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Abstract A new computational methodology is pre-
sented for the dynamic analysis of multibody systems
with multiple clearance joints by vector form intrin-
sic finite element method. A joint model is developed
to simulate the motion of ideal and clearance joints
for multibody systems. The dynamic behaviour of a
four-bar mechanism with three clearance joints in con-
tinuous contact mode is analysed. The results show
that the dynamic performance of the mechanism with
three clearance joints in continuous contact mode is not
similar to that with ideal joints and is fluctuating and
affected by the clearance size of the joints and input
crank speed.
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1 Introduction

Many revolute joints with clearance exist in real mech-
anisms, and such joints are generally assumed to be
perfect or ideal for general dynamic analysis. How-
ever, the clearance between the bearing and journal of
the joint leads to collision; thus, the real mechanism
with revolute clearance joints has a different dynamic
response from the ideal mechanism.

In recent years, many researchers have conducted
extensive work on the dynamic response of mech-
anisms with clearance joints. Khulief [1] reviewed
different approaches for modelling the dynamics of
impact in rigid multibody mechanical systems. Flo-
res et al. [2] extensively investigated the kinematic
and dynamic characteristics of multibody systems with
clearance joints. Muvengei et al. [3] investigated the
effects on the dynamic responses of a mechanical
system by the location of the clearance, the clear-
ance size and the operating speed. In addition to the
rigid multibody mechanical systems, numerical and
experimental studies of the partly compliant mecha-
nism were carried out by Erkaya and Dogan [4] and
Erkaya et al. [5]. The dynamic responses of some
complex mechanisms were also investigated. Pereira
et al. [6] carried out the dynamic simulation of roller
chain drivers, and Tian et al. [7] studied the cou-
pling dynamics of a geared multibody system. The
clearance joints of the mechanism can lead to poor
dynamic performance; therefore, time-dependent reli-
ability of mechanisms [8], optimal dynamic design
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[9,10] and bifurcation of mechanisms [11] were also
investigated.

The contact force model plays a key role in simula-
tion of dynamic response ofmultibodymechanical sys-
tems with clearance joints [12]. The extensively used
contact force model was proposed by Lankarani and
Nikravesh [13], which used a modified Hertz’ law to
include energy dissipation in the formof internal damp-
ing. Pereira et al. [14,15] discussed the shortcomings
of the cylinder contact force models, and an enhanced
cylindrical contact force model was proposed. These
contact models are suitable for planar revolute clear-
ance joints. For the spatial revolute joints with clear-
ance, the model was presented [16–18]. Alves et al.
[19] studied viscoelastic contact force models. For soft
materials, Flores et al. [20] proposed a continuous
contact force model in multibody dynamics. Lubri-
cated revolute joints [21,22] were also carried out on
the dynamic response of multibody systems. An effi-
cient computational method was investigated to deal
with contact detection inmultibody dynamics [23], and
an approach to stabilizing the constraint violations in
dynamic simulation was studied [24].

Multibody system dynamics is generally used to
simulate the influence of the dynamic response of a
mechanismwith revolute clearance joints [25–27]. The
modelling method of a revolute joint with clearance is
different from that of the ideal joint inmultibody system
dynamics. The revolute joint with clearance is mod-
elled by contact force, whereas the ideal revolute joint
is modelled by kinematic constraint. All revolute joints
with clearance should be modelled to efficiently reveal
the real dynamic response of the mechanism with mul-
tiple clearance joints [28]. Given the increasing num-
ber of modelled clearance joints in the mechanism, the
constrained multibody system gradually becomes an
unconstrained or joint-force system [29]. Furthermore,
due to the interaction between the clearance joints, the
dynamic analysis becomes complex.

Most of the previous works considered only one
clearance joint in mechanisms, some recent papers
focus on the nonlinear dynamic analysis of a planar
mechanism with two or three clearance joints [28–33].
A three-mode model has been proposed for a planar
revolute clearance joint with a journal inside the bear-
ing; the three modes are the free flight, impact and
continuous contact modes [2,4,25,31,33]. Flores car-
ried out a parametric study for quantifying the influ-
ence of the clearance size, input crank speed and num-

ber of clearance joints for the dynamic response of
multibody systems with multiple clearance joints. The
results showed that one clearance joint would always
be in continuous contact mode in some parametric con-
ditions [29,33]. Muvengei et al. [28] discussed nine
possible modes of the motion of a slide-crank mech-
anism with two clearance joints. They concluded that
the motion mode in one revolute clearance joint deter-
mines the motion mode in the other clearance joint
and affects the dynamic behaviour of the mechanism.
Megahed and Haroun [30] also investigated nine possi-
ble modes of motion of a slide-crank mechanism with
two clearance joints and concluded that the maximum
impact force at joints occurs at the joint nearest to the
input link. Their studies indicated that the dynamic per-
formance of the mechanism is affected by the motion
mode combinations of clearance joints.

Studies on a mechanism with multiple clearance
joints have sought to predict and reduce the influence of
the mechanism’s kinematic and dynamic performance
caused by clearance joints and to explore the motion
of the mechanism under ideal conditions. Under some
conditions, the clearance joints are all in continuous
contact mode in the mechanism. In fact, all parts of the
ideal joint are in contact state. At this time, the physi-
cal contact state of the mechanism with multiple joints
is similar to that of a mechanism with ideal joints, but
the dynamic difference between the two states of the
mechanisms is not widely concerned.

Ting et al. [34,35] and Shih et al. [36] proposed the
vector form intrinsic finite element (VFIFE) method,
which is based on vector mechanics without invok-
ing continuum governing equations. The structure is
divided into particles, and the governing equations are
the equation of the motion of the particles. The equa-
tion of motion for each particle is directly formulated
by Newton’s law. The explicit time integration method
and central difference integration are used to solve
the equations without introducing matrix calculation.
Therefore, VFIFE is an effective method of processing
issues of large deformations and large displacements.
The method can effectively handle the nonlinear stat-
ics of frame structures and obtain satisfactory results
[37–40]. Wu et al. [41] analysed the planar motion of
solids through the triangular solid element of VFIFE
and demonstrated the capability and accuracy of the
method. Liao [42] studied the motion analysis of a
mechanism with joint clearance using the fragmenta-
tion method of VFIFE.
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VFIFE method is the combination of Newtonian
vector mechanics method and finite element theory.
Natural coordinates method [43] uses points and unit
vectors to describe solids, and nonlinear finite element
method can deal withmultibody dynamics [44]. VFIFE
method may be similar to these method, but actually
they are quite different.

Natural coordinatesmethod has an important advan-
tage in computational efficiency because of their sim-
ple modelling of rigid bodies [43,45]. Natural coordi-
nates method uses the Cartesian coordinates of three
(or more) non-aligned points to define the position of
a solid in the 3-D space. In other words, each ele-
ment and its motion are defined by a set of points
and unit vectors rigidly attached to it. VFIFE is
a Newtonian vector mechanic method and uses a
finite number of particles to define a rigid body. In
addition, the natural coordinate formulations of the
multibody system are differential algebraic equations
(DAE), but the particles motion formulations obtained
by using VFIFE are ordinary differential equations
(ODE).

Ambrosio [44] and Ambrosio and Nikravesh [46]
proposed a novel methodology for nonlinear finite ele-
ment description of the flexible part of a multibody
system, which can deal with structural systems experi-
encing geometric andmaterial nonlinear deformations.
Dynamic models of rigid–flexible multibody systems
have been developed using Newton–Euler equations.
Using lumped mass formulation and static condensa-
tion, the flexible body is described by a small number
of generalised coordinates. VFIFEmethod can also use
a lumpedmass matrix. The difference with usage of the
mass matrix is that the components of the mass matrix
belong to the finite elements in nonlinear finite ele-
ment method and the components of the mass matrix
belong to the particles in VFIFE method. Moreover,
to decouple the rigid body motion and deformation of
the bodies of the system, the floating frame approach
was adopted in nonlinear finite element method and
the fictitious reversed rigid body motion method was
employed in VFIFE method.

From the theory of VFIFE, the governing equa-
tion of a particle is the motion equation of the par-
ticle. The motion equation is actually a force equi-
librium of the internal and external forces applied
to the particle. In other words, the governing equa-
tion of particle motion is a force equation. The alge-
braic constraints of the structure are constant and are

described by lumped mass and forces, including inter-
nal and external, in the motion equation of the particle.
During the numerical simulation process, the internal
and external forces of the particle are always updated
with the particle motion, without involving algebraic
constraints.

The primary objective of this work is to extend the
VFIFE method into dynamic analysis of planar multi-
body systems with multiple clearance joints. A planar
revolute joint is usually treated as one particle in the
conventional VFIFE theory. The mass of the particle
and the forces applied to the particle are lumped from
the connecting elements. The force between the joint
components cannot be calculated. A newmotionmodel
of the planar revolute joint is developed to simulate the
motion of ideal and clearance joints in this study. The
contact force of ideal and clearance joints is obtained,
as well as the local deformation of clearance joint com-
ponents. The joint model is easily introduced with the
VFIFE method.

If the clearance joints are modelled using the new
motion model of the VFIFE theory in a multibody sys-
tem, the governing equations of the clearance joints are
force equilibrium equations. With an increasing num-
ber of clearance joints in the mechanism, the number
of force equilibrium equations also increases; however,
this does not increase the difficulty of solving the equa-
tions. This characteristic makes VFIFE different from
multibody system dynamics.

In this work, the VFIFE method is adopted to study
the dynamics of planar multibody systems with multi-
ple clearance joints, and a parameter study of a four-
bar mechanism with three clearance joints in contin-
uous contact mode. Section 2 briefly introduces using
the VFIFE method in handling motion of the multi-
body system. Section 3 develops the joint model; the
contact force of the ideal joint is derived by the same
motion, whereas that of the clearance joint is simu-
lated by an enhanced cylindrical contact force model
[14] with friction [47]. To demonstrate and validate
the proposed model, Sect. 4 verifies the journal mov-
ing within the bearing and a four-bar mechanism with
one clearance joint by comparing it with the published
model. Section 5 presents the simulation results of
a four-bar mechanism with multiple clearance joints;
the difference between the ideal state and all clear-
ance joints in continuous contact mode state is stud-
ied. Section 6 presents the main conclusions of this
study.
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Fig. 1 Discretization of a frame

2 Motion analysis of planar multibody systems
using the VFIFE method

A planar mechanism can be divided into multiple rigid
bodies, and each body is represented by a finite num-
ber of particles with mass. The governing equation
is the equation of motion of each particle, which is
directly formulated by Newton’s law. The approach to
calculating the motion of the mechanism consists of
four parts: (a) discretization of the mechanism, (b) dis-
cretization of the particle path, (c) motion calculation
of the mechanism by time integration and (d) evalua-
tion of internal forces. For simplicity only a brief sum-
mary of the fundamental theory is provided. The theory
and some numerical examples of the VFIFE approach
have been well documented in the references [34,36–
39,41].

2.1 Discretization of mechanism

The analysed mechanism is represented by some rigid
frames. A frame can be divided into some particles and
elements, as shown in Fig. 1. Each particle has mass,
whereas the element does not have mass. The element
has two nodes, and each node has two translations and
one rotation of freedom. Each element is defined by
nodal displacements and equivalent nodal force. The
equivalent internal nodal forces are induced by element
deformation. The internal and external nodal forces of
one element apply to the particles connected with the
element. Each node displacement is caused by parti-
cle motion. The particle motion can be calculated by
Newton’s law.

X
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xa
x

motion path of a paritcle

a discrete path

Fig. 2 Discretization of a particle path

2.2 Discretization of particle path

A basic assumption exists about the path of particle
motion. The arbitrary particle analysis period t0 ≤ t ≤
t f can be split into discrete time segments, t0 < t1 <

t2 < · · · < ta < tb < · · · < tn < · · · < t f , as shown
in Fig. 2. (1) Each discrete time segment is named a
path unit, such as ta ≤ t ≤ tb. The configuration at
time ta is the reference configuration for the element
stress calculation. (2) The deformation in path unit ta ≤
t ≤ tb is infinitesimal; thus, infinitesimal strain and
engineering stress are adopted [41].

2.3 Motion calculation of planar mechanism by time
integration

Considering all the forces on a specific particle with
mass m at time t , as illustrated in Fig. 3, the equation
of motion for the particle can be derived via Newton’s
second law:

⎡
⎣
m 0 0
0 m 0
0 0 I

⎤
⎦

⎧⎨
⎩
d̈x
d̈y
θ̈z

⎫⎬
⎭=

⎧⎨
⎩

Fx
Fy

Qz

⎫⎬
⎭−

nc∑
i=1

⎧⎨
⎩

fi x
fiy
miz

⎫⎬
⎭ ta ≤ t≤ tb

(1a)

or via the following simplified equation:

md̈ = F −
∑

f ta ≤ t ≤ tb (1b)

where d is the particle displacement vector on plane
(x, y), F is the external force vector on the particle,
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Fig. 3 Forces on a particle

f is the equivalent internal nodal force vector on the
node due to the deformations in the elements, deriva-
tion outlined below, and nc is the number of elements
connectedwith particle.m and I are defined as follows:

m = mα +
nc∑
i=1

1

2
ρi li

I = Iα +
nc∑
i=1

1

2
mir

2
i (2)

where mα and Iα are the mass and moment inertia of
the mass attached to particle α, respectively, ρ is the
mass per unit length, l is the length of element and r
is the radius of the gyration of the cross section at the
node connected to particle α.

The explicit time integrationmethod and central dif-
ference integration are used to solve Eq. (1). The accel-
eration and velocity of each particle can be approxi-
mated as follows:

(d̈n)α = 1

(�t)2
(dn+1 − 2dn + dn−1)α (3)

(ḋn)α = 1

2(�t)
(dn+1 − dn−1)α (4)

where �t is the time increment. Substituting Eq. (3)
into Eq. (1b), the displacement of each particle can be
written as follows:

(dn+1)α = (�t)2

mα

(
F −

∑
f
)

α
+ (2dn − dn−1)α (5)

Hence, the displacement, velocity and acceleration
of each particle are calculated after the motion is com-
pleted for the time increment.

Fig. 4 Nodal displacement of a two-node plane frame element

2.4 Evaluation of internal forces

The initial conditions for each particle are known and
used to solve Eqs. (3)–(5). In addition, external and
internal nodal forces are required. The external forces
of each node in a path unit can be either physical forces
or equivalent force according to the principle of virtual
work. The equivalent internal forces of each node in a
path unit are derived using the fictitious reversed rigid
body motion.

A plane frame element with nodal numbers (1, 2)
at different times is shown in Fig. 4. The position of
the two nodes is (10, 20) at initial time t0, (1a, 2a) at
time ta and (1, 2) at current time t . Within a path unit,
ta ≤ t ≤ tb, the displacement increment vector of
nodes �ui is calculated with a reference coordinate at
time ta , as illustrated in Fig. 4:

�ui = ui − uia i = 1, 2 (6)
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Fig. 5 Fictitious reversed rigid body motion of an element

To decouple the rigid body motion and deformation
for each displacement increment, a fictitious reversed
rigid bodymotion, including translation and rotation, is
adopted. The element (1, 2) at current time t first trans-
lates a displacement vector −�u1 and then rotates an
angle −�ϕ to the direction of element (1a, 2a) at time
ta , as shown in Fig. 5. The deformation of vector �d
in each displacement increment can be obtained as fol-
lows:

�d = �u − �ur (7)

where �u is the total displacement increment vector
and �ur is the displacement increment vector induced
by rigid body motion [37].

Three independent variables of deformation exist for
a planar frame element,

�d = [�e θ1 θ2]T (8)

where �e is the axial deformation increment and θ1
and θ2 are the deformation of the nodal rotations.

The virtual internal energy increment of the planar
frame element induced by the element stresses and vir-
tual deformations is equivalent to that induced by the
nodal internal forces and virtual deformations. There-
fore, the incremental nodal force vector is calculated
as

�f∗ =
⎧⎨
⎩

� f2x
�m1z

�m2z

⎫⎬
⎭ (9)

According to the material frame of the element at
time ta , the total internal nodal force vector at time t
can be written as

f∗ =
⎧⎨
⎩

f2x
m1z

m2z

⎫⎬
⎭ =

⎧⎨
⎩

fa2x + � f2x
ma1z + �m1z

ma2z + �m2z

⎫⎬
⎭ (10)

From the force equilibrium conditions of the ele-
ment, the other three nodal forces can be obtained as
follows:
∑

Fx = 0 f1x = − f2x∑
M1 = 0 f2y = −(m1z + m2z)/ la∑
Fy = 0 f1y = − f2y (11)

The total internal nodal force vector referred to the
reference coordinate is

f intr = {
f1x f1y m1z f2x f2y m2z

}T (12a)

In initial condition, f intr can be written as [34]

f intr =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f1x
f1y
m1z

f2x
f2y
m2z

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−(AE/ l)�e

(6E I/ l2)(θ1 + θ2)

(2E I/ l)(2θ1 + θ2)

(AE/ l)�e

−(6E I/ l2)(θ1 + θ2)

(2E I/ l)(θ1 + 2θ2)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(12b)

If node 1 can rotate freely, such as a revolute joint,
then the internal force component m1z = 0. If nodes 1
and 2 can rotate freely under the special condition, the
components of internal force m1z = 0 and m2z = 0. In
this case, the element is very similar to the bar element
of finite element method and it can be used to simulate
the rigid bar.

Finally, the element is subjected to a forwardmotion,
including a translation �u1 and a rotation �ϕ. The
total global internal nodal force vector f int is obtained
as follows:

f int = TT f intr (13)

where TT is the transformation matrix between the
global coordinate and the reference coordinate.

The VFIFE method uses finite element theory, an
independent solution method can be obtained for the
motion equations of the particles, and this is not the
same as traditional finite element method. The use of a
central difference time integrator has a standard solving
efficiency in this study. The solution methods of tra-
ditional finite element method and dynamics of multi-
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Fig. 6 Motion model of the
planar revolute joints. a
Physical models of ideal
and clearance joints. b Ideal
and clearance joints model
with elements. c Force
equilibrium of the joints
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body systems are plentiful and have highly solving effi-
ciency.

3 Motion model of a planar revolute joint

The force between the joint parts cannot be calculated
in the conventional VFIFE theory because the joint was
assumed as a particle. A planar revolute joint consists
of two components, the bearing and journal, as shown
in Fig. 6a. A contact force occurs between bearing and
journal during jointmotion.The contact force is defined
as fc. Due to different causes of the contact force, differ-
ent calculation models are used to calculate the contact
force. For the ideal and clearance joints, the contact
force is caused by the same motion of bearing and
journal as in an ideal revolute joint, but is altered by
the impact of bearing and journal which results from
clearance in the joint.

Therefore, a new motion model of the planar rev-
olute joint is built to calculate the motion of the joint

and the contact force in the joint. The bearing and jour-
nal of the planar joint are modelled as colliding bodies.
According to the above VFIFE theory, the bearing and
journal are treated as separate particles with mass and
connected to the element, as shown in Fig. 6b. The
contact force between the bearing and journal is fc, and
the nodal internal forces of the elements are fq and fs ,
as shown in Fig. 6c. The external forces are omitted
here for simplicity. The force equilibrium equations of
particles B and J are obtained as follows:

mB d̈B = fc − fq
mJ d̈J = −fc − fs (14)

Equation (14) is the governing equation of motion
about the bearing and journal in an ideal planar revolute
joint or a joint with clearance. Hence, the motion of the
joint can be illuminated by the equation above. The
contact force fc will be carried out in the following
derivation.

Equation (14) is the same as the equation of one arbi-
trary particle, namely Eq. (1); they are independent and
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are not combined with each other. The motion of the
mechanismwith an ideal planar revolute joint or a joint
with clearance is solved by adding Eq. (14) to the equa-
tion group of the mechanism. With an increase in the
number of joints, the number of equations ofmotion for
the mechanism also increases; this in turn increases the
amount of calculation, but will not increase the com-
plexity of solving the equations. This characteristic is
an advantage in solving the motion of the mechanism
with multiple ideal joints or joints with clearance.

3.1 Contact force in an ideal planar revolute joint

Throughout the ideal planar revolute joint path unit, the
bearing and journal combine closely, rotate coaxially
and freely. Two particles, B and J , always coincide;
thus, the accelerations of the two particles are the same:

d̈B = d̈J (15)

Substituting Eq. (15) into (14) to obtain the ideal
contact force vector fic:

fic = mJ fq − mBfs
m J + mB

(16)

Substituting Eq. (16) into (14) yields

mB d̈B = − mB

mJ + mB
(fq + fs)

mJ d̈J = − mJ

mJ + mB
(fq + fs) (17)

Equations (17) and (14) are essentially the same for
the bearing and journal in one ideal revolute joint. The
motion of the ideal joint is the same as that of the bear-
ing or journal.

3.2 Contact force in a planar revolute joint with
clearance

A planar revolute joint with clearance is shown in
Fig. 7a. The size of clearance is

c = RB − RJ (18)

Thebearing and journal of a revolute clearance joint can
move freely, and the journal is bound to move within
the bearing boundary. A relative penetration δ occurs

during the contact between the bearing and journal,
as defined in Fig. 7b. δ is enlarged for clarity, but it is
actually very small. A normal contact force FN together
with a friction force FT is evaluated from impact of the
bearing wall by the journal. Therefore, three different
motion states of the journal exist inside the bearing
boundary. The three motion states are the free flight,
impact and continuous contact motions, as shown in
Fig. 7c. Three modes are associated with δ and FN:
⎧⎨
⎩

δ < 0 FN = 0 free flight mode
δ = 0 FN = 0 impact mode
δ > 0 FN > 0 continuous contact mode

(19)

δ = e − c (δ ≥ 0) (20)

where e is the magnitude of the eccentricity

e =
√

eTi jei j (21)

where ei j is eccentricity vector,which connects the cen-
tre of the bearing and journal, that is,

ei j = XJ − XB (22)

whereXB andXJ are the coordinate vectors of the bear-
ing and journal centres, and they can be obtained by the
motion of particles B and J.

The contact force vector between the bearing and
journal of the revolute clearance joint is defined as fol-
lows:

frc = FNn + FTt (23)

wheren is the vector that defines the normal direction of
the plane of collision between the bearing and journal,
given as

n = ei j
e

(24)

where t is obtained by n rotating anticlockwise by 90◦.
Substituting Eq. (23) into (14) yields

mBd̈B = FNn + FTt − fq
mJd̈J = −FNn − FTt − fs (25)

Themotion of the bearing and journal of the revolute
clearance joint can be obtained using Eq. (25).

In this work, an enhanced cylindrical contact force
model [14] is used to evaluate the normal reaction force
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Fig. 7 Revolute joint with
clearance. a Physical model
of the clearance joint.
b Contact forces and
penetration depth.
c Three-mode model of the
clearance joint
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Journal orbit
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motion

Continuous contact
motion

Impact

(a) (b)

(c)

FN. The contact force model is expressed as

FN = (a�R + b)LE∗

�R
δn

[
1 + 3(1 − c2e )

4δ̇(−)
δ̇

]
(26)

where

a =
{
0.965 for internal contact,
0.39 for external contact,

(27a)

b =
{
0.0965 for internal contact,
0.85 for external contact,

(27b)

n =
{
Y�R−0.005 for internal contact,
1.094 for external contact,

(27c)

Y =
{
1.51[ln(1000�R)]−0.151 if �R∈[0.005, 0.34954] mm,

0.0151�R+1.151 if �R∈[0.34954, 10.0] mm,

(27d)

where the composite modulus E∗ is given as

E∗ = E/2(1 − v2) (28)

where v is the Poisson’s ratio and�R = Ri − R j is the
radial clearance between the two cylinders of radii Ri

and R j with axial length L . Note that �R = Ri − R j

for internal contact and �R = Ri + R j for external
contact. ce is the restitution coefficient.

In Eq. (26), δ is the relative penetration depth, as
shown in Fig. 7b, δ̇ is the relative penetration veloc-
ity, and δ̇(−) is the initial impact velocity between the
bearing and journal.

When simulating the process of contact, how initial
contact is detected Flores [23] proposed a very good
method for detecting initial contact. The same method
is utilised in this study. Using Eq. (20), at time t− pen-
etration is defined as δ−, after time period �t at time
t+ penetration is defined as δ+,

δ−δ+ ≤ 0 (29)

When the condition of Eq. (29) is reached, this
means initial contact has occurred. Initial contact time
is

tc = t− + δ−

δ+ − δ− (t+ − t−) (30)
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δmax is the threshold for iteration time step adjustment
for simulating the contact process.

During the contact process, at the time increment of
t − �t to t , the penetration is δt−�t at time t − �t and
δt at time t . These are calculated by the coordinate vec-
tors of the bearing and journal centres using Eqs. (20)–
(22). The relative penetration velocity δ̇ is expressed
by:

δ̇ = (δt − δt−�t )/�t (31)

From Eqs. (20) and (31), it can be seen that if the con-
tact force expression is an explicit formulation for con-
tact force, the proposed motion model described in this
study canbe used to calculate it. If the contact force uses
implicit formulation, then the proposed motion model
described in this study cannot be used to calculate it. At
the same time, it can be seen that the proposed motion
model can simulate point contact mode. In respect of
line contact and surface contact modes, a new model
still needs to be researched.

A central difference time integrator is adopted in
this study for numerical implementations, and the size
of iteration time steps should be selected carefully.
When modelling the contact force, the iteration time
step size also needs to be carefully selected. Therefore,
restrictions were met from the time steps’ size of the
integrator and contact force calculation. This became a
very time-consuming method, which resulted in stan-
dard efficiency.

In order to avoid a highly nonlinear phenomenon
of the original Coulomb’s friction law, a modified
Coulomb law is used [47]

FT = −cfcdFN
VT

vT
(32)

where cf is the friction coefficient, VT is the relative
tangential velocity between the contact surfaces and
vT is magnitude. The dynamic correction coefficient
cd is

c =
⎧⎨
⎩
0 if vT ≤ v0
vT −v0
v1−v0

if v0 ≤ vT ≤ v1

1 if vT ≥ v1

(33)

where v0 and v1 are given tolerances for the tangential
velocity.

The velocity of the bearing and journal is given as

VB = (XBt − XBt−�t )/(2�t) (34)

VJ = (XJ t − XJ t−�t )/(2�t) (35)

Themagnitude of the relative velocity of the bearing
and journal is written as

vT =
√

(VB − VJ)T (VB − VJ) (36)

The relative tangential velocity VT is

VT = VB − VJ (37)

4 Numerical examples

The proposed motion model of the planar revolute
joint is expanded from the VFIFE theory. The sim-
ulation results are verified by comparison with pub-
lished results [14,48]. The slider-crankmechanism and
four-bar mechanism are often used to demonstrate the
dynamic response of a multibody system with clear-
ance joint. The four-bar mechanism is more complex
than the slider-crankmechanism.Therefore, the journal
motion of a revolute joint with clearance and a four-bar
mechanism with one clearance joint are studied.

4.1 Journal motion of a revolute joint with clearance

A revolute joint with clearance is used to simulate the
motion of the journal using the proposed motion model
of a planar revolute joint. A clearance joint exists, as
shown in Fig. 7a. The bearing is fixed. The journal
moves freely within the bearing boundary and exerts an
impact on the bearing. The initial horizontal velocity
v = 1m/s, the radius of journal RJ = 9.5mm, and the
radius of the bearing RB = 10mm. Young’s modulus
E = 2.07GPa and Poisson’s ratio vn = 0.3 are the
joint material parameters. The effect of gravity on the
journal is not considered.

When the Lankarani and Nikravesh contact force
model is employed, the generalised stiffness coefficient
used is 6.6× 1010 N/m1.5. The variation of the contact
force with time for the different coefficients of restitu-
tion is shown in Fig. 8a, and the hysteresis loops are
shown in Fig. 8b. Figure 8 is similar to Fig. 4 in pub-
lished results [48].
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Fig. 8 Influence of the
coefficient of restitution for
the Lankarani and
Nikravesh contact force
model. a Contact force
versus time.
b Force–penetration depth
relationship

Fig. 9 Force–penetration depth relationship

The enhanced cylindrical contact force model can
also account for dissipated energy from contact. This
method is an improvement on the Lankarani and
Nikravesh contact force model. Results of using the
enhanced model to calculate contact force of a revo-
lute joint with clearance are compared with those of the
Lankarani andNikraveshmodel. The penetration depth
of the enhanced model is smaller than that used in the
Lankarani andNikraveshmodel as shown in Fig. 9. The
comparison result is similar to the published results as
shown in Fig. 17 [14].

Figure 10 shows the variation of the contact force
during a period of time. The journal motion state
changes amongst the three knownmotion states, which
are the free flight, impact and continuous contact
motions, as shown in Fig. 7c. Figure 10 also shows
that the second peak is less than the first peak of the
curve, thereby indicating the loss of dissipation during
the impact process. The proposed model can simulate
different contact forcemodels. All results conclude that
the proposed model can simulate the impact process of
the clearance joint.

Fig. 10 Contact force and journal motion

4.2 Motion of four-bar mechanism with one clearance
joint

The planar academic four-bar mechanism is often used
as a model to demonstrate how a revolute joint with
clearance affects mechanism behaviour [48]. Figure 11
shows the initial simulation configuration of a four-bar
mechanism with one revolute joint clearance between
the coupler and follower. The mechanism consists of
crank, coupler and follower. Four joints exist in the
four-bar mechanism. Three ideal revolute joints con-
nect the ground to the crank, the crank to the cou-
pler and the ground to the follower. A revolute joint
with clearance exists between the coupler and follower.
For illustration, an enlarged clearance joint is shown
in Fig. 11, but the clearance of real joint is in fact
much smaller. The four-bar mechanism is used to cal-
culate the motion of the mechanism using the proposed
motionmodel of a planar revolute joint. The dimension
and mass of each body are listed in Table 1. The para-
meters used in the dynamic simulations are listed in
Table 2.
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Coupler

Crank

Follower

Ground
X

Y

900

Fig. 11 Four-bar mechanism with one revolute joint clearance
between the coupler and follower

Table 1 Dimension and mass of each body

Bodys Length (m) Mass (kg)

Distance between
ground and joints

0.150 –

Crank 0.400 3.120

Coupler 0.260 2.028

Follower 0.460 3.588

Table 2 Simulation parameters for the four-bar mechanism

Parameters Value (mm) Parameters Value

Bearing radius 10.0 Restitution
coefficient

0.9

Journal radius 9.8 Young’s
modulus

207GPa

Radial clearance 0.2 Poisson’s ratio 0.3

Each body of the four bars mechanism is consid-
ered as a rigid body. The motion of the mechanism
with one clearance joint is simulated, and that with all
ideal joints is also calculated using the proposedmodel.
The follower angular velocity, follower angular accel-
eration and journal centre path relative to the bearing
are obtained using the Lankarani and Nikravesh con-
tact force model, as shown in Fig. 12. The simulation
results of the mechanism are in accord with Fig. 6 in
published results [48].

When the enhanced model is used with a modified
Coulomb’s law, the normal contact force and penetra-

tion depth are obtained, as shown in Fig. 13. These
results are compared with results from the Lankarani
andNikraveshmodel simulation. As the results show, it
can be seen that the enhancedmodel’s calculation of the
penetration is smaller than the results of the calculation
of the Lankarani and Nikravesh model. The influence
of the friction force reduces the frequency of penetra-
tion. All results show that the proposed motion model
of the planar revolute joint can simulate and calculate
the mechanism’s motion.

5 Dynamic behaviour of a mechanism with three
clearance joints in continuous contact mode

Themotion of the journal inside the internal boundaries
of the bearing is classified into three different states:
the continuous contact, free flight and impact motions.
The 3m combinations of the motion modes exist in the
mechanism when the total number of the joints with
clearance ism, and the dynamic behaviour of themech-
anism is different across different combinations. With
some parameters, the journal of all the clearance joints
is always in continuous contact with the bearing wall
during the entire motion cycle of the mechanism. In
other words, only one type of motion mode arises in
all the clearance joints of the mechanism, namely the
continuous contact mode, throughout the entire motion
cycle. In this situation, the physical mechanism model
with multiple joints is similar to the model with ideal
joints. However, the numerical simulation results indi-
cate a significant dynamic difference between the two
mechanism models.

The four-bar mechanism with three revolute clear-
ance joints, named joints 1, 2 and 3, as shown in Fig. 14,
is presented and investigated in this work to demon-
strate how the clearance joints in the continuous contact
mode affect the dynamic behaviour of themechanisms.
In the four-bar mechanism, each body is considered
as a rigid body. The joint connecting the crank and
the ground is assumed to be ideal because of the fact
that, in the simulation, the crank is the driving link and
rotates at a constant angular velocity. Different numeri-
cal examples are conducted to quantify the influence of
the clearance size and input crank speed on the dynamic
response of the four-bar mechanism with three clear-
ance joints.

All the simulation parameters of the mechanism are
listed in Tables 1 and 2. The values of n, which is the
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Fig. 12 Simulation results
for the four-bar mechanism
with one clearance joint.
a Follower angular velocity.
b Follower angular
acceleration. c Journal
centre path relative to the
bearing

Fig. 13 Contact force and
penetration depth of the
four-bar mechanism with
one clearance joint.
a Contact force between the
bearing and journal.
b Penetration depth

constant angular velocity of crank, are 10π, 20π and
50π rad/s. The values of c, which is the clearance size
of joints, vary amongst 0.1, 0.2 and 0.5mm.The contact
force of clearance joint 2 and the angular acceleration
of the follower in the mechanism with three clearance
joints are selected for the study in this work. The modi-
fied Coulomb law [47] was chosen tomodel the friction
at the clearance joints, and a friction coefficient of 0.1
is used.

The dynamic influences of one cycle on the mech-
anism with clearance joints after the steady state is
reached are analysed against those obtained for the
mechanism with ideal joints. In order to better under-
stand the influences during the cycle, dimensionless

local influence parameters (LIPs) are redefined to eval-
uate how the level of the dynamic response maximum
is increased during a cycle [48].

The dimensionless LIP for the contact force of the
clearance joint is expressed by

LIP(F) = Fc,max − Fi,max

Fi,max
× 100 (38)

where Fc,max and Fi,max are the maximum contact
forces of the clearance joint and ideal joint, respec-
tively. Similarly, the dimensionless LIP for the angular
acceleration of the follower is expressed as
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Coupler

Crank

Follower

Ground
X

Y

900

Joint 1

Joint 2

Joint 3

Fig. 14 Four-bar mechanism with three clearance joints

LIP(a) = ac,max − ai,max

ai,max
× 100 (39)

where ac,max and ai,max are the maximum follower
angular accelerations of the mechanism with clearance
joints and ideal joints, respectively.

5.1 Influence of the clearance size of the joints on the
dynamic response of the mechanism under the
same crank speed

The influence of the clearance size of the joints on the
dynamic response of the four-bar mechanism is inves-
tigated in this subsection. The radial clearances of the
three clearance joints are identical and chosen to be 0.1,
0.2 and 0.5mm. The crank speed is equal to 50π rad/s.
Figure 15 demonstrates the journal centre path rela-
tive to the bearing centre of all the joints during the
entire motion cycle. The journal path outside the cir-
cle with a radius of clearance size means the journal is
in continuous contact motion. With the different clear-

Fig. 15 Journal centre path
relative to the bearing centre
for the three clearance joints
with different clearance
sizes (n = 50π rad/s). a
0.1mm. b 0.2mm. c 0.5mm
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Fig. 16 Contact force of
joint 2 under different
clearance sizes of the joints
(n = 50π rad/s). a 0.1mm.
b 0.2mm. c 0.5mm

Fig. 17 Acceleration of the
follower under different
clearance sizes of the joints
(n = 50π rad/s). a 0.1mm.
b 0.2mm. c 0.5mm
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Table 3 Dimensionless parameters of the joint 2

Clearance size (mm) LIP(F) (%) LIP(a) (%)

0.1 6.72 13.45

0.2 17.21 28.60

0.5 89.95 110.32

ance size of the joints, the continuous contact mode
arises between the journal and the bearing wall of the
three clearance joints during the entire motion cycle,
as shown in Fig. 15.

Figures 16 and 17 illustrate the contact force of joint
2 and the acceleration of the follower of the four-bar
mechanism under different values of the joint clear-
ance. The crank speed is chosen to be 50π rad/s.

Although the journal of all the three clearance joints
is always in contact with the bearing wall during the
entire motion cycle of the mechanism, the curves of

the reaction force of joint 2 and of the follower acceler-
ation in Figs. 16 and 17 are both fluctuating instead of
smooth, which generally happens in the curves of the
ideal four-bar mechanism. Therefore, the dynamic per-
formances of themechanismwith all clearance joints in
continuous contact mode are different from those of the
mechanism with all ideal joints. Figures 16 and 17 also
indicate that differences in clearance size significantly
influence the joint contact force and the follower accel-
eration. To quantify these differences during a motion
cycle, the dimensionless LIPs evaluating the contact
force of joint 2 and the follower acceleration are listed
in Table 3, respectively.

The values listed in Table 3 show that the values of
the dimensionless parameters of the joint contact force
and the follower acceleration both increase with the
clearance size. Hence, the local fluctuating characteris-
tics of the mechanism increase with the clearance size.
Similar behaviours of slider-crankmechanismwith one
clearance joint are reported [14].

Fig. 18 Journal centre path
relative to the bearing centre
of the three clearance joints
under different crank speeds
(c = 0.2mm). a 10π .
b 20π . c 50π

123



Vector form intrinsic finite element method 437

Fig. 19 Contact force of
joint 2 under different crank
speeds (c = 0.2mm).
a 10π . b 20π . c 50π

The analyses immediately show that strong vibra-
tion exists in the four-bar mechanism with clearance
joints after the motion has been triggered. The vibra-
tion then gradually declines and finally stabilises. The
mechanism behaviour tends to be periodic. The peri-
odic vibration after the steady state is reached is caused
by the initial vibration of the mechanism. The initial
vibration increases with the size of the joint clearance.
These are reasonable explanations for the results.

5.2 Influence of the input crank speed on the dynamic
response of the mechanism under the same
clearance size

In this subsection, the influence of the input crank speed
on the dynamic response of the four-bar mechanism is
investigated. The radial clearance of the three clearance
joints is identical and is equal to 0.2mm. The values of
the crank speed are chosen to be 10, 20 and 50π rad/s.
Figure 18 demonstrates that, during the entire motion
cycle, only the continuous contactmode arises between
the journal and the bearing wall of the three clearance
joints.

Figures 19 and 20 illustrate the contact force of joint
2 and the acceleration of the follower under different
crank speeds. The clearance size of the three joints is
chosen to be 0.2mm.

Figures 19 and 20 show that the differences in crank
speed significantly influence the joint contact force and
the follower acceleration. The dimensionless LIPs that
evaluate the contact force of joint 2 and the follower
acceleration are listed in Table 4, respectively.

These values show that the dimensionless parame-
ters of the joint contact force and the follower accel-
eration both decrease with an increase in crank speed.
Thus, the local fluctuating characteristics of the mech-
anism decline with an increase in crank speed. Simula-
tion results of this study are similar to results shown in
Figs. 11 and 12 of slider-crank mechanisms with one
clearance joint [33].

The values of the contact force in the clearance joints
and follower acceleration significantly increase with
an increase in crank speed. The contact force in the
clearance joints must increase with the crank speed
because the greater the acceleration of the bodies of the
mechanism, the greater the required force. The relative
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Fig. 20 Acceleration of the
follower under different
crank speeds (c = 0.2mm).
a 10π . b 20π . c 50π

Table 4 Dimensionless parameters of the joint 2

Crank speed (rad/s) LIP(F) (%) LIP(a) (%)

10π 69.67 91.14

20π 42.71 49.84

50π 17.21 28.60

penetration depth between the journal and the bearing
consequently increases with crank speed, as shown in
Fig. 18. Collision time becomes considerable with an
increase in penetration depth; therefore, the change in
the contact force becomes slow. The dynamic perfor-
mances under the contact force last for a long time.
The difference between the dynamic performance of
the mechanism with all clearance joints in continuous
contact mode and that of the mechanism with all ideal
joints becomes insignificant.

6 Conclusions

A new computational methodology is presented for the
dynamic analysis of multibody systems with multiple

clearance joints. The VFIFE method is employed to
simulate the motion of the mechanism without utilis-
ing matrix calculation. A motion model for ideal and
clearance joints is proposed. The motions of the jour-
nal and bearing of joint are modelled and the motion-
governing equations are formulated. The motion equa-
tions for the journal and bearing of joints are simply
added to the motion equation group of the mechanism.
With an increase in the number of joints, the number of
the equations of motion for the mechanism with joints
increases as well, which in turn increases the amount
of calculation, but without increasing the complexity
of solving the equations. This characteristic is benefi-
cial for solving the motion of a mechanism with mul-
tiple clearance joints. The simulation results for the
proposed joint model are verified and agree well with
published results.

With some simulation parameters in the demon-
strated examples, only the continuous contact mode
between the journal and the bearing arises, which can
be confirmed from the relative path of the journal cen-
tre to the bearing centre of the three clearance joints.
The analyses indicate that the behaviour of the four-bar
mechanism with multiple clearance joints tends to be
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periodic after reaching the steady state. The curves of
the joint reaction force and follower acceleration dur-
ing one cycle are both fluctuating and different from
those of the mechanism with ideal joints, which are
smooth. This particular issue has not been addressed in
other studies.

The level of the periodic vibration depends on the
crank speed and the clearance size of joints. For the
joint contact force and the follower acceleration, the
local fluctuating characteristics all increase with the
clearance size under the same crank speed. Although
the absolute values of the joint contact force and fol-
lower acceleration both increase with the crank speed
under the same clearance size, the local fluctuating
characteristics decline with an increase in the crank
speed.
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