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Abstract The kinetostatic model of overconstrained
lower mobility parallel manipulators (PMs) is estab-
lished in this paper. Based on this model, the actuator
wrenches and the constrained wrenches can be com-
pletely derived, and the stiffness and the deformation
of each leg and the moving platform can be obtained.
A novel 2-RPU + UPR (revolute joint-prismatic joint-
universal joint+universal joint-prismatic joint-revolute
joint) PM is presented to illustrate the approach to solv-
ing the kinetostatic of overconstrained PMs. Due to the
particular arrangement of the joints in each legs, this
PM provides six constraints to the moving platform,
whereas three of them are overconstraints. The detailed
kinetostatic of this PM is obtained based on the estab-
lished model. The unified stiffness finite element (FE)
model for various PMs is established, and the stiffness
of the 2-RPU + UPR PM is verified.
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1 Introduction

In recent years, lower mobility parallel manipulators
(PMs) have been extensively studied due to their inter-
esting properties and potential engineering values [1–
3]. Among them, some overconstrained PMs have
drawn particular interests from numerous researchers
including mobility, type synthesis, kinematics and sin-
gularity analysis [4–9]. In the aspect of overconstrained
PMs, Huang et al. [3,4] investigated the mobility
of overconstrained PMs using screw theory and suc-
cessfully solved the mobility problem of the classi-
cal DELASSUS, SARRUS mechanisms as well as
the modern 3-RRRH PM with overconstraints using
an identical formula. Refaat et al. [5] synthesized
asymmetrical 3-degree-of-freedom (DOF) rotational-
translational PMs with overconstraints based on Lie
group theory. Fang and Tsai [6] synthesized a class
of overconstrained PMs using the theory of reciprocal
screws. Li et al. [7–9] studied the mobility, kinematics
and dynamics of 3-DOF translational PMs with three
overconstraints using screw theory. Amine et al. [10]
investigated singularity of a 5-DOF overconstrained
PM using Grassmann–Cayley algebra and Grassmann
geometry. Wu et al. [11] studied the effect of structure
parameters on the dynamic characteristics of an over-
constrained PRRRP PM.

The kinetostatic analysis is a traditional and a very
important topic in mechanism research [12]. In this
aspect, Zhang et al. [13] established kinetostatic model
for some PMs which have passive legs. In their work,
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a lumped kinetostatic model was proposed in order
to account for joint and link compliances. Cervantes
and Rico [14] studied the statics of spatial PMs by
means of the principle of virtual work, equipped with
a recursive and systematic formulation. In their study,
all internal forces and non-working external constraint
forces were not considered. Li et al. [22] derived a
stiffness matrix of a 3-DOF 3-PUU PM based on an
alternative approach considering actuations and con-
straints, and the compliances subject to both actuators
and legs. Hu et al. [16,17] studied the kinetostatic of
some PMs with non-overconstraints. Hong and Choi
[18] solved the statics of lower mobility PMs consid-
ering feasible controllable loads space. Klimchik et al.
[19] presented an advanced stiffness modeling tech-
nique for PMs composed of perfect and non-perfect
serial chains whose geometry differs from the nominal
one. The developed technique contributed both to serial
and parallel manipulators under internal and external
loadings. Zi et al. [20,21] studied the dynamics of coop-
erative multiple mobile cranes, which have the charac-
ters of both series and parallel manipulators. In these
works, the complete dynamic model of nine input and
three-output systemwas established based onLagrange
equation. Sapio et al. [22] presented a novel approach to
effectively address themotion control of holonomically
constrained multibody systems, which allows for the
simultaneous specification of desired constraint forces.

The previous works concerned with kinetostatic
mainly focused on the non-overconstrained PMs, and
most of the previous works only solve the actuator
wenches applied on the PMs. However, there were few
efforts made toward the kinetostatic of overconstrained
PMs. In this aspect, Huang [23,24] solved all the con-
straint reactions aswell as the active forces of PMswith
overconstraints via reciprocal-screw theory. Although
the study considered reducing the number of unknown
constraint reactions, there were still large computing
since all the joint reactions were computed based on
the loading characteristics of different joints. Due to
the complicated coupling and constraints in the over-
constrained PMs, there are highly coupled relations
between constrained wrenches and the deformations in
the legs. The complicated constraints bring difficulties
for solving the constrained wrenches. Therefore, how
to simplify the action effect of constrained wrenches
and reduce the number of unknowns and the number
of simultaneous equilibrium equations is the key issue
of the kinetostatic for constrained PMs. Based on con-

sidering the characteristic of constrained forces, and
through solving the coupling relation of the constrained
wrenches and the deformations, the kinetostatic issue
of constrained PMs is studied in this paper.

The lowermobility PMs have various structures, and
this class of manipulators has been widely studied and
applied. However, up to now, there is no simple and
unified approach for solving the kinetostatic of over-
constrained lower mobility PMs. For this reason, this
paper aims at establishing a unified and simple kine-
tostatic model for the lower mobility overconstrained
PMs with linear active legs.

In order to illustrate the unified kinetostaticmodel of
overconstrained PMs, a novel overconstrained 2-RPU
+ UPR PM with two rotations and one translation is
presented. For this PM, three constrained forces and
three constrained torques are simultaneously existed.
Thus, this PM is a good example to illustrate the kine-
tostatic model for overconstrained PMs .

The remainder of this paper is organized as follows.
In Sect. 2, the unified kinetostaticmodel of the overcon-
strained PMs is established. In Sect. 3, after a descrip-
tion and constraint analysis of the 2-RPU + UPR PM
in Sect. 3.1, the kinematics of this PM is described in
Sect. 3.2, and the kinetostatic of this PM is analyzed
based on the established kinetostaticmodel in Sect. 3.3.
In Sect. 4, the unified CAD model used for finite ele-
ment (FE) analysis for the PMs with various structures
is established. In Sect. 5, a numerical example con-
cerned with the kinetostatic of the 2-RPU + UPR PM
is provided, and the result is verified by the FE model.
Finally, some concluding remarks are given in Sect. 6.

2 Unified kinetostatic model of overconstrained
PMs

A general n-DOF overconstrained PM with n linear
active legs possesses a fixed base B with O as its center,
a moving platform m with o as its center, and n XPY-
type linear legs ri (i = 1, 2, . . ., n < 6) with the linear
actuators, where X and Y are selected from R, U and S
joints. Each of ri connectsm at point ai with B at point
Ai .

Let v and ω be the linear and angular velocity of
m, respectively. For a general PM with n linear active
legs, the inverse actuation velocity can be obtained by
following formula [25]:
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vr = Jα

[
v
ω

]
, vr =

⎡
⎢⎣

vr1
...

vrn

⎤
⎥⎦ ,

Jα =
⎡
⎢⎣
dT1 (e1 × d1)

T

...
...

dTn (en × dn)
T

⎤
⎥⎦ (1a)

where di (i = 1, 2, . . ., n) denotes the unit vector of ri
and ei denotes the vector from o to ai . vri (1, . . . , n)

are the active velocities of actuators.
The relation between the six dimensional velocity

and the n dimensional independent velocity of themov-
ing platform can be expressed as [25][
v
ω

]
= Joθ̇ (1b)

where Jo is a 6 × n form matrix which is defined as
velocity decoupling matrix for lower mobility PMs. θ
is the vector formed by n independent pose parameters
of the moving platform. θ̇ is velocity of θ .

Let Fo and To be the applied force and torque
imposed atm. Based onEqs. (1a), (1b) and the principle
of virtue work, it leads

Fr = −Jo(JαJo)−1
[
Fo

To

]
,Fr =

⎡
⎢⎣

Fr1
...

Frn

⎤
⎥⎦ (1c)

where Fri (1,…, n) are the actuatorwrenches applied to
actuators. Equation (1c) is the statics model for solving
the actuator wrenches for general PMs. The actuator
wrenches for the overconstrained PMs can be solved
from Eq. (1c). However, the constrained wrenches are
difficult to determine due to the overconstraints existed.

For the overconstrained lower mobility PMs, the
constrained wrenches (forces/torques) exist in the legs.
The constrained wrenches can be determined by the
following rules [25]:

(a) In each leg of lower mobility PMs, the con-
strained forces must be perpendicular to all pris-
matic joints andmust be coplanarwith all revolute
joints, respectively.

(b) In each leg of lower mobility PMs, the con-
strained torques must be perpendicular to all rev-
olute joints.

Support that there are m constrained forces and q
constrained torques existed in an overconstrained PM.
Let Fpi (i = 1, 2, . . .,m) be the constrained forces in

the PM, f i (i = 1, 2, . . .,m) be the unit vector of Fpi ,
di (i = 1, 2, . . .,m) be the vector from o to Fpi . Let
Tpi (i = 1, 2, . . ., q) be the constrained torques in the
PM, and τ i (i = 1, 2, . . ., q) be the unit vector of Tpi .

The constrained wrenches in each leg have the prop-
erty that they do no work to each joint and thus they do
no work to the moving platform. From this concept, it
leads to:

FPi f i · v + (FPidi × f i ) · ω = 0(i = 1, . . . ,m)

(2a)

TPiτ i · ω = 0 (i = 1, . . . , q) (2b)

By combining Eqs. (2a) and (2b), it leads to

0m+q = Jv

[
v

ω

]
, Jv =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

f T1 (d1 × f 1)
T

...
...

f Tm (dm × fm)T

01×3 τ T
1

...
...

01×3 τ T
q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2c)

Suppose that the moving platform m is elastically sus-
pended by n elastic linear legs and all joints in each leg
are rigid body. The applied wrench is balanced by the
actuator wrenches and the constrained wrenches in the
PM. Thus, the forward statics of the overconstrained
PMs can be expressed as follows:

[
Fo

To

]
= G6×(m+n+q)

⎡
⎣ Fr

Fp

T p

⎤
⎦ ,Fr =

⎡
⎢⎣
Fr1
.
.
.

Frn

⎤
⎥⎦ ,

Fp =
⎡
⎢⎣

Fp1
.
.
.

Fpm

⎤
⎥⎦ ,T p =

⎡
⎢⎣
Tp1
.
.
.

Tpq

⎤
⎥⎦ ,G6×(m+n+q) =

[
Jα

Jv

]T

G6×(m+n+q)

=
[

d1 · · · dn f 1 · · · fm 03×1 · · · 03×1
e1 × d1 · · · en × dn d1 × f 1 · · · dm × fm τ 1 · · · τ q

]
,

m + n + q > 6 (3)

The constrained wrenches for the overconstrained
PMs produce complicated deformations in their cor-
responding legs. Suppose that Fp1, . . ., Fpi , . . . , Fpm

produce s1, . . . , si , . . . , sm(si >0) deformations, and
Tp1, . . . , Tpi , . . . , Tpq produce u1, . . . , ui , . . . , uq
(u1, . . . , uq > 0) deformations respectively. Where
si (i = 1, . . . ,m) denotes the number of deformations
produced by Fpi , ui (i = 1, . . . , q) denotes the number
of deformations produced by Tpi .

Let Fpi ,1, . . . , Fpi ,si be the components of Fpi cor-
responding to si deformations. Let Tpi ,1, . . . , Tpi ,ui be
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the components of Tpi corresponding to ui deforma-
tions.

The relation of Fpi (i = 1, . . . ,m) and their com-
ponents Fpi ,1, . . . , Fpi ,si can be expressed as follows

Fp1,1 = b1,1Fp1 · · · Fp1,s1 = b1,s1Fp1
...

Fpm ,1 = bm,1Fpm · · · Fpm ,sm = bm,sm Fpm

(4a)

where bi, j (i = 1, . . .m; j = 1, . . . , si ) denotes the
coefficient between Fpi and Fpi, j .

The relation of Tpi (i = 1, . . . , q) and their compo-
nents Tpi ,1, . . . , Tpi ,ui can be expressed as follows

Tp1,1 = c1,1Tp1 · · · Tp1,s1 = c1,u1Tp1
...

Tpq ,1 = cq,1Tpq · · · Tpq ,sq = cq,uq Tpq

(4b)

where ci, j (i = 1, . . . , q; j = 1, . . . , ui ) denotes the
coefficient between Tpi and Tpi, j .

From Eqs. (4a) and (4b), it leads to

Fw = W

⎡
⎣Fr

Fp

Tp

⎤
⎦ ,W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

En×n 0n×m 0n×q

0s1×n W f1 0s1×q
...

...
...

0sm×n W fm 0sm×q

0u1×n 0u1×m Wt1
...

...
...

0uq×n 0uq×m Wtq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Fw = [
Fr1 . . . Frn Fp1,1 . . . Fp1,s1 . . . Fpm ,1 . . . Fpm ,sm

Tp1,1 . . . Tp1,u1 . . . Tpq ,1 . . . Tpq ,uq

]T (4c)

where

W f1 =
⎡
⎢⎣

b1,1 0 · · · 0
...

...
...

...

b1,s1 0 · · · 0

⎤
⎥⎦
s1×m

, . . . ,

W fi =
⎡
⎢⎣
0 · · · bi,1 0 · · · 0
...

...

0 · · · bi,si 0 · · · 0

⎤
⎥⎦
si×m

, . . . ,

W fm =
⎡
⎢⎣
0 0 · · · bm,1
...

...
...

...

0 0 · · · bm,sm

⎤
⎥⎦
sm×m

Wt1 =
⎡
⎢⎣

c1,1 0 · · · 0
...

...
...

...

c1,u1 0 · · · 0

⎤
⎥⎦
u1×q

, . . . ,

Wti =
⎡
⎢⎣
0 · · · ci,1 0 · · · 0
...

...

0 · · · ci,ui 0 · · · 0

⎤
⎥⎦
ui×q

, . . . ,

Wtq =
⎡
⎢⎣
0 0 · · · cq,1
...

...
...

...

0 0 · · · cq,uq

⎤
⎥⎦
uq×q

Here, Fw is a (n + s1 + · · · + sm + u1 + · · · + uq) × 1
form vector, W is a (n + s1 + · · · + sm + u1 + · · · +
uq)× (m + n + q) form matrix, En×n is an n × n form
unit matrix. W f i denotes the i th si × m form matrix
with its i th column components being bi,1, . . . , bi,si
in sequence and the other components being 0. Wti

denotes the i th ui × q form matrix with its i th column
components being ci,1, . . . , ci,uq in sequence and the
other components being 0.

The activewrenches Fri (i = 1, . . . , n) produce lon-
gitudinal deformations, and it leads to

Fr1 = kr1δdr1 · · · Frn = krnδdrn (5)

where kri (i = 1, . . . , n) denotes the coefficient
between Fri and δdri .

Let δdpi ,1, . . . , δdpi ,si (i = 1, . . . ,m) be the defor-
mations produced by Fpi ,1, . . . , Fpi ,si , respectively.
Let δdti ,1, . . . , δdti ,ui (i = 1, . . . , q) be the deforma-
tions produced by Tpi ,1, . . . , Tpi ,ui , respectively.

Based on the theory of mechanics of material, the
following equations can be obtained

Fp1,1 = k f1,1δd f1,1 · · · Fp1,s1
= k f1,s1δd f1,s1

...

Fpm ,1 = k fm ,1δd fm ,1 · · · Fpm,sm = k fm,sm δd fm,sm

(6a)

where k f i, j ( j = 1, . . . , si ) denotes the coefficient
between δd f i, j and Fpi, j .

Tp1,1 = kt1,1δdt1,1 · · · Tp1,u1 = kt1,u1δdt1,u1
...

Tpq ,1 = ktq ,1δdtq ,1 · · · Tpq ,uq = ktq ,uq δdtq ,uq

(6b)

where kti, j ( j = 1, . . . , ui ) denotes the coefficient
between δdti, j and Tpi, j .

From Eqs. (5), (6a) and (6b), it leads to

Fw = Kwδdr ,

Kw = diag
[
kr1 . . . krn k f1,1 . . . k f1,s1 . . . k fm ,1 . . .

k fm ,sm kt1,1 . . . kt1,u1 . . . ktq ,1 . . . ktq ,uq

]
,

δdr = [
dr1 . . . drn d f1,1 . . . d f1,s1 . . . d fm ,1 . . .

d fm ,sm dt1,1 . . . dt1,u1 . . . dtq ,1 . . . dtq ,uq

]T (6c)
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where Kw is a (n + s1 + · · · + sm + u1+, · · · + uq) ×
(n + s1+, · · · + sm + u1+, · · · + uq) form matrix.

Let δp = [δx δy δz]T and δΦ = [δΦx δΦy δΦz]T
be the linear and angle deformations of moving plat-
form. For the overconstrained PMs, the applied wrench
and the deformation of the moving platform can be
expressed as:
[
Fo

To

]
= K6×6

[
δp
δΦ

]
(7)

Here, K6×6 is the stiffness matrix of the overcon-
strained PMs.

Based on the principle of virtue work, it leads to

FT
wδdr = [

FT
o TT

o

] [
δp
δΦ

]
(8)

From Eqs. (3), (4c) and (8), it leads to
[
FT
r FT

p TT
p

]
WTδdr

= [
FT
r FT

p TT
p

]
GT

6×(m+n+q)

[
δp
δΦ

]

(9)

From Eq. (9), it leads to

WTδdr = GT
6×(m+n+q)

[
δp
δΦ

]
(10)

From Eqs. (4c), (6c) and (10), it leads to

WTCwFw = WTCwW

⎡
⎣ Fr

Fp

T p

⎤
⎦

= GT
6×(m+n+q)

[
δp
δΦ

]
, Cw = K−1

w (11)

From Eq. (11), it leads to
⎡
⎣ Fr

Fp

T p

⎤
⎦ =

(
WTCwW

)−1
GT

6×(m+n+q)

[
δp
δΦ

]
(12)

Multiplying both sides of Eq. (12) byG6×(m+n+q) and
combining with Eq. (3), it leads to

K6×6 = G6×(m+n+q)

(
WTCwW

)−1
GT

6×(m+n+q)

(13)

Multiplying both sides of Eq. (12) byW and combining
with Eqs. (4c) and (7), it leads to

Fw = W
(
WTCwW

)−1
GT

6×(m+n+q)C6×6

[
Fo

To

]

(14)

From Eq. (14), the statics for the overconstrained PMs
can be completely solved.

3 Kinetostatic analysis of the 2-RPU + UPR PM

3.1 Description and constraint analysis of the 2-RPU
+ UPR PM

In this section, a novel 2-UPR+UPR PM is presented
to illustrate the approach for solving the kinetostatic of
overconstrained PMs. The schematic diagram of the 2-
RPU + UPR PM is shown in Fig. 1. This manipulator
consists of a base B, amoving platformm, two identical
RPU-type active legs ri (i = 1, 3), and one UPR-type
active leg r2. Here, B is a regular triangle with O as its
center and Ai (i = 1, 2, 3) as its three vertices. m is a
regular triangle with o as its center and ai (i = 1, 2, 3)
as its three vertices. Each RPU leg connects B to m by
a revolute (R) joint followed by a prismatic (P) joint
and a universal (U) joint in sequence, where the P joint
is driven by a lead screw linear actuator and U joint
is composed of two crossed R joints. The UPR leg
connects B to the m by a U joint followed by a P joint
and an R joint in sequence.

R33

R13

R21

m

B

R11, A1

U, A2

a2, R23

P, r2
x

z

R31, A3

U, a3

U, a1

Z

O
Y

X

P, r1

y

Tp3

Tp1

R22

R12

R32

Fp3

Fp1

Fp2

Tp2
P, r3

o

Fig. 1 Sketch of 2-RPU + UPR PM
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As depicted in Fig. 1, we assign a fixed frame O-
XY Z at the centered point O of B, and a moving
frame o-xyz on the moving platform at the centered
point o of m. Let ⊥ be a perpendicular constraint, ‖
be a parallel constraint and | be a collinear constraint.
Some conditions (x‖a1a3, y⊥a1a3, z⊥m, X‖A1A3,
Y⊥A1A3, Z⊥B) are satisfied for the coordinate axes.
Let Ri j (i = 1, 2, 3; j = 1, 2, . . .) denotes j th R joint
in the i th leg ri .

Some geometrical constraints are satisfied for the
2-RPU + UPR PM as follows (see Fig. 1):

Ri1⊥A1A3, Ri2⊥ri , Ri1‖Ri2, Ri2⊥Ri3,

Ri3|a1a3(i = 1, 3), R21|A2O, R21⊥R22,

R22⊥r2, R22‖R23‖a1a3 (15)

Based on the rules (a) and (b) for determining con-
strained wrenches, for the i th RPU-type leg, one con-
strained torque Tpi (i = 1, 3)which is perpendicular to
Ri1, Ri2 and Ri3 and one constrained force Fpi which
is parallel with Ri1 and passes through the center of
U joint can be determined. In addition, for the UPR-
type leg, one constrained torqueTp2 which is perpen-
dicular to Ri1, Ri2 and Ri3 and one constrained force
Fp2 which is parallel with R23 and passes through the
center of U joint can be determined (see Fig. 1). The
unit vectors τ i of Tpi (i = 1, 2, 3) and the unit vectors
f i (i = 1, 2, 3) of Fpi can be determined as follows:

τ i = Ri2 × Ri3(i = 1, 3),

τ 2 = Ri1 × Ri2, f i = Ri1

= Y (i = 1, 3), f 2 = R23 = x (16a)

Here, Ri j denotes the vector of Ri j . From Eqs. (15)
and (16a), it leads to

Tp1‖Tp2‖Tp3, Fp1‖Fp3, Fp1⊥Fp2,

Tpi⊥Fpi (i = 1, 2, 3) (16b)

The constrained wrenches in each leg have the prop-
erty that they do no work to each joint and thus they do
no work to m. From this concept, it leads to:

06×1 = Jv

[
v
ω

]
, Jv =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f T1 (d1 × f 1)
T

0T3×1 (R12 × R13)
T

f T2 (d2 × f 2)
T

0T3×1 (R21 × R22)
T

f T3 (d3 × f 3)
T

0T3×1 (R32 × R33)
T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

di = ai − o, d2 = A2 − o (17)

Equation (17) denotes the velocity constraint equation,
and Jv denotes the constraint Jacobian for the 2-RPU
+ UPR PM.

Let Jv,i (i = 1, . . . , 6) be the i th row of matrix Jv .
From Eqs. (15), (16a), (16b) and (17), it leads to

Jv,2 = Jv,4 = Jv,6, (Jv,5 − Jv,2)/a1a3 = Jv0,2 (18)

From Eq. (18), it known that Jv,1, Jv,2, Jv,3, Jv,4,
Jv,5 and Jv,6 are linear dependent and the number of
independent items is 3. Thus, there are 3 overcon-
straints in the 2-RPU + UPR PM.

In the 2-RPU + UPR PM, there are 1 base B, 1
moving platform m, 3 cylinders, and 3 piston-rods and
thus the number of links is n = 8. There are 3 prismatic
joints, 3 revolute joints, 3 universal joints in this PM,
and thus the number of joints is g = 9. The DOF of
this manipulator is calculated as below [3,4]

M = 6(n − g − 1) +
g∑

i=1

ki + ρ − η = 3 (19)

here, k1 = 1 is the DOF of revolute joint, k2 = 1 is the
DOF of prismatic joint, k3 = 2 is the DOF of universal
joint. The number of overconstraints is ρ = 3, and the
number of redundancy DOF is η = 0.

Since the constrained wrenches do no work to m,
the translation ofm must be perpendicular to three con-
strained forces. Thus, it is easy to determine that this
PM has only one translation, which is perpendicular to
R11(Fp1), R23(Fp2), and R31(Fp3), the remained two
independent motions are two rotations. From the prop-
erties of constrained wrenches, it is known that the first
rotational axis must be located on the plane determined
by Fp1 and Fp3, and parallel with Fp2, the second rota-
tional axis must passes through Fp2 and parallel with
Fpi (i = 1, 3).

3.2 Inverse kinematics of the 2-RPU + UPR PM

The unit vectors Rik of Rik(i = 1, 2, 3; k = 1, 2, 3)
for the 2-RPU + UPR PM in {B} can be expressed as

R11 = R31 = R12 = R32 = R21 = [
0 1 0

]T
,

R13 = R33 = x,R22 = R23 = x (20a)

123



Kinetostatic model of overconstrained lower mobility parallel manipulators 315

From Eqs. (15) and (20a), we obtain

R12 · R13 = 0,R32 · R33 = 0,

a1A1 · R11 = 0, a3A3 · R31 = 0,R21 · R22 = 0

(20b)

The position vectors of Ai (i = 1, 2, 3) in {B} can be
expressed in matrix form as

A1 = 1

2

⎡
⎣ qE

−E
0

⎤
⎦ , A2 =

⎡
⎣ 0
E
0

⎤
⎦ ,

A3 = 1

2

⎡
⎣−qE

−E
0

⎤
⎦ , q = 31/2 (21a)

The position vectors of ai (i = 1, 2, 3) in {m} can be
expressed in matrix form as

ma1 = 1

2

⎡
⎣ qe

−e
0

⎤
⎦ , ma2 =

⎡
⎣0
e
0

⎤
⎦ ,

ma3 = 1

2

⎡
⎣−qe

−e
0

⎤
⎦ (21b)

here, E is the distance from point O to Ai , e is the
distance from point o to ai .

The position vectors of ai (i = 1, 2, 3) in {B} can be
expressed as

ai =
⎡
⎣ Xai

Yai
Zai

⎤
⎦ = B

mR
mai + o, B

mR =
⎡
⎣ xl yl zl
xm ym zm
xn yn zn

⎤
⎦ ,

o =
⎡
⎣ Xo

Yo
Zo

⎤
⎦ (21c)

From Eqs. (20a) to (21c), we obtain

aexm/2 − eym/2 + Yo + E/2 = 0 (22a)

−aexm/2 − eym/2 + Yo + E/2 = 0 (22b)

(eyl + Xo)xl + (eym + Yo − E)xm

+(eyn + Zo)xn = 0 (22c)

From Eqs. (22a), (22b) and (22c), we obtain

xm = 0, Xo = Zozl/zn,Yo = (eym − E)/2 (23)

Let the rotational transformation matrix B
mR be formed

by YZX-type Euler rotations and α, β, and λ be three
Euler angles about corresponding axes, we obtain

B
mR =

⎡
⎣ cαcβ −cαsβcλ + sαsλ cαsβsλ + sαcλ

sβ cβcλ −cβsλ
−sαcβ sαsβcλ + cαsλ −sαsβsλ + cαcλ

⎤
⎦
(24)

here, sφ = sin φ, cφ = cosφ, φ is one of (α, β, λ).
From Eqs. (23) and (24), we obtain

β = 0 (25)

From Eqs. (24) and (25), we obtain

B
mR =

⎡
⎣ cα sαsλ sαcλ

0 cλ −sλ
−sα cαsλ cαcλ

⎤
⎦ (26)

From Eqs. (23) and (26), we obtain

Xo = Zotgα, Yo = (ecλ − E)/2 (27)

Equations (26) and (27) are the pose decoupling equa-
tions for the 2-RPU + UPR PM. From Eqs. (26) and
(27), the position and orientation of this PM can be
expressed by α, λ and Zo.

From Eqs. (21), (21b), (21c), (26), and (27), the
inverse kinematics can be expressed as follows:

r21 = Z2
0(1 + tg2α) + E2 + e2 − (E − ecλ)

2/4

− Z0tgα(qE + esλ/sα)

+ eE(qsαsλ − 3cα − cλ)/2 (28a)

r22 = Z2
0(1 + tg2α) + E2 + e2 + 5(E − ecλ)

2/4

+ 2eZ0sλ/cα − 2eEcλ (28b)

r23 = Z2
0(1 + tg2α) + E2 + e2 − (E − ecλ)

2/4

+ Z0tgα(qE − esλ/sα) − eE(qsαsλ

+ 3cα + cλ)/2 (28c)

3.3 Kinetostatic analysis of 2-RPU + UPR PM

Based on Eqs. (1b), (26) and (27), it leads to

[
v
ω

]
= Joθ̇ , Jo =

⎡
⎢⎢⎢⎢⎢⎢⎣

Zo(secα)2 0 tanα

0 −esλ/2 0
0 0 1
0 cα 0
1 0 0
0 −sα 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

θ̇ =
⎡
⎣ α̇

λ̇

Żo

⎤
⎦ (29a)
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From Eqs. (1c) and (29a), the actuator forces of the
2-UPR + UPR PM can be expressed as

Fr = −Jo(JαJo)−1
[
Fo
To

]
,Fr =

⎡
⎣ Fr1
Fr2
Fr3

⎤
⎦ ,

Jα =

⎡
⎢⎢⎢⎢⎣

dT1 (e1 × d1)
T

dT2 (e2 × d2)
T

dT3 (e3 × d3)
T

⎤
⎥⎥⎥⎥⎦ (29b)

Equation (29b) can only solve the actuator forces of the
2-UPR+UPR PM.

From Eqs. (3) and (17), it leads to

[
Fo

To

]
= G6×9Fr ,

⎡
⎣ Fr

Fp

T p

⎤
⎦ ,Fr =

⎡
⎣ Fr1
Fr2
Fr3

⎤
⎦ ,

Fp =
⎡
⎣ Fp1
Fp2
Fp3

⎤
⎦ ,T p =

⎡
⎣ Tp1

Tp2
Tp3

⎤
⎦ ,

GT
6×9 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dT1 (e1 × d1)
T

dT2 (e2 × d2)
T

dT3 (e3 × d3)
T

f T1 (d1 × f 1)
T

f T2 (d2 × f 2)
T

f T3 (d3 × f 3)
T

0T3×1 (R11 × R13)
T

0T3×1 (R21 × R23)
T

0T3×1 (R31 × R32)
T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(29c)

Each constrained force Fpi (i = 1, 3) in the RPU-type
leg only produce one deformation, and it leads to

si = 1, Fpi ,1 = Fpi , bi,1 = 1 (i = 1, 3) (30a)

For the UPR leg, the constrained forces Fp2 at U
joint can be equivalent to one force Fp2,1 at a2, which
is parallel with Fp2 and active in the opposite direction.
Thus, it leads to

Fp2,1 = Fp2, Fp2,1 = −Fp2, b2,1 = −1 (30b)

Fp2 produces only one flexibility deformation.
Thus, s2 = 1.

The constrained torque Tpi (i = 1, 2, 3) in the i th
leg can be decomposed into two elements Tpi,1 which
is along ri , and Tpi,2 which is perpendicular to ri (see
Fig. 2a, b). Thus, ui = 2.

R23

U, A2

a2

P, r2

R22

Fp2

Tp2

R21

Tp2,2

Tp2,1

Fp2, 1

Ri2

Ai, Ri1

P,ri

Tpi, 2ai,U

Tpi
Tpi, 1

Ri3
Fpi

(a) (b)

Fig. 2 a The constrained torque situation of RPU leg, b the
constrained torque situation of UPR leg

Let τ pi,1 and τ pi,2 be the unit vector of Tpi,1 and
Tpi,2, respectively. From the geometrical constraints in
the RPU leg, it leads to

τ pi ,1 = di , τ pi ,2⊥di , τ i⊥Ri2, τ pi ,1⊥Ri2 (31a)

τ i , τ pi,1 and τ pi,2 are in the same plane. The following
geometrical constraints must be satisfied

τ pi ,2⊥Ri2, τ pi ,2 = di × Ri2 (31b)

From Eq. (31a), Tpi,1 can be expressed as follows:

T pi ,1 = Tpi ,1di , Tpi ,1 = ci,1Tpi , ci,1 = τ i · di
(32a)

From Eq. (31b), Tpi,2 can be expressed as follows

T pi ,2 = Tpi ,2(di × Ri2), Tpi ,2 = Tpi τ i · τ pi ,2

= ci,2Tpi , ci,2 = τ i · (di × Ri2) (32b)

Fri (i = 1, 2, 3) produces longitudinal deformation
along ri . Let δdri be the longitudinal deformation along
ri , it leads to

Fri = kri δdri , kri = Es Si
ri

(i = 1, 2, 3) (33a)

here Es is the modular of elasticity and Si is the area
of the i th leg.

Fpi,1(i = 1, 3) in each RPU leg produces flexibility
deformation. Let δd f i,1 be the flexibility deformation
in the i th leg, and it leads to

Fpi ,1 = Fpi = k fi ,1δd fi ,1,

k fi ,1 = 3Es I

r3i
(i = 1, 3) (33b)

where I is the moment inertia.
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For the UPR-type leg, Fp2,1 produces one flexibility
deformation δd f 2,1, thus we obtain

Fp2,1 = Fp2 = k f2,1δd f2,1, k f2,1 = 3Es I

r32
(34)

here, I is the moment inertia.
In each leg ri , Tpi,1 and Tpi,2 produce torsional

deformation and bending deformation, respectively.
Let δdti,1 be the torsional deformation about ri due
to Tpi,1, δdti,2 be the bending deformation about ri due
to Tpi,2.

The relation between Tpi,1 and δdti,1 in the i th leg
can be expressed as follows:

Tpi ,1 = kti ,1δdti ,1, kti ,1 = GIp
ri

,

δdti ,1 = ri Tpi ,1

GIp
(i = 1, 3) (35a)

The relation between Tpi,2 and δdti,2 in the i th leg
can be expressed as follows:

Tpi ,2 = kti ,2δdti ,2, kti ,2 = Es I

ri
,

δdti ,2 = ri Tpi ,2

Es I
(i = 1, 3) (35b)

here,G is the shearmodulus and Ip is the polarmoment
of inertia.

From Eqs. (30a) to (32b), it leads to

Fw = W12×9

⎡
⎣Fa

Fp

T p

⎤
⎦ ,

W12×9 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

E3×3 03×3 03×3

01×3 W f1 01×3

01×3 W f2 01×3

01×3 W f3 01×3

02×3 02×3 Wt1
02×3 02×3 Wt2
02×3 02×3 Wt3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Fw = [
Fr1Fr2Fr3Fp1,1Fp2,1Fp3,1

Tp1,1Tp1,2Tp2,1Tp2,2Tp3,1Tp3,2
]T

,

W f1 = [
1 0 0

]
,W f2 = [

0 −1 0
]
,

W f3 = [
0 0 1

]
,

Wt1 =
[
c1,1 0 0
c1,2 0 0

]
,Wt2 =

[
0 c2,1 0
0 c2,2 0

]
,

Wt3 =
[
0 0 c3,1
0 0 c3,2

]
, (36)

From Eqs. (6c), (33a),(33b), (34), (35a) and (35b), it
leads to

Fw = Kwδdr ,

Kw = diag(kr1 , kr2 , kr3 , k f1,1, k f2,1, k f3,1, kt1,1, kt1,2,

kt2,1, kt2,2, kt3,1, kt3,2) (37)

AfterG6×9,W12×9 andKw for the 2-RPU + UPR PM
are derived from Eqs. (29c) and (33a) to Eq. (37). The
kinetostatic of this PM can be solved from Eqs. (12),
(13) and (14).

4 Unified CAD model for FE analysis

Apart from the analytical approach, based on the pow-
erful geometric modeling capability and the simulation
function of CAD software, a unified CAD solid model
of PMs with linear legs can be generated to carry out a
finite element (FE) analysis for kinetostatic analysis.

For the PMs with linear legs, there are various
XPY(X and Y are selected from R, U and S joints)
legs, establishing a unified 3D assembly manipulator
and the corresponding FE model which is applicative
for various PMs is a significant and work.

Without loss of generality, a CAD solid model with
three linear legs is used to illustrate the unified FE
model. In this model, a 3-SPS structure is selected as
the original PM (see Fig. 3). This structure is com-
posed of amoving platform, a base platform, three liner
legs, and six equivalent spherical joints. To generate
various PMs, S joint is designed as adjustable joints.
In this structure, S joint is constructed by three lock-
able R joints (see Fig. 3). Let Ri j (i = 1, 2, 3; j =
1, 2, . . . , 6) denotes the j th R joint in the i th leg ri .
In each leg, Ri1 and Ri6 are perpendicularly connected
with the base and the moving platform, respectively.
Ri2 is perpendicular with Ri1 and Ri3. Ri5 is perpen-
dicular with Ri4 and Ri6. Ri3 and Ri4 are perpendicular
with the linear leg ri . The linear leg ri (i = 1, 2, 3) can
be seen as the P joints.

In the CAD environment, by locking some R joints
using some special commands of theCADsoftware, the
S joints can be converted into U joints or R joints and
thus the SPS-type leg can be converted intoXPY(X and
Y are selected from R, U and S joints)-type leg. Then
the PMs with various topology can be easily obtained.
For example, by locking Ri1, Ri2, and then setting Ri3

parallel to the opposite sides of the base in each leg, the
typical 3-RPSPM[26] can be obtained.By locking Ri2,
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R12
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R13

R21
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R16

R24

R25

R26

r1

r3

r2

Fig. 3 The unified 3D 3-SPS model

Ri5(i = 1, 2, 3), and then setting Ri3⊥Ri1, Ri4⊥Ri6

and Ri3‖Ri4(i = 1, 2, 3), the 4-DOF 3-UPU PM [4]
with 3 translations and 1 rotation can be obtained. By
locking Ri1, Ri6(i = 1, 2, 3), setting Ri2, Ri5 parallel
to the opposite sides of the base and moving platform
respectively and then setting Ri3‖Ri4, theTsai’s 3-UPU
PM [2] can be obtained. In fact, other PMs can be eas-
ily obtained based on their corresponding geometrical
constraints and the original 3-SPS structure.

After the CAD model of the expected PM is estab-
lished, we process some routine processes such as
material parameters setting and the finite element mesh
generation and then run the simulation, the simulation
results can be obtained easily. To simulate the stiffness
with different configurations,we can set the lengths of P
joint according to the inverse kinematics obtained from
the analytical model and click the reconstruct button to

update the established model, and then the expected
configurations can be obtained automatically.

The merit of this approach lies in that the FE model
of PMs with different topologies can easily obtained
without reconstructing their CAD model.

5 Analytic solved example

5.1 Stiffness calculation based on the theoretical
model

The numerical results of the 2-RPU + UPR PM can be
easily calculated using the established analytic model.
Set E = 1.20/q, e = 0.60/q m, Fo = [−20 − 30 −
60]TN, To = [0 0 0]TN .m, Es = 2.11 × 1011Pa,
Es I = 8345.5Nm2, A = 3.14 × (0.015)2m2. G =
80 × 109Pa, Ip = 3.14 × (0.03)4/32m4.

Set the pose parameters of the moving platform of
the 2-RPU + UPR PM as α = 0o, β = 0o, Zo =
1.30m. Bymeans of Eqs. (28a) to (28c) andMATLAB,
the inverse kinematics for the 2-RPU + UPR PM are
solved as:

r1 = 1.3342m, r2 = 1.400m, r3 = 1.3342m

From Eq. (29b), the actuator forces applied to actu-
ators can be solved as follows:

Fr = [−1.7105 21.5385 42.7617]TN
From Eqs. (13), (29c) and Eqs. (33a) to (36), the

stiffness matrix of the 2-RPU + UPR PM is solved as

K = 108 ×

⎡
⎢⎢⎢⎢⎢⎢⎣

0.1125 0 0 0 0.1461 0.0194
0 0.1462 −0.3652 −0.1265 0 0
0 −0.3652 3.0254 −0.0492 0 0
0 −0.1265 −0.0492 0.1730 0 0

0.1461 0 0 0 0.1902 0.0254
0.0194 0 0 0 0.0254 0.0036

⎤
⎥⎥⎥⎥⎥⎥⎦

(38)

From Eq. (37), the actuator forces applied to actuators
and the constrained forces/torques in this PM can be
solved as follows:

Fw = [−1.7105 21.5385 42.7617 20.3462

10.0000 0 − 17.6479 2.0051 − 0.4627

1.8600 0.7435 2.0051 0.4627]T
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Fig. 4 Solved results of elastic deformations of FE model of the
2-RPU + UPR PM

From the calculated Fr and Fw, it can be seen that
the actuator forces applied to actuators solved by two
statics models are identical.

5.2 FE model analysis of the 2-RPU + UPR PM

By locking Ri1(i = 1, 2, 3), Ri2 and Ri6(i =
1, 3), then setting R13‖R33‖R14‖R34, R13⊥A1A3,
R15|R35|a1a3 in the unifiedCADmodel, the 2-RPU+2-
UPR PM can be obtained.

In the 3D assembly model, the dimension and mate-
rial parameters are given according to the parame-
ters used in analytical model. Assume a force Fo =
[−20 − 30 − 60]TN applied on the center of m. The
simulated results based on FE model for the deforma-
tion of m are solved as shown in Fig. 4.

The simulated results based on analytic approach
and FE model for the deformation of m are listed in
Table 1.

It is well known that the solved results of FE model
are greatly depend on some key factors such as mate-
rial parameter, FE dimension and type, reasonable
boundary constraints and connection constraints. Thus,
the FE analysis is a numerical technique for solving
approximate solutions. From the result, it can be seen
that the results obtained by the FE model is basically
coincident with that of analytical ones, which is accept-
able for stiffness analysis.

Table 1 The comparison of the elastic deformation ofm derived
from analytic approach and FE model

Elastic deformation
of o (mm)

Position of o

Analytic
approach

Analytics
FE model

Xo(m) Yo(m) Zo(m)

δx 0.6962 0.6469 0 −0.1732 1.3000

δy 1.8019 1.718

δz 0.2403 0.2191

Fig. 5 Workspace of the 2-RPU + UPR PM

5.3 Stiffness characteristics analysis

In this section, theminimumandmaximumeigenvalues
of the stiffness matrix are used to describe the stiffness
distribution [15]. The eigenscrew problem of stiffness
matrix can be expressed as follows [27]:

K
ei = λi ei ,� =
[
03×3 E3×3

E3×3 03×3

]
(39)

where λi and the corresponding ei are the eigenvalue
and eigenvector of K
, respectively. The transforma-
tion matrix 
 interchanges the first and last three com-
ponents of six dimension vector.

A numerical approach [15] is applied to evaluate the
stiffness properties throughout the workspace. In the
numerical example, the workspace is partitioned in to
a finite number of elements. For the sake of generality,
the following illustrates the distribution of the stiffness
values in one plane which is parallel with the Base.

Based on the established kinematics model, the
workspace can be solved (see Fig. 5).

From Fig. 5, it can be seen that the workspace is
symmetrical about the plane X = 0, which is in accord
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Fig. 6 The distribution of the stiffness in the plane of Z = 1.3 m, a the distribution of maximum stiffness, b The distribution of minimum
stiffness

with the characteristic of the structure of the 2-RPU +
UPR PM.

Based on Eq. (39) and the stiffness model of the 2-
RPU + UPR PM, the distributions for the maximum
and minimum stiffness in the plane of Z = 1.3m for
the 2-RPU + UPR PM are illustrated in Fig. 6a and b,
respectively.

It can be observed that, similar to the reachable
workspace, the distribution of minimum andmaximum
stiffness in the plane of Z = 1.3m for the 2-RPU+UPR
PM is symmetrical about the X = 0 plane. In addition,
the lowest value of maximum and minimum stiffness

occurs around the boundary of the workspace, since the
manipulator approaches singular when it comes near
the workspace boundary.

Inwhat follows, the stiffness behavior is investigated
through the eigenscrew decomposition of the stiffness
matrix of the 2-RPU + UPR PM. The eigenscrew
decomposition of stiffness matrix can be expressed as
[27]:

K =
6∑

i=1

kiwiwT
i , ki = λi

2hi
,

hi = 1

2
wT
i 
wi ,wi =

[
ni

ρi × ni + hini

]
(40)

where the spring wrench wi is the unitization of ei (i =
1, . . . , 6),hi is the pitch ofwi ,niandρi are the direction
and position vectors of the i th spring, respectively.

Applying the eigenscrew decomposition to the stiff-
ness matrix obtained in Eq. (38), the corresponding
six eigenvalue values [λ], the six eigenscrew pitches
[h], and the corresponding six eigenscrews [w] can be
solved as follows:

[λ] = diag
([−2.5243 1.9816 1.4232 −0.9537 0.2490 −0.1759

]) × 106,

[h] = diag
([−0.0086 0.0086 0.0347 −0.0347 0.0557 −0.055

])
,

[w] =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.0027 −0.0027 −0.0799 0.0799 −0.9899 −0.9899
−0.0906 −0.0906 −0.7798 −0.7798 0.1025 −0.1025
0.9959 0.9959 0.6209 0.6209 −0.0977 0.0977

−0.0547 −0.0547 0.9002 0.9002 −0.1717 0.1717
−0.0040 0.0040 −0.1513 0.1513 −1.2786 −1.2786
−0.0088 0.0088 −0.0181 0.0181 −0.1707 −0.1707

⎤
⎥⎥⎥⎥⎥⎥⎦

(41)

The interpretation of stiffnessmatrixK based on eigen-
screw decomposition is elaborated in Table 2, which
indicates thatK can be interpreted by a body suspended
by six screw springs with directions along the eigen-
screws of K as shown in Fig. 7. For each spring, the
spring constant is determined by λi/2hi , the geometri-
cal connection of the spring is determined by the eigen-
screwswi , and the pitch of the eigenscrew is determined
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Table 2 Parameters of springs based on the eigenscrew decomposition

Spring ki ni ρi hi

1 1.4861 × 108 [0.0027 − 0.0906 0.9959]T [0.0047 − 0.0545 − 0.0050]T −0.0086

2 1.4861 × 108 [−0.0027 − 0.0906 0.9959]T [−0.0047 − 0.0545 − 0.0050]T 0.0086

3 0.0992 × 108 [−0.0799 − 0.7798 0.6209]T [0.1081 0.5575 0.7141]T 0.0347

4 0.0992 × 108 [0.0799 − 0.7798 0.6209]T [−0.1081 0.5575 0.7141]T −0.0347

5 0.0568 × 104 [−0.9899 0.1025 − 0.0977]T [−0.1424 − 0.1522 1.2833]T 0.0557

6 0.0568 × 104 [−0.9899 − 0.1025 0.0977]T [0.1424 − 0.1522 1.2833]T −0.0557

1

Z

YX

5

4
6

3

2

Fig. 7 Physical interpretation of the stiffness matrix based on
eigenscrew decomposition

by −2πhi . It can be seen from Table 2 that the six
screws can be divided into three groupswith each group
having two springs. In each group, the two springs have
the pitches with equal magnitude and opposite sign.

From Fig. 7, it can be seen that the rigid body is
suspended by six screw springs which are distributed
in space. The six screws are reciprocal, and any twist
along one spring only leads to a wrench along the same
twist for the elastic system, which will not affect any
other directions. The six screw springs system yielded
by the eigenscrew decomposition reflects the eigen-
structure of the stiffness matrix.

6 Conclusions

The main contribution of this paper lies in the estab-
lishment of the kinetostatic analysis model of over-
constrained PMs. A novel 2-UPR + UPR PM is
proposed to illustrate the approach for solving the
kinetostatic of overconstrained PMs. Since the over-
constrained wrenches existed in each leg, the forces

and deformations situation become complex than non-
overconstrained PM. In the 2-UPR+UPR PM, there
are six constrained wrenches which produce multiple
deformations. The detailed forces and deformations are
solved based on the established kinetostaticmodel. The
kinetostatic of 2-UPR+UPR PM is calculated using
conventional model and the established model. The
results show that the actuator forces applied to actuators
used by two kinetostatic models are identical. In addi-
tion, a unified FE model for the PMs with linear legs
is established and a statics simulation of the 2RPU +
UPRPMis carried out,which verifies the correctness of
the analytic model. Furthermore, the distribution of the
stiffness in the prescribed workspace is described, and
the eigenscrew decomposition of the stiffness matrix
is carried out to have an insight view of the stiffness
characteristic of the 2-UPR + UPR PM. The method
proposed in this paper is particularly useful in kineto-
static analysis for overconstrained PMs.
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