initial geometrical imperfection on nat-
ural frequencies of linear elastic beam. Takabatake [21]
proposed the conception of pre-deformation induced
stiffness matrix in the early 1990s. In his work, the
combination of linear small deflection theory and non-
linear large deflection theory is adopted to study the
effect of pre-deformation on the natural frequencies
of a simply supported beam. Based on Takabatake’s
conception, Zhou and Zhu [22] developed a finite-
element techniques for beam element subjected to the
dead load. Oz et al. [23] considered two types of ini-
tial curvature, sinusoidal and parabolic curvatures, and
studied the 2:1 internal resonance case of curved shal-
low beams. Nowadays, Ghayesh and his colleagues
[24–28] highlighted the effect of geometrical imperfec-
tion on the nonlinear resonant dynamics of microbeam,
microplate by the means of the pseudo-arc-length con-
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tinuation technique. Hence, it is more practical to exam-
ine the dynamic characteristics of pre-deformed rotat-
ing blade.

The objective of the present paper is to investigate
the nonlinear 2:1 internal resonance of a rotating pre-
deformed slender blade under harmonic gas pressure.
In Sect. 2, the rotating pre-deformed pre-twisted blade
model is described and the corresponding nonlinear
motion equations are derived. In Sect. 3, the method of
multiple scales is developed to solve the multi-degree-
of-freedom nonlinear equations. In Sect. 4, conver-
gence test and eigenvalue analysis are conducted on
the corresponding linear system to obtain the suitable
number of trial functions and to examine the possibility
of the 2:1 internal resonance. In Sect. 5, the derived for-
mulations are verified by a numerical integration and a
series of parameter studies are performed. Finally, the
major conclusions are summarized in Sect. 6.

2 Dynamic modeling

The configuration of the system is illustrated in Fig. 1,
showing a rotating pre-twisted slender blade of length
L , Young’s modulus E , rectangular cross-sectional
area A. The blade is assembled on a rigid hub with a
stagger angle. The hub, with radius r , is rotating about
its central axis at a constant speed of Ω . The blade
is subjected to a uniform harmonic gas pressure and
thermal gradient.

Two types of coordinate system, the global inertial
coordinate XYZ and the rotating blade coordinate xyz,
are considered (see Fig. 2). Associated with these two
coordinate systems xyz andXYZ, we define the unit vec-
tors i, j, k and I, J, K, respectively. The coordinate xyz
is attached at the center of root section and rotates with
the blade. The axis x is along the centroid axes of the
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Fig. 1 The sketch of a gas turbine blade
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Fig. 2 The coordinate systems and a general cross section

undeformed blade. The axis y is chordwise direction of
the rotating blade. The axis z, the flapwise direction, is
parallel to the axis Z of the inertial coordinate. The axis
yr and zr denote the two principal axes of root section.
Similarly, yt zt and y pz p represent those of the tip sec-
tion and a general section, respectively. An arbitrary
point P is placed on the general section. Ψ denotes
the blade stagger angle. The blade presents a twisted
shape in its natural state. The pretwist angle between
the root section and the general section is θ , which is a
function of the total pre-twist angle Θ and the position
of the section. Due to initial geometric imperfection or
environmental factors, the blade is pre-deformed dur-
ing operation. The amount of axis pre-deformation is
u20 in chordwise and u30 in flapwise direction, respec-
tively. The variables u1, u2 and u3 are employed to
describe the axial, chordwise and flapwise deformation
components of the blade centroid axis, respectively.

In this study, following assumptions are made to
establish the dynamic modal. (1) The Euler–Bernoulli
beam theory is employed, and the effects of the shear
deformation, the rotary inertia and the warping are not
taken into account. (2) The material of the beam is
homogeneous and isotropic linear elastic. (3)The vari-
ation of pre-twist angle is uniform along the longi-
tudinal axis. (4) The longitudinal component of pre-
deformation is ignored.
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By considering the initial deflection u20 and u30,
the strain-displacement relation for a pre-deformed
beam[20,23] is extended to describe the three-
dimensional vibration. One could obtain the axis strain
at an arbitrary point of the blade as

εx = u1,x + 1

2
u2

2,x + 1

2
u2

3,x

+ u20,xu2,x + u30,xu3,x − yu2,xx − zu3,xx (1)

where a comma followed by a subscript denotes the
differentiation with respect to the subscript. With the
assumption of isotropic linear elastic material, the
strain energy of the system can be formulated as

Uσ = 1

2

∫
V

σi jεi jdV

= 1

2

∫ L

0
E I3u

2
2,xxdx + 1

2

∫ L

0
E I2u

2
3,xxdx

+
∫ L

0
E I23u2,xxu3,xxdx

+ E A
∫ L

0

1

8
u4

2,x + 1

8
u4

3,x + 1

4
u2

2,xu
2
3,x

+ 1

2
u20,xu

3
2,x + 1

2
u30,xu

3
3,x

+ 1

2
u1,xu

2
2,x + 1

2
u1,xu

2
3,x + 1

2
u30,xu

2
2,xu3,x

+ 1

2
u20,xu2,xu

2
3,x

+ 1

2
u2

1,x + 1

2
u2

20,xu
2
2,x + 1

2
u2

30,xu
2
3,x

+ u20,xu1,xu2,x + u30,xu1,xu3,x

+ u20,xu30,xu2,xu3,x dx (2)

in which σ and ε represent the stress and strain tensors,
respectively, and

I2 =
∫
AP

z2dA, I3 =
∫
AP

y2dA, I23 =
∫
AP

yzdA

(3)

are the second moments of area and the mixed second
moment of area of the general section AP in the rotating
frame. They can be calculated with rotation transform
matrix as following.

I2(x) = I ∗
2 + I ∗

3

2
+ I ∗

2 − I ∗
3

2
cos [2(θ + Ψ )] (4)

I3(x) = I ∗
2 + I ∗

3

2
− I ∗

2 − I ∗
3

2
cos [2(θ + Ψ )] (5)

I23(x) = I ∗
2 − I ∗

3

2
sin [2(θ + Ψ )] (6)

in which I ∗
2 and I ∗

3 are the principal second moments
of area for the section. Upon the assumption of linear
variation, the pre-twist angle θ in the equations above
could be expressed as:

θ = x

L
Θ (7)

The axial shortening potential energy due to centrifugal
force [29–31] can be written as:

Uas = 1

2

∫ L

0

[
ρAΩ2

(
L2 − x2

)

−2ρA	2r (L − x)
] (

u2
2,x + u2

3,x

)
dx (8)

So the total potential energy is

U = Uσ +Uas (9)

The kinetic energy of the rotating blade could be estab-
lished as [32]

K = 1

2

∫ L

0
ρA

[
(u̇1 − 	u2)

2

+ (u̇2 + 	u1 + (r + x)	)2 + u̇2
3

]
dx (10)

The dot represents the differentiation with respect to
time t . The external forces acting on the blade con-
sist of harmonic gas pressure and the viscous damping
force. In this study, the damping effect results from
the interaction between the blade and the surrounding
medium (the air). Hence, the damping force is propor-
tional to the three velocity components. The variation of
the work done by these external forces can be expressed
as:

δWe =
∫ L

0
wPgas cos (ωt) [sin (Θx/L + Ψ ) δu2

− cos (Θx/L + Ψ ) δu3] dx

−
3∑

i=1

∫ L

0
cd u̇iδuidx (11)

where Pgas is the gas pressure, w is the width of blade,
ω is the excitation frequency and cd represents the vis-
cous damping coefficient, −cd u̇i (i = 1, 2, 3) repre-
sent the damping forces on unit length in x , y and z
direction, respectively.

The assumed modes method (AMM) is used to dis-
cretizing the three displacement components. The dis-
placement functions are separated into products of spa-
tial and temporal functions.
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ui (x, t) =
ni∑
j=1

φi j (x) qi j (t) (12)

For the displacement component ui (i = 1, 2, 3), ni is
the number of assumed trial functions, qi j (t) is gener-
alized coordinate and φi j (x) is a set of linear indepen-
dent admissible functions which satisfy the geomet-
ric boundary conditions but not necessarily the natural
boundary conditions of the system. In the present study,
the eigenfunctions of a non-rotating cantilever beam are
chosen as the admissible function set.

By rotating coordinates, the curvature functions of
uniform beam under thermal gradient [33] is devel-
oped to obtain those of a pre-twisted blade subjected to
thermal gradients along two principal axes of general
section.

u20,xx = −αgy cos (Θx/L + Ψ )

+αgz sin (Θx/L + Ψ )

u30,xx = −αgy sin (Θx/L + Ψ )

−αgz cos (Θx/L + Ψ ) (13)

In these equations, α is the coefficient of thermal expan-
sion, gy and gz are the thermal gradients along two
principal axes of a general section. Keep the boundary
condition in mind:

u20 (0) = u30 (0) = u20,x (0) = u30,x (0) = 0 (14)

One can integrate the curvature equations to obtain the
slopes and deflections.
If Θ �= 0,

u20,x = − [
gy sin (Θx/L + Ψ ) + gz cos (Θx/L + Ψ )

− gy sin (Ψ ) − gz cos (Ψ )
]
Lα/Θ

u30,x = [
gy cos (Θx/L + Ψ ) − gz sin (Θx/L + Ψ )

+ gz sin (Ψ ) − gy cos (Ψ )
]
Lα/Θ

u20 = − [
gz sin (Θx/L + Ψ ) − gy cos (Θx/L + Ψ )

− gz sin (Ψ ) + gy cos (Ψ )
]
L2α/Θ2

+ [
gy sin (Ψ ) x − gz cos (Ψ ) x

]
Lα/Θ

u30 = [
gz cos (Θx/L + Ψ ) + gy sin (Θx/L + Ψ )

− gy sin (Ψ ) − gz cos (Ψ )
]
L2α/Θ2

+ [
gz sin (Ψ ) x − gy cos (Ψ ) x

]
Lα/Θ

(15)

If Θ = 0 then,

u20,x = α
(−gy cos (Ψ ) + gz sin (Ψ )

)
x

u30,x = −α
(
gy sin (Ψ ) + gz cos (Ψ )

)
x

u20 = α

2

(−gy cos (Ψ ) + gz sin (Ψ )
)
x2

u30 = −α

2

(
gy sin (Ψ ) + gz cos (Ψ )

)
x2 (16)

To study the influence of the distribution of pre-
deformation on the dynamic behavior, another pre-
deformation profile is also taken into consideration,
which is frequently adopted in the previous literature
[20,24,26,27]. The initial deflection is assumed to be
of the same shape as the first vibration mode, so

ui0 = d0φi1 (i = 2, 3) (17)

in whichd0 stands for the amplitude of pre-deformation.
Substitution of Eq. (12) into Eqs. (2), (8), (10) and

(11), gives the potential, kinetic energies and external
work as functions of the generalized coordinates. These
equations are then substituted into the Lagrange equa-
tions resulting into a nonlinear coupled ordinary dif-
ferential equation. For the sake of generality, following
dimensionless variables are introduced.

t̄ = t

√
E I ∗

3

ρAL4 , x̄ = x

L
, ūi = ui

L
(i = 1, 2, 3) ,

ūi0 = ui0
L

(i = 2, 3) ,

ḡa = αgaL (a = x or y) , P̄gas = PgaswL3

E I ∗
3

,

c̄d = cd L4

E I ∗
3

√
E I ∗

3

ρAL4 ,

ω̄ = ω

√
ρAL4

E I ∗
3

, κ =
(
h

w

)2

= I ∗
2

I ∗
3

, η =
√

AL2

I ∗
3

,

γ = 	

√
ρAL4

E I ∗
3

,

δ = r

L
, J2 = I2

I ∗
3

, J23 = I23

I ∗
3

, J3 = I3
I ∗
3

(18)

In the following equations of this paper, the overbar
notation is disregarded for briefness. After the appli-
cation of the dimensionless variables, the equation of
motion is recast into followings.
n1∑
j=1

(∫ 1

0
φ1iφ1 jdx

)
q̈1 j +cd

n1∑
j=1

(∫ 1

0
φ1iφ1 jdx

)
q̇1 j

− 2γ

n2∑
j=1

(∫ 1

0
φ1iφ2 jdx

)
q̇2 j
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− γ 2
n1∑
j=1

(∫ 1

0
φ1iφ1 jdx

)
q1 j

+ η2

⎡
⎣ n1∑

j=1

(∫ 1

0
φ′

1iφ
′
1 jdx

)
q1 j

+
n2∑
j=1

(∫ 1

0
u′

20φ
′
1iφ

′
2 jdx

)
q2 j

+
n3∑
j=1

(∫ 1

0
u′

30φ
′
1iφ

′
3 jφdx

)
q3 j

+ 1

2

n2∑
j=1

n2∑
k=1

(∫ 1

0
φ′

1iφ
′
2 jφ

′
2kdx

)
q2 j q2k

+ 1

2

n3∑
j=1

n3∑
k=1

(∫ 1

0
φ′

1iφ
′
3 jφ

′
3kdx

)
q3 j q3k

⎤
⎦

= γ 2
∫ 1

0
φ1i (δ + x) dx, i = 1, 2, . . . , n1 (19)

n2∑
j=1

(∫ 1

0
φ2iφ2 jdx

)
q̈2 j +2γ

n1∑
j=1

(∫ 1

0
φ2iφ1 jdx

)
q̇1 j

+ cd

n2∑
j=1

(∫ 1

0
φ2iφ2 jdx

)
q̇2 j

+
n2∑
j=1

(∫ 1

0
J3φ

′′
2iφ

′′
2 jdx

)
q2 j

+
n3∑
j=1

(∫ 1

0
J23φ

′′
2iφ

′′
3 jdx

)
q3 j

−γ 2
n2∑
j=1

(∫ 1

0
φ2iφ2 jdx

)
q2 j

+ 1

2
γ 2

n2∑
j=1

(∫ 1

0
φ′

2iφ
′
2 j

(
1−x2+2δ−2δx

)
dx

)
q2 j

+ η2

⎡
⎣ n1∑

j=1

(∫ 1

0
u′

20φ
′
2iφ

′
1 jdx

)
q1 j

+
n2∑
j=1

(∫ 1

0
u′

20u
′
20φ

′
2iφ

′
2 jdx

)
q2 j

+
n3∑
j=1

(∫ 1

0
u′

20u
′
30φ

′
2iφ

′
3 jdx

)
q3 j

+ 3

2

n2∑
j=1

n2∑
k=1

(∫ 1

0
u′

20φ
′
2iφ

′
2 jφ

′
2kdx

)
q2 j q2k

+ 1

2

n3∑
j=1

n3∑
k=1

(∫ 1

0
u′

20φ
′
2iφ

′
3 jφ

′
3kdx

)
q3 j q3k

+
n1∑
j=1

n2∑
k=1

(∫ 1

0
φ′

2iφ
′
1 jφ

′
2kdx

)
q1 j q2k

+
n2∑
j=1

n3∑
k=1

(∫ 1

0
u′

30φ
′
2iφ

′
2 jφ

′
3kdx

)
q2 j q3k

+ 1

2

n2∑
j=1

n2∑
k=1

n2∑
l=1

(∫ 1

0
φ′

2iφ
′
2 jφ

′
2kφ

′
2ldx

)
q2 j q2kq2l

+ 1

2

n2∑
j=1

n3∑
k=1

n3∑
l=1

(∫ 1

0
φ′

2iφ
′
2 jφ

′
3kφ

′
3ldx

)
q2 j q3kq3l

⎤
⎦

=
(∫ 1

0
φ2i Pgas sin (Θx + Ψ ) dx

)
cos (ωt) ,

i = 1, 2, . . . , n2 (20)

n3∑
j=1

(∫ 1

0
φ3iφ3 jdx

)
q̈3 j + cd

n3∑
j=1

(∫ 1

0
φ3iφ3 jdx

)
q̇3 j

+
n3∑
j=1

(∫ 1

0
J2φ

′′
3iφ

′′
3 jdx

)
q3 j

+
n2∑
j=1

(∫ 1

0
J23φ

′′
3iφ

′′
2 jdx

)
q2 j

+ 1

2
γ 2

n3∑
j=1

(∫ 1

0
φ′

3iφ
′
3 j

(
1 − x2+2δ−2δx

)
dx

)
q3 j

+ η2

⎡
⎣ n1∑

j=1

(∫ 1

0
u′

30φ
′
3iφ

′
1 jdx

)
q1 j

+
n2∑
j=1

(∫ 1

0
u′

20u
′
30φ

′
3iφ

′
2 jdx

)
q2 j

+
n3∑
j=1

(∫ 1

0
u′

30u
′
30φ

′
3iφ

′
3 jdx

)
q3 j

+ 1

2

n2∑
j=1

n2∑
k=1

(∫ 1

0
u′

30φ
′
3iφ

′
2 jφ

′
2kdx

)
q2 j q2k

+ 3

2

n3∑
j=1

n3∑
k=1

(∫ 1

0
u′

30φ
′
3iφ

′
3 jφ

′
3kdx

)
q3 j q3k

+
n1∑
j=1

n3∑
k=1

(∫ 1

0
φ′

3iφ
′
1 jφ

′
3kdx

)
q1 j q3k

+
n2∑
j=1

n3∑
k=1

(∫ 1

0
u′

20φ
′
3iφ

′
2 jφ

′
3kdx

)
q2 j q3k
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+ 1

2

n3∑
j=1

n3∑
k=1

n3∑
l=1

(∫ 1

0
φ′

3iφ
′
3 jφ

′
3kφ

′
3ldx

)
q3 j q3kq3l

+ 1

2

n2∑
j=1

n2∑
k=1

n3∑
l=1

(∫ 1

0
φ′

3iφ
′
2 jφ

′
2kφ

′
3ldx

)
q2 j q2kq3l

⎤
⎦

=
(

−
∫ 1

0
φ3i Pgas cos (Θx + Ψ ) dx

)
cos (ωt) ,

i = 1, 2, . . . , n3 (21)

The first set governs the longitudinal motion, and
the last two sets describe the chordwise and flapwise
motion. It is easy to find that the pre-deformation intro-
duces a series of coupling terms and quadratic non-
linearities. If the pre-deformations, u20 and u30, are
set to 0 and other nonlinear terms are dropped, these
equations will be reduced to the Yoo’ modal [32]. As
Yoo explained, for Euler-Bernoulli beam, the coupling
effect between the stretching and the bending motions
is negligible, and the first axial natural frequency is
far from the bending natural frequencies. So the cou-
pling effects of the longitudinal motion is ignored in the
present study. Equations (20) and (21) could be written
in matrix form for briefness.

Mq̈ + Cq̇ + Kq = Q (22)

In which M, C, K, Q are mass matrix, damping matrix,
stiffness matrix and nonlinear load vector. They are
listed in Appendix. At this point we have obtained a
set of motion equation consisting of n2 + n3 nonlinear
coupled second-order ordinary differential equations.

3 Internal resonance response

In the present study, the method of multiple scales is
developed to solve the nonlinear coupled ordinary dif-
ferential equations (22). To balance the nonlinearity
and describe the smallness of vibration amplitude, gas
pressure and, following rescaling is introduced.

q ↔ εq, Pgas ↔ ε2Pgas, cd ↔ εcd (23)

in which ε is a small dimensionless perturbation para-
meter. The equation of motion (22) is rearranged and
cast into following form.

Mq̈ + Kq = ελ (t, q, q̇) + O
(
ε2, ε3, . . .

)
(24)

where O(ε2,ε3,…) are the higher-order terms, which
are omitted in subsequent analysis, the vector λ is a
nonlinear function with respect to t , q and q̇. The ele-
ments in the vector λ take the form as:

λ =
(

[λ2]T , [λ3]T
)T

λ2i = f2i cos (ωt) +
n2∑
j=1

α21
i j q̇2 j +

n2∑
j=1

n2∑
k=1

α22
i jkq2 j q2k

+
n3∑
j=1

n3∑
k=1

α23
i jkq3 j q3k

+
n2∑
j=1

n3∑
k=1

α24
i jkq2 j q3k

λ3i = f3i cos (ωt) +
n3∑
j=1

α31
i j q̇3 j +

n2∑
j=1

n2∑
k=1

α32
i jkq2 j q2k

+
n3∑
j=1

n3∑
k=1

α33
i jkq3 j q3k

+
n2∑
j=1

n3∑
k=1

α34
i jkq2 j q3k (25)

The first term represents harmonic gas pressure, the
second is damping force, and the others are quadratic
nonlinear terms. The coefficients in Eq. (25) are listed
in Appendix.

According to multiple scales method, the steady-
state solution can be expanded as:

q (t) = q0 (T0, T1) + εq1 (T0, T1) + O
(
ε2, ε3, . . .

)

(26)

where T0 = t is a fast time scale characterizing motions
with frequencies of the linear derived system and T1 =
εt is a slow timescale. Therefore, the time derivatives
can be written as follows:

d

dt
= ∂

∂T0
+ ε

∂

∂T1
+ · · · = D0 + εD1 + · · ·

d2

dt2 = ∂2

∂T 2
0

+2ε
∂2

∂T0∂T1
+· · · = D2

0 +2εD0D1 + · · ·
(27)

Substituting Eqs. (26) and (27) into Eq. (24) and equat-
ing the coefficients of like powers ε of result in the
following equations:

MD2
0q0 + Kq0 = 0 (28)
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MD2
0q1 + Kq1 = −2MD0D1q0 + λ

(
t, q0, D0q0

)
(29)

The solution of Eq. (28) can be assumed as:

q0 (T0, T1) =
n2+n3∑
r=1

Ar (T1) pr e
iωr T0 + cc (30)

where Ar is a complex function of T1, ωr stands for
the r th natural frequency, pr is the corresponding mode
vector and cc represents the complex conjugate of the
preceding terms. The complex function Ar could also
be written in the polar form:

Ar (T1) = ar (T1)

2
eiζr (T1) (31)

in which ar and ζr are amplitude and phrase angle,
respectively, and both of them are real functions of T1.
Through substituting Eq. (30) into Eq. (29), one could
obtain

MD2
0q1 + Kq1 = −2M

n2+n3∑
r=1

iωr D1Arpr e
iωr T0

+λ

(
t,

n2+n3∑
r=1

Arpr e
iωr T0 + cc,

n2+n3∑
r=1

iωr Arpr e
iωr T0 + cc

)
+ cc

(32)

One assumes ω2 = 2ω1 + εσ1, ω = ω1 + εσ2 to study
the first primary resonance with 2:1 internal resonance.
Two detuning parameters, σ1 and σ2, are introduced to
describe the nearness of the second natural frequency
to the two times of the first one and the nearness of
the excitation frequency to the first natural frequency,
respectively. To separate the secular terms from the
right side, Eq. (32) is rearranged and written as:

MD2
0q1 + Kq1 =

n2+n3∑
r=1

Rr e
iωr T0 + NST + cc (33)

where Rr is the coefficient vector of the secular term
corresponding to exp(iωr T0),NST stands for the terms
that will not results in the secular terms. The secular
terms corresponding the first several modes are paid for
special attention. For the first mode, the components of
vector R1 share the same pattern as:

R1s = β10s D1A1 + β11s A1 + β12s Ā1A2e
iσ1T1

+β13se
iσ2T1 (34)

For the second mode:

R2s = β20s D1A2 + β21s A2 + β22s A
2
1e

−iσ1T1 (35)

The nonlinear coupled terms vanish for the third mode,
and the components of R3 take the following form:

R3s = β30s D1A3 + β31s A3 (36)

For the mode r >3, the pattern of secular term is similar
to the case r = 3. The coefficients in Eqs. (34)–(36) are
documented in Appendix.

Assume that solution of Eq. (33) has following form:

q1 (T0, T1) =
n2+n3∑
r=1

Pr (T1) e
iωr T0 + cc (37)

where Pr is vector function with respect to T1. Substi-
tution of Eq. (37) into (33) and then the equalization of
each coefficient of term exp(iωr T0) yield

(
−ω2

rM + K
)
Pr = Rr (38)

which could be regarded as a set of linear algebraic
equations with unknown vector Pr. According to the
definition of natural frequency, coefficient determinant
of Eq. (38) should be zero. Keep the Cramer’s Rule
in mind, to guarantee the existence of solution Pr, a
series of new matrices Δrk (k = 1, 2, . . ., n2 + n3)

must be singular, where the matrix Δrk is formed from
the coefficient matrix of Eq. (38) by replacing column
k with the vector Rr. The solvability conditions are
obtained

det (Δrk) = 0 (39)

So one has

n2+n3∑
s=1

[
Z∗
r

]
ks Rrs = 0 (40)

in which Z∗
r is the adjoint matrix of the coefficient

matrix of Eq. (38). As Chen and Zhang commented
in Ref. [17], for each k, Eq. (39) yields a solvability
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condition consisting of a set of ordinary differential
equations of Ar (T1). For the first three modes:

D1A1 = Γ11A1 + Γ12 Ā1A2e
iσ1T1 + Γ13e

iσ2T1 (41)

D1A2 = Γ21A2 + Γ22A
2
1e

−iσ1T1 (42)

D1A3 = Γ31A3 (43)

where the coefficients could be calculated from:

Γr j = −

n2+n3∑
s=1

[
Z∗
r

]
ks βr js

n2+n3∑
s=1

[
Z∗
r

]
ks βr0s

(44)

From Eq. (43), it is easy to found that the 3rd and higher
modes are not coupled with first two modes, and they
will decay with time due to the damping. So only the
first two modes are paid for special attention. Keep the
Eq. (31) in mind, and equalize the real and imaginary
part on both sides of the Eqs. (41) and (42), respectively.
One obtains

D1a1 = Γ R
11a1 + 1

2
a1a2

(
Γ R

12 cos ψ1 − Γ I
12 sin ψ1

)

+ 2
(
Γ R

13 cos ψ2 − Γ I
13 sin ψ2

)

a1a2D1ψ1 = a1a2

(
σ1 − 2Γ I

11 + Γ I
21

)

− a1a
2
2

(
Γ R

12 sin ψ1 + Γ I
12 cos ψ1

)

− 4a2

(
Γ R

13 sin ψ2 + Γ I
13 cos ψ2

)

− 1

2
a3

1

(
Γ R

22 sin ψ1 − Γ I
22 cos ψ1

)

D1a2 = Γ R
21a2 + 1

2
a2

1

(
Γ I

22 sin ψ1 + Γ R
22 cos ψ1

)

a1D1ψ2 = a1

(
σ2 − Γ I

11

)

− 1

2
a1a2

(
Γ R

12 sin ψ1 + Γ I
12 cos ψ1

)

− 2
(
Γ R

13 sin ψ2 + Γ I
13 cos ψ2

)
(45)

where ψ1 = σ1T1 − 2ζ1 + ζ2, ψ2 = σ2T1 − ζ1, the
superscripts R and I represent the real part and the
imaginary part, respectively. To study the steady-state
response, the fixed points of the autonomous system Eq.
(45), the left side of Eq. (45) should be set to 0. After
eliminating ψ1, ψ2 and a2, one obtains the frequency–
amplitude relationship for the first mode.

Λ1a
6
1 + Λ2a

4
1 + Λ3a

2
1 + Λ4 = 0 (46)

in which,

Λ1 = 1

8
|Γ12|2 |Γ22|2

Λ2 =
(
σ1σ2 − 2σ 2

2

) (
Γ I

12Γ
I

22 − Γ R
12Γ

R
22

)

− σ1

(
Γ I

11Γ
I

12Γ
I

22 + Γ R
11Γ

R
12Γ

I
22 + Γ R

11Γ
I

12Γ
R

22

−Γ I
11Γ

R
12Γ

R
22

)
+ σ2(2Γ I

11Γ
I

12Γ
I

22

+ 2Γ R
11Γ

R
12Γ

I
22 + Γ I

12Γ
I

21Γ
I

22 + Γ R
12Γ

R
21Γ

I
22

+ 2Γ R
11Γ

I
12Γ

R
22 − 2Γ I

11Γ
R

12Γ
R

22 − Γ R
12Γ

I
21Γ

R
22

+Γ I
12Γ

R
21Γ

R
22) − Γ I

11(Γ
I

12Γ
I

21Γ
I

22

+Γ R
12Γ

R
21Γ

I
22 − Γ R

12Γ
I

21Γ
R

22 + Γ I
12Γ

R
21Γ

R
22)

−Γ R
11(Γ

R
12Γ

I
21Γ

I
22 − Γ I

12Γ
R

21Γ
I

22

+Γ I
12Γ

I
21Γ

R
22 + Γ R

12Γ
R

21Γ
R

22)

Λ3 =2

((
σ1−2σ2+Γ I

21

)2+
(
Γ R

21

)2
) ((

σ2 − Γ I
11

)2

+
(
Γ R

11

)2
)

Λ4 = −8 |Γ13|2
((

σ1 − 2σ2 + Γ I
21

)2 +
(
Γ R

21

)2
)

(47)

Then the amplitude of second mode can be expressed
by a1 as following:

a2 = |Γ22| a2
1

2
√(

σ1 − 2σ2 + Γ I
21

)2 + (
Γ R

21

)2
(48)

Equation (46) could be analytically solved based on
the general roots formula for cubic equation. And then
a2 could be calculated. In addition, the stability of the
steady-state response is determined according to Lya-
punov theory.

4 Convergence test and eigenvalue analysis

In the numerical investigation of the present study,
unless special description, the dimensionless parame-
ters are set as: Ψ = 10◦, Θ = 30◦, κ = 0.25, δ = 0,
gy = 0, η = 200, cd = 0.1, Pgas = 0.01, and
ε = 0.01.

In this section, an eigenvalue analysis is conducted
on the corresponding linear system of Eq. (24) (Ignor-
ing the nonlinear terms) to obtain the natural frequen-
cies and to examine the possibility of the modal inter-
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Table 1 Convergence characteristics for first two natural fre-
quencies and critical rotating speed

Number of trail functions γ = 5 γin
ω1 ω2

2 4.0507 6.9456 8.3260

4 4.0324 6.9029 8.2086

6 4.0313 6.8976 8.2170

8 4.0311 6.8965 8.2207

10 4.0310 6.8961 8.2220

12 4.0310 6.8959 8.2225

14 4.0310 6.8958 8.2229

actions and the internal energy transfer. Firstly, a con-
vergence test is performed for the natural frequencies
and the critical rotating speed γin which satisfies the
internal resonance condition as shown in Table 1. The
same number of trial functions are employed in both
the chordwise and flapwise vibrations. The second and
third columns of Table 1 are the first two natural fre-
quencies of the given pre-twisted blade with dimen-
sionless rotating speed γ = 5, and the critical rotating
speed for the given blade is listed in last column. As it
is seen, when the number of trial functions approaches
10, both the natural frequencies and critical rotating
speed show a good convergence. Therefore, the first 10
shape functions are applied in both flapwise and chord-
wise vibrations to guarantee the accuracy in the further
computations, i.e., the vibration system has 20 degree
of freedoms.

Figure 3 displays the variation of the first two nat-
ural frequencies with thermal gradient gz . To identify
the possibility of the internal resonant, the curve of 2ω1

is also plotted in the figure. It could be observed that
for a wide range of thermal gradient, the second natural

frequency increases with gz more quickly than the first
one. And there is an intersection between the curves for
ω2 and 2ω1. For the non-rotating blade (Fig. 3a), the
influence of thermal gradient gz on the first natural fre-
quency seems to disappear for higher thermal gradient
range (when thermal gradient gz is greater than 0.02).
With the variation of the thermal gradient, a weak veer-
ing phenomenon occurs between the first two natural
frequency curves in the range of [0.01, 0.02]. For the
case of γ = 5 (Fig. 3b), the veering phenomenon dis-
appears and the effect of thermal gradient on the first
natural frequency is even more invisible.

The variation of the first two natural frequencies
with rotating speed is shown in Fig. 4. Without the
thermal gradient, the increasing rate of the second nat-
ural frequency is lower than that of the first one for
lower rotating speed. However, the scenario reverses
for higher rotating speed. An obvious veering phenom-
enon in natural frequency curves with the growth of
rotating speed could be found (Fig. 4a), and this phe-
nomenon is weakened as the increase in thermal gra-
dient (Fig. 4b). The detailed discussion on the veering
phenomena is beyond the scope of the present study.
The second natural frequency is close to 2 ω1 for a wide
range of rotating speed when the thermal gradient is set
to 0.032 (Fig. 4b). It should be remarked that for the
given parameters the second natural frequency of the
non-rotating blade is just twice the first one. We won’t
intend to pay any further attention to this case in this
study. The pentagrams in Figs. 3 and 4 indicate that the
2:1 internal resonant (εσ1 = 0) would occur when the
parameters are set properly. In the following numerical
calculations, the nonlinear vibration behavior is inves-
tigated in a small range in vicinity of the 2:1 the internal
resonant cases.

Fig. 3 The variation of the
first two natural frequencies
with thermal gradient along
the blade thickness: a
non-rotating γ = 0, b
dimensionless rotating
speed γ = 5
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Fig. 4 The variation of the
first two natural frequencies
with rotating speed:
a without thermal gradient
gz = 0, b gz = 0.032
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Fig. 5 Frequency–response
curves of the rotating blade
for gz = 0.0365 and γ = 5:
a the first mode response,
b the second mode response
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5 Numerical results and discussion

From Eqs. (46) and (48), the steady-state amplitudes a1

and a2 could be solved. Obviously, they are the func-
tions of the coefficients Γr j which are dependent on
which solvability condition (the subscript k in Eq. (44))
is applied. So firstly, the solutions obtained with differ-
ent solvability conditions are examined.

Figure 5 shows the frequency–response curves con-
structed with some different solvability conditions for
the case of the intersection in Fig. 3b (gz = 0.0365).
For the purpose of briefness, the subscript k in Eq. (44)
is only set to some representative values of k. And for
other k’s, the results coincide with the present curves.
In these figures and the followings, the solid line rep-
resents the stable solutions and the dashed line rep-
resents the unstable ones. As shown in Fig. 5, differ-
ent solvability conditions result in a same steady-state
response. With the increase and decrease of gas pres-
sure frequency, the jumping phenomena occurs two
times. There are two peaks bending to the opposite
directions in the frequency–response curves. And the
curves are symmetrical about εσ2 = 0.

To verify the derived formulations, the rearranged
equation of motion Eq. 24, is integrated numerically

with the variable-step Runge–Kutta method. It’s worth
mentioning that the higher-order term is omitted in both
numerical and analytical method for the purpose of
comparability. Introducing the general velocity vari-
able vector to Eq. 24 through

v = q̇ (49)

results in:

v̇ = −M−1Kq + εM−1λ (t, q, v) (50)

The Eq. (49) combined with Eq. (50) represents a
set of first-order nonlinear ordinary differential equa-
tions of degree 2(n2 + n3). This set of equations is
integrated numerically with zero initial condition, i.e.,
v̇ = v = q̇ = q = 0. The frequency of the gas pressure
traverses from a set of given values near the first nat-
ural frequency. Other parameters are set as those used
in analytical method. The simulation is conducted for
adequately long time to make sure the initial effects can
be attenuated and the system is running under steady
state. The response amplitude is calculated as the half
of the difference between the maximum and minimum
displacement in steady-state response [34]. A program
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Fig. 6 The evolution of frequency response with the varying
of rotating speed: a1, a2 the first and second mode responses
for rotating speed γ = 0.97γin (εσ1 = −0.0508); b1, b2 those

for γ = 0.99γin (εσ1 = −0.0173); c1, c2 those for γ = γin
(εσ1 = 0); d1, d2 those for γ = 1.01γin (εσ1 = 0.0176); e1, e2
those for γ = 1.03γin (εσ1 = 0.0540)

123



Nonlinear vibration of rotating pre-deformed blade 471

2 2

2 2

(d1)

−0.015 −0.01 −0.005 0 0.005 0.01 0.015
0

1

2

3

4

5

6
x 10

−5

Method of Multi−scale
Numerical Integration

(d2)

−0.015 −0.01 −0.005 0 0.005 0.01 0.015
0

0.5

1

1.5

2

2.5

3
x 10

−5

Method of Multi−scale
Numerical Integration

(e1)

−0.015 −0.01 −0.005 0 0.005 0.01 0.015
0

1

2

3

4

5

6
x 10

−5

Method of Multi−scale
Numerical Integration

(e2)

−0.015 −0.01 −0.005 0 0.005 0.01 0.015
0

0.5

1

1.5

2

2.5

3
x 10

−5

Method of Multi−scale
Numerical Integration

Fig. 6 continued
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Fig. 7 The variation of frequency–response curves at inertial resonant with thermal gradient: a the first mode response, b the second
mode response
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Fig. 8 The variation of frequency–response curves at inertial resonant with pre-deformation amplitude: a the first mode response,
b the second mode response
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Fig. 9 The variation of frequency–response curves at inertial resonant with gas pressure for gz = 0.032: a the first mode response,
b the second mode response

is written to implement this process in Matlab platform.
Please note that only the stable solutions of periodic
motion could be obtained by numeric simulation.

The evolution of frequency response with the vary-
ing of the rotating speed nearby the 2:1 internal res-
onant (for case of the intersection in Fig. 4b) is illus-
trated in Fig. 6, in which the hollow triangles represent
the solutions obtained by numerical integration and the
lines represent those furnished by method of multi-
scale (MMS). For the parameters of Fig. 4b, the 2:1
internal resonant occurs at the critical rotating speed of
γin = 6.5840. Here, the rotating speed is set to 0.97γin ,

0.99γin , γin , 1.01γin and 1.03γin , respectively. And the
corresponding dynamic responses are examined. It is
easy to find that the results obtained by two methods
show a good agreement.

For the rotating speed lower than γin , internal res-
onant detuning parameters εσ1 is negative (Fig. 4b),
the frequency–response curves bend to the higher fre-
quency direction and show a stiffening effect (Fig.
6a1, a2). With a slight increment of rotating speed, the
curves seem to bend more to the right side and the
stiffening effect becomes stronger. In addition, there
is a small peak appears before the main peak in the
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Fig. 10 The variation of frequency–response curves at inertial resonant with damping coefficients for gz = 0.032: a the first mode
response, b the second mode response

second mode response (Fig. 6b2), at the same time a
little flat peak appears in the first mode, and it is almost
invisible (Fig. 6b1). For the case of complete inter-
nal resonant, there are two peaks bending to the oppo-
site directions in the frequency–response curves. There
is an unstable region near the middle dip of response
curves (Fig. 6c1, c2). When the rotating speed exceeds
γin , internal resonant detuning parameters εσ1 turns
to positive, the right peak becomes small and disap-
pear at last. So there is only one main peak bending to
lower frequency direction (Fig. 6d1, d2) and the curves
show a softening effect. With a further increment in
rotating speed, the softening effect becomes smaller
(Fig. 6e1, e2). One could conclude that the dynamic
behavior is very sensitive to the rotating speed, espe-
cially near the internal resonant. From the overall view
of the evolution, one could also observe the following
phenomenon. When the rotating speed raises from a
value lower than γin , the peak value of the first mode
resonant response decreases firstly and increases after-
ward, on the contrary, the peak value of the second
mode increases firstly and decreases afterward. Hence,
when the complete internal resonant occurs, the first
and second mode response obtain their minimum and
maximum value, respectively, and the internal energy
transfer between first two modes is the strongest. As
the vibration system approaches internal resonant con-
dition, the response curves bend more to one side and
the unstable regions become lager. One can imagine
that when the rotating speed is far away from γin , the
response curves will reduce to those of linear system.

Figure 7 reveals the effects of thermal gradient on
frequency response of rotating blade in the presence
of internal resonant. As show in Fig. 7a, the peak val-
ues of both modes decrease when the thermal gradient
is increased from 0.028 to 0.036. This is mainly due
to that the amplitude of pre-deformation increases lin-
early with thermal gradient. And the increase in pre-
deformation will improve the stiffness of the rotating
blade. Moreover, with increase in thermal gradient, the
curves tend to bend more to two sides and the unstable
region is enlarged. The second mode response (Fig. 7b)
shows a similar trend.

For the purpose of comparison, the pre-deformation
of the same shape with the first mode shape is consid-
ered. And the effects of the pre-deformation amplitude
d0 on the internal resonant response are shown in Fig.
8. The increase in d0 will lead to decrease in vibra-
tion amplitude and narrowing in unstable region. The
response curves get their peak value at smaller exter-
nal resonance tune parameter for larger d0. However,
for different d0’s, the upper branches of the multi-value
region nearly coincide with each other. From the com-
parison between Figs. 7 and 8, it could be concluded
that not only the amplitude but also the distribution of
the pre-deformation field could influence the nonlinear
dynamic behavior of the rotating blade.

The effect of the gas pressure amplitude on the reso-
nant dynamic is investigated by plotting the frequency–
response curves for different gas pressure together in
Fig. 9. The blade is pre-deformed due to the thermal
gradient of gz = 0.032. The dimensionless gas pres-
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Fig. 11 Force–response curves of the rotating blade for different
external resonance detuning parameters σ2: a1, a2 the first and
second mode responses for internal resonance detuning para-

meter σ1 = −3; b1, b2 those for internal resonance detuning
parameter σ1 = 3

sure Pgas is set to 0.005, 0.01 and 0.015, respectively. It
is observed that the increase in gas pressure will lead to
an improvement in vibration amplitude and an enlarge-
ment in unstable region.

The frequency–response curves at internal resonant
condition for various dimensionless damping coeffi-
cients (cd = 0.1, 0.2, 0.25, 0.3) are compared in Fig.
10. From the global point of view, the frequency–
response curves become flatter with the increment of
the damping coefficient. For small damping coeffi-
cients (cd = 0.1), the response curves show a strong
double-jumping phenomenon. This jumping phenom-

enon is weakened by the increase of damping coef-
ficient (cd = 0.2). For even lager damping coefficient
(cd = 0.25) the jumping phenomenon disappears in the
response curves but the steady response is still unsta-
ble near external resonant (εσ2 = 0). With the further
increase in the damping coefficient (cd = 0.3), the
response near external resonant becomes stable.

Force–response curves of first two modes could be
obtained by varying the gas pressure amplitude and
solving the Eqs. (46) and (48). The force–response
curves of the system for several values of the exter-
nal resonance detuning parameters are plotted in Fig.
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11. As shown in this figure, multi-valuedness does not
exist in the complete external resonance (σ2 = 0). The
steady response is stable for small gas pressure and
unstable for large gas pressure. For other cases, there
are two limit point bifurcations and an unstable portion
between them. The external resonant detuning parame-
ters are denoted near the first limit point for each curve.
With the increment of the deviation from the complete
external resonance, the first limit points are delayed
remarkably. However, the second ones are changed
slightly. Therefore, the unstable region is enlarged by
the deviation from the resonance frequency. It could
be also observed that in the second mode response the
second limit points for different cases almost coincide
with each other. Moreover, a positive external reso-
nant detuning parameter σ2 results in a larger unstable
region when σ1 is negative (Fig. 10a1, a2); a opposite
scenario could be observed for the positive internal res-
onant detuning parameter (Fig. 10b1, b2).

6 Conclusion

The nonlinear forced vibration of a pre-deformed rotat-
ing blade subjected to uniform distributed gas pressure
under thermal gradient is analyzed in this study. A novel
nonlinear vibration system is established by consider-
ing the influence of pre-deflection of the rotating blade.

The proper number of trial function is determined
through the convergence test for natural frequencies
and the critical rotating speed. From the eigenvalue
analysis, it is showed that the natural frequencies
increase with both thermal gradient and rotating speed,
and the influence in second mode is more pronounced.
The possibility of the modal interaction is also con-
firmed.

The method of multiple scales is developed to solve
the multi-degree-of-freedom nonlinear system. It is
showed that the different solvability conditions result
in the same steady response for the present problem.
The analytical results furnished by method of multi-
ple scales are consistent with the numerical integration
using Runge–Kutta method. It is discovered that varia-
tion in rotating speed near γin will lead to an interesting
evolution in the frequency–response curves. The inter-
nal energy transfer between modes is observed. The
peak value of the frequency response curve decreases
with the amplitude of the pre-deformation for both
types of pre-deformation distribution. However, the

variation in width of unstable region with the pre-
deformation amplitude is opposite for different defor-
mation distribution profiles. The influences of the gas
pressure and damping coefficients on the nonlinear
behavior of rotating blade are also examined. The
present study is expected to be helpful to understanding
the nonlinear resonant characters of rotating blade.
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Appendix

The matrices and their components in Eq. (22) are
derived as:

M =
[[

M22]
n2×n2

0
0

[
M33]

n3×n3

]
(51)

C =
[[

C22]
n2×n2

0
0

[
C33]

n3×n3

]
(52)

K =
[[

K22
]
n2×n2

[
K23

]
n2×n3[

K32
]
n3×n2

[
K33

]
n3×n3

]
(53)

q = (
q21, . . . , q2n2 , q31, . . . , q3n3

)T (54)

Q =
([

Q2
]T

n2×1
,
[
Q3

]T

n3×1

)T

(55)

whose components are:

M22
i j =

∫ 1

0
φ2iφ2 jdx, M33

i j =
∫ 1

0
φ3iφ3 jdx (56)

C22
i j = cd

∫ 1

0
φ2iφ2 jdx, C33

i j = cd

∫ 1

0
φ3iφ3 jdx

(57)

K 22
i j =

∫ 1

0
J3φ

′′
2iφ

′′
2 jdx + η2

∫ 1

0
u′

20u
′
20φ

′
2iφ

′
2 jdx

− γ 2
∫ 1

0
φ2iφ2 jdx

+ 1

2
γ 2

∫ 1

0
φ′

2iφ
′
2 j

(
1 − x2 + 2δ − 2δx

)
dx

(58)

K 23
i j =

∫ 1

0
J23φ

′′
2iφ

′′
3 jdx + η2

∫ 1

0
u′

20u
′
30φ

′
2iφ

′
3 jdx

(59)
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K 32
i j =

∫ 1

0
J23φ

′′
3iφ

′′
2 jdx + η2

∫ 1

0
u′

20u
′
30φ

′
3iφ

′
2 jdx

(60)

K 33
i j =

∫ 1

0
J2φ

′′
3iφ

′′
3 jdx + η2

∫ 1

0
u′

30u
′
30φ

′
3iφ

′
3 jdx

+ 1

2
γ 2

∫ 1

0
φ′

3iφ
′
3 j

(
1 − x2 + 2δ − 2δx

)
dx

(61)

Q2
i =

∫ 1

0
φ2i Pgas sin (Θx + Ψ ) dx cos (ωt)

− η2

⎡
⎣3

2

n2∑
j=1

n2∑
k=1

(∫ 1

0
u′

20φ
′
2iφ

′
2 jφ

′
2kdx

)
q2 j q2k

+ 1

2

n3∑
j=1

n3∑
k=1

(∫ 1

0
u′

20φ
′
2iφ

′
3 jφ

′
3kdx

)
q3 j q3k

+
n2∑
j=1

n3∑
k=1

(∫ 1

0
u′

30φ
′
2iφ

′
2 jφ

′
3kdx

)
q2 j q3k

+ 1

2

n2∑
j=1

n2∑
k=1

n2∑
l=1

(∫ 1

0
φ′

2iφ
′
2 jφ

′
2kφ

′
2ldx

)
q2 j q2kq2l

+ 1

2

n2∑
j=1

n3∑
k=1

n3∑
l=1

(∫ 1

0
φ′

2iφ
′
2 jφ

′
3kφ

′
3ldx

)
q2 j q3kq3l

⎤
⎦ ,

i = 1, 2, . . . , n2 (62)

Q3
i = −

∫ 1

0
φ3i Pgas cos (Θx + Ψ ) dx cos (ωt)

− η2

⎡
⎣1

2

n2∑
j=1

n2∑
k=1

(∫ 1

0
u′

30φ
′
3iφ

′
2 jφ

′
2kdx

)
q2 j q2k

+ 3

2

n3∑
j=1

n3∑
k=1

(∫ 1

0
u′

30φ
′
3iφ

′
3 jφ

′
3kdx

)
q3 j q3k

+
n2∑
j=1

n3∑
k=1

(∫ 1

0
u′

20φ
′
3iφ

′
2 jφ

′
3kdx

)
q2 j q3k

+ 1

2

n3∑
j=1

n3∑
k=1

n3∑
l=1

(∫ 1

0
φ′

3iφ
′
3 jφ

′
3kφ

′
3ldx

)
q3 j q3kq3l

+ 1

2

n2∑
j=1

n2∑
k=1

n3∑
l=1

(∫ 1

0
φ′

3iφ
′
2 jφ

′
2kφ

′
3ldx

)
q2 j q2kq3l

⎤
⎦ ,

i = 1, 2, . . . , n3 (63)

The coefficients in Eq.(25) are written as followings.

f2i =
∫ 1

0
φ2i Pgas sin (Θx + Ψ ) dx, f3i

= −
∫ 1

0
φ3i Pgas cos (Θx + Ψ ) dx (64)

α21
i j = −cd

∫ 1

0
φ2iφ2 jdx, α

31
i j = −cd

∫ 1

0
φ3iφ3 jdx

(65)

α22
i jk = −3

2
η2

∫ 1

0
u′

20φ
′
2iφ

′
2 jφ

′
2kdx, α32

i jk

= −1

2
η2

∫ 1

0
u′

30φ
′
3iφ

′
2 jφ

′
2kdx (66)

α23
i jk = −3

2
η2

∫ 1

0
u′

20φ
′
2iφ

′
3 jφ

′
3kdx, α33

i jk

= −1

2
η2

∫ 1

0
u′

30φ
′
3iφ

′
3 jφ

′
3kdx (67)

α24
i jk = −η2

∫ 1

0
u′

30φ
′
2iφ

′
2 jφ

′
3kdx, α34

i jk

= −η2
∫ 1

0
u′

20φ
′
3iφ

′
2 jφ

′
3kdx (68)

The coefficients in Eqs. (34)–(36) are listed as follow-
ing formulation.
For 1 ≤ s ≤ n2,

β10s = −
n2∑
j=1

2iω1M
22
s j p12 j (69)

β11s =
n2∑
j=1

iω1α
21
s j p12 j (70)

β12s =
n2∑
j=1

n2∑
k=1

2α22
s jk p̄12 j p22k+

n3∑
j=1

n3∑
k=1

2α23
s jk p̄13 j p23k

+
n2∑
j=1

n3∑
k=1

α24
s jk

(
p̄12 j p23k + p22 j p̄13k

)
(71)

β13s = f2s
2

(72)

β20s = −
n2∑
j=1

2iω2M
22
s j p22 j (73)

β21s =
n2∑
j=1

iω2α
21
s j p22 j (74)

β22s =
n2∑
j=1

n2∑
k=1

α22
s jk p12 j p12k +

n3∑
j=1

n3∑
k=1

α23
s jk p13 j p13k

+
n2∑
j=1

n3∑
k=1

α24
s jk p12 j p13k (75)
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β30s = −
n2∑
j=1

2iω3M
22
s j p32 j (76)

β31s =
n2∑
j=1

iω3α
21
s j p32 j (77)

For n2 + 1 ≤ s ≤ n2 + n3, assume that s′ = s − n2,
then

β10s = −
n3∑
j=1

2iω1M
33
s′ j p13 j (78)

β11s =
n3∑
j=1

iω1α
31
s′ j p13 j (79)

β12s =
n2∑
j=1

n2∑
k=1

2α32
s′ jk p̄12 j p22k

+
n3∑
j=1

n3∑
k=1

2α33
s′ jk p̄13 j p23k

+
n2∑
j=1

n3∑
k=1

α34
s′ jk

(
p̄12 j p23k + p22 j p̄13k

)
(80)

β13s = f3s′

2
(81)

β20s = −
n3∑
j=1

2iω2M
33
s′ j p23 j (82)

β21s =
n3∑
j=1

iω2α
31
s′ j p23 j (83)

β22s =
n2∑
j=1

n2∑
k=1

α32
s′ jk p12 j p12k +

n3∑
j=1

n3∑
k=1

α33
s′ jk p13 j p13k

+
n2∑
j=1

n3∑
k=1

α34
s′ jk p12 j p13k (84)

β30s = −
n3∑
j=1

2iω3M
33
s′ j p33 j (85)

β31s =
n3∑
j=1

iω3α
31
s′ j p33 j (86)

In Eqs. (69)–(86), the notation pr2 j (r = 1, 2, 3;
j = 1, 2, . . ., n2) represents the j th component in the
r th mode vector of the chrodwise vibration, and pr3 j

(r = 1, 2, 3; j = 1, 2, . . . , n3) represents that of the
flapwise vibration.
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