
Nonlinear Dyn (2016) 86:257–267
DOI 10.1007/s11071-016-2887-x

ORIGINAL PAPER

Stick–slip vibration of an oscillator with damping

Hong-In Won · Jintai Chung

Received: 22 October 2015 / Accepted: 31 May 2016 / Published online: 10 June 2016
© Springer Science+Business Media Dordrecht 2016

Abstract This paper proposes a new criterion for
the occurrence of stick–slip vibration in an oscilla-
tor excited by a moving belt. Equations of motion
were derived for a single-degree-of-freedom oscil-
lator excited by the friction between the oscillator
mass and a moving belt, considering two types of
velocity-dependent friction models: exponential and
polynomial. Based on the derived equations, dynamic
responses were analyzed for various damping val-
ues, and it was found that the damping value deter-
mines the classification of oscillator motion among
stick–slip, pure slip, and damped slip motions. Fur-
thermore, a criterion for the occurrence of stick–slip
motion, expressed in an integral form, was derived in
terms of friction and damping forces. Using the least
squaresmethod, closed forms for the damping values to
determine the occurrence of stick–slip vibration were
obtained as functions of normal force, relative speed
between contact surfaces, and friction parameters. In
addition, the effects of the belt speed and of friction
parameters on the occurrence of stick–slip vibration
were also investigated.
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1 Introduction

Stick–slip vibration, a repetitive behavior of relatively
fixed motion (called stick motion) and sliding motion
(called slip motion) between contact surfaces, is one of
themost interesting problems formechanical engineers
because stick–slip vibration induces dynamic instabili-
ties and leads to complicated difficulties in mechanical
systems. Stick–slip vibration usually occurs in man-
ufacturing machines, affecting their machining accu-
racy [1,2]. It is also considered as an important factor
contributing to unpleasant mechanical noise (chatter,
squeal, squeak, etc.) which is a growing issue in indus-
trial field [3,4].

Many researchers have attempted to understand
stick–slip vibration problems by using the model of
a simple oscillator excited by a moving base, specif-
ically a mass-spring-damper system supported by a
moving belt that exerts a frictional force. Some have
reported adaptable descriptions for the friction force
that generates a stick–slip motion in the oscillator and
to explain how stick–slip vibration occurs [5–7].Others
have reported on the dynamic responses of stick–slip
vibration, including time histories, frequency spectra,
and oscillation patterns [8–14]. According to these pre-
vious reports, stick–slip vibration is associatedwith the
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difference between the static and kinetic frictions, and
a typical feature of stick–slip vibration is the appear-
ance of a specific state of zero relative velocity between
contact surfaces.

Froman engineering point of view, some researchers
have focused on the occurrence of stick–slip vibra-
tion in oscillators. Ding et al. [15] and Li et al. [16]
introduced criterion conditions for stick–slip vibra-
tion by analyzing a general solution for stick–slip
motion. However, these criteria are applicable to only
the Coulombmodel because these analyses are difficult
to adopt when the kinetic friction force varies dynami-
cally. Their general solutions for stick–slip motion can
be obtained only if the kinetic friction force is constant.
On the other hand, Thomsen and Fidlin [17] presented
an analytical prediction for the occurrence of stick–
slip by assuming that the steady-state response with
pure slip has a harmonic motion. The presented pre-
diction can be applied to only the case that the kinetic
friction force can be expressed as a polynomial func-
tion of relative velocity between contact surfaces. They
applied a straightforward perturbationmethod to obtain
an approximate solution for stick–slipmotion, and their
approach seems to be suitable as long as the differ-
ence between static and kinetic friction forces is rel-
atively small. The drawback of this approach is that
the occurrence criterion for the stick–slip motion can-
not be obtained when the kinetic friction force is not
a polynomial function of the relative velocity or when
the force is an exponential function. Some researchers
[18–22] also presented the occurrence criteria of the
stick–slip motion for single-degree-of-freedom oscil-
lators, which are expressed in terms of system parame-
ters. Le Rouzic et al. [18], Galvanetto and Bishop [19],
Nakano and Maegawa [20], Liu and Chang [21] pre-
sented criteria for damped oscillators, while Kang et
al. [22] presented a criterion for undamped oscillators.
However, their criteria were derived from the stability
analyses around the equilibrium positions of the oscil-
lators; therefore, they may have some errors in predict-
ing the stick–slip occurrence of oscillators with con-
siderable vibration amplitudes. Stark et al. [23] clas-
sified the conditions for stick–slip occurrence in para-
meter planes to investigate the dynamics of an atomic
force microscope (AFM). They executed only numer-
ical simulations and performed phase path analysis to
observe stick–slip occurrence. They did not present an
analytical formof the occurrence criterion for the stick–
slip motion. Different from the criterion for the stick–

slipmotion,Abdo andAbouelsoud [24] presented alter-
native approximate techniques to determine the ampli-
tudes of the limit cycles that evolve from stick–slip
vibrations based on a mass-on-moving-belt model.

Even though the occurrence of stick–slip vibration
has been studied in several ways, it is our carefully con-
sidered opinion that the existing analytical approaches
are not sufficient to become established as common
solutions. Although numerical solutions may provide
fine results, mathematical solutions are also required to
analyze the physicalmeanings of stick–slip occurrence.
In particular, because the kinetic friction force can take
a variety of forms depending upon the normal load, rel-
ative velocity between contact surfaces, material com-
bination, lubrication, etc., it is useful and interesting
to examine the contribution of friction parameters to
the occurrence of stick–slip. Therefore, a practical and
analytical formulation is desirable that can predict the
occurrence of stick–slip with no restriction on the form
of kinetic friction force.

The purpose of the present study is to propose a
new criterion for the occurrence of stick–slip vibration
in an oscillator excited by a moving belt. Herein, the
dynamic state of the oscillator is separated into the stick
state and the slip state, and equations are established for
both. To analyze the occurrence of stick–slip motion,
dynamic responses of the oscillatormass are computed.
Employing the principle of work and energy, criterion
equations are derived for the occurrence of stick–slip
motion. Kinetic friction forces are linearized using a
least squares method to obtain closed-form solutions
of the criterion equations. The obtained solutions yield
regions of stick–slip occurrence in parameter planes of
damping coefficient and belt speed. Validity of the pre-
sented results is evaluated by comparing them with the
results of numerical simulations. Finally, the aspects of
stick–slip occurrence are investigated corresponding to
various values of the friction parameter.

2 Equations of motion

An oscillator excited by a moving base, the subject of
our investigation, is illustrated in Fig. 1a. The oscillator
is composed of a mass m connected to a fixed frame
through a spring of stiffness k and a viscous damper of
damping coefficient c. The mass is placed on a moving
belt that is driven at the constant speedV . In this system,
a normal force N causes a reaction force N as a contact
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Fig. 1 Self-excitedoscillator placedon amovingbelt:adynamic
model and b free-body diagram

force, which induces a friction force f on the mass
(Fig. 1b). Denoting the displacement of mass as x , the
relative velocity between the mass and the belt can be
expressed as vr = ẋ − V , where the superposed dot
represents differentiation with respect to time t .

The oscillator has two kinds of dynamic states
depending on the relative velocity vr . In the stick state,
the relative velocity is equal to zero (vr = 0), meaning
that the mass and the belt move together. In the stick
state, the net force on themass is zero, and this state per-
sists as long as the static friction force does not exceed
the maximum static friction force. Thus, the equation
of motion and the static friction force for the stick state
can be written as

ẋ = V, f = cẋ + kx, | f | ≤ μs N when vr = 0

(1)

where μs is the maximum static friction coefficient. In
the slip state, the relative velocity is not equal to zero
(vr �= 0),meaning that themass slides on the belt. In the
slip state, the kinetic friction force acts in the direction
opposite to the relative velocity. Thus, the equation of
motion and the kinetic friction force can be written as

mẍ + cẋ + kx = f, f = −sgn(vr )μ(vr )N when

vr �= 0 (2)

where μ is a coefficient of kinetic friction, which is a
function of the relative velocity vr .

Actually, because kinetic friction can have several
forms under different circumstances [7], two types

µ

sµ

sµ

rv

rv

0

0

mµ

mµ

(a)

(b) µ

mv

Fig. 2 Friction coefficient versus relative velocity in the two fric-
tion models considered: a exponential-type and b polynomial-
type

of velocity-dependent friction models are considered
in the present study. In the first model, herein called
the exponential-type friction model, friction asymp-
totically decreases as the relative velocity increases
(Fig. 2a). This type of frictionmodel is commonly used
for contact between solid surfaces in dry conditions,
and its coefficient function (as introduced in [7]) can
be expressed as

μ(vr ) = μm + (μs − μm)e−α|vr | (3)

where μm is the minimum kinetic friction coefficient
and α is a tuning parameter used to control the nega-
tive slope of the coefficient curve. In the second model,
herein called the polynomial-type friction model, fric-
tion continuously decreases and then increases as the
relative velocity increases (Fig. 2b). The decreasing
region, i.e., the dynamic softening region, corresponds
to solid friction whereby the contact surfaces slide
under a dry condition, whereas the increasing region,
i.e., the dynamic stiffening region, corresponds to liq-
uid friction whereby a viscous fluid separates the con-
tact surfaces. Considering the characteristics of both
solid friction and liquid friction, a coefficient function
for the second model (as introduced in [17]) can be
given by

μ(vr ) = μs− 3(μs − μm)

2vm
|vr |+ (μs − μm)

2v3m
|vr |3 (4)
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where vm is the relative velocity corresponding to the
minimum kinetic friction coefficient μm .

3 Dynamic response analysis

It is interesting to analyze the dynamic responses of the
oscillator as the damping coefficient varies. To com-
pute the dynamic responses, the following formulas
and properties were used in the present work unless
noted otherwise. Using the Newmark time integration
method [25] with the time step size of �t = 10−4 s,
the dynamic responses were computed using the equa-
tions of motion corresponding to the conditions of rela-
tive velocity and friction force as mentioned in Sect. 2.
In particular, because the relative velocity vr could
not be equal to zero numerically, the relative veloc-
ity conditions of vr = 0 and vr �= 0 were changed
into |vr | ≤ 10−4 m/s and |vr | > 10−4 m/s, respec-
tively. The following physical parameters were used:
m = 1 kg, k = 100 N/m, V = 0.5 m/s, N = 9.81 N,
μs = 0.5, μm = 0.2, α = 3 s/m, and vm = 1 m/s.
The initial displacement and velocity of the mass were
x(0) = 0 m and ẋ(0) = V m/s, respectively.

First, dynamic responses were analyzed for various
values of the damping coefficient. Time histories of
the velocity of the mass are shown for c = 0, 1, 2,
2.574, and 3.5kg/s, when the exponential-type friction
model was applied to the oscillator (Fig. 3). The damp-
ing ratios corresponding, respectively, to these damping
coefficients are ζ = 0, 0.05, 0.1, 0.1287, and 0.175.
As the damping coefficient was increased from 0 to
2.574kg/s, the interval of the constant-velocity state
(i.e., the stick state) and the oscillation period both
decreased gradually; for each of these coefficients, the
velocity response was of constant amplitude (Fig. 3a–
c). When the damping coefficient reached the critical
value of 2.574kg/s, the stick state disappeared,whereas
the response amplitude remained constant. For the
greatest damping coefficient input, 3.5kg/s, the stick
state clearly disappeared and the response amplitude
decayed (Fig. 3e). Herein, the repetitivemotion of stick
state and slip state is called stick–slip motion, the sta-
tionary slip state motion with constant amplitude is
called pure slip motion, and the stationary slip state
motion with decaying amplitude is called damped slip
motion.

The critical damping coefficient corresponding to
pure slipmotion depended on the type of frictionmodel
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Fig. 3 Dynamic response of the velocity of mass m when the
exponential-type frictionmodel is adopted with V = 0.5m/s, for
various values of c: a 0kg/s, b 1kg/s, c 2kg/s, d 2.574kg/s, and
e 3.5kg/s

used. Time histories of the velocity of the mass are
shown for c = 0, 1, 2, 3.038, and 3.5kg/s, when
the polynomial-type friction model was applied to the
oscillator (Fig. 4). In this case, although the transi-
tion of dynamic responses was similar to that in the
case of the exponential-type friction model, the critical
damping value corresponding to pure slip motion was
greater: 3.038kg/s. In addition, these damping values
varied depending on the speed of the moving belt. Note
that the critical values given here for the two models
both corresponded to V = 0.5 m/s. If the belt speed
is changed, the corresponding critical values that yield
pure slip motion vary consequently.

Phase plots may facilitate the understanding of
stick–slip vibration. Phase plots of displacement ver-
sus velocity of the mass are shown in Fig. 5; Fig. 5a–
c, respectively, represents stick–slip motion, pure slip
motion, and damped slip motion, and thus, respec-
tively, corresponds to the dynamic responses shown in
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Fig. 4 Dynamic response of the velocity of mass m when the
polynomial-type friction model is adopted with V = 0.5m/s, for
various values of c: a 0kg/s, b 1kg/s, c 2kg/s, d 3.038kg/s, and
e 3.5kg/s

Fig. 3c–e. In the case of stick–slip motion, the ampli-
tudes of displacement and velocity do not change; the
constant velocity interval for the stick state and the
oscillatory velocity interval for the slip state are sequen-
tially repeated (Fig. 5a). In the case of pure slip motion,
the amplitudes of the responses are maintained even
though the mass oscillates in a slip state after an initial
transition from a stick state at a point P (Fig. 5b). In

the case of damped slip motion, the amplitudes of both
displacement and velocity decay while the mass oscil-
lates in a slip state (Fig. 5c). Overall, the results show
that the amplitudes of responses decrease as damping
increases. Similar trends can be observed for the case
of the polynomial-type friction model.

4 Criterion for stick–slip motion

It is valuable to investigate the critical damping coeffi-
cient that determines whether stick–slipmotion occurs.
Recall that the point P, plotted in Fig. 5, maintains its
position and velocity for the first transition from the
stick state to the slip state. Then, suppose that a pointQ
has the same position as pointP and represents the posi-
tion and velocity of the mass after a cycle. As marked
in Fig. 5, in the cases of stick–slip motion and pure
slip motion, points P and Q can coincide, whereas in
the case of damped slip motion, points P and Q cannot
coincide. As introduced in Sect. 3, because pure slip
motion separates the regimes of stick–slip motion and
damped slip motion, the condition of pure slip motion
represents a criterion for stick–slip motion.

The criterion for stick–slip motion can be derived
based on the principle of work and energy. During the
oscillation of the mass from point P to point Q, the
relation between the work performed by applied forces
and the variation in the kinetic energy of the mass can
be expressed according to the principle of work and
energy as follows:

∫
P→Q

( f − cẋ − kx)dx = 1

2
m

(
V 2
Q − V 2

P

)
(5)

where VP and VQ indicate the velocities of the mass at
points P and Q, respectively. Denoting T as the time
interval during which the mass travels from point P

Fig. 5 Phase plots of the
motion of mass m when the
exponential-type friction
model is adopted with V =
0.5m/s: a stick–slip motion
when c = 2kg/s, b pure slip
motion when
c = 2.574kg/s, and c
damped slip motion when
c = 3.5kg/s
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to Q, in the cases of stick–slip motion and pure slip
motion, VP and VQ are equal (recall Fig. 5a, b); thus,
(5) can be written as

∫
T

( f − cẋ)ẋdt = 0 (6)

where the friction force f for stick–slip motion is the
sum of the static friction force expressed in (1) and
the kinetic friction force expressed in (2), whereas the
friction force for pure slip motion is purely the kinetic
friction force. In the case of damped slipmotion, though
the positions of pointsP andQ are same, VQ is less than
VP (recall Fig. 5c); thus, (5) becomes

∫
T

( f − cẋ)ẋdt < 0 (7)

where the friction force is the kinetic friction force only.
Therefore, the boundary of the stick–slip regime cor-
responds to those conditions for which the relation of
work and energy satisfies (6) with the kinetic friction
force only.

To derive the criterion for stick–slip motion from (6)
in closed form, it is necessary that the kinetic friction
coefficient be expressed as a linear function of relative
velocity. If the kinetic friction coefficient is a nonlinear
function of relative velocity, the kinetic friction force
in (6) also becomes a nonlinear function, since it is pro-
portional to the kinetic friction coefficient and normal
force as given in (2). Thus, the criterion of stick–slip
motion cannot be derived in closed form, for a reason
that will be explained later.

Let us consider the linearization of the kinetic fric-
tion coefficients introduced in (3) and (4), and the
derivation of a criterion for stick–slip motion in closed
form. Assume that the kinetic friction coefficient is a
linearized function of relative velocity μL as follows:

μL(vr ) = −a |vr | + b (8)

where a and b are constants to be determined by lin-
earization. As illustrated in Fig. 5, because the veloc-
ities of the mass during pure slip motion and damped
slip motion are less than or equal to the belt speed V ,
the relative velocity defined as is negative or zero; i.e.,
vr ≤ 0. Thus, for the criterion Eq. (6), the kinetic fric-
tion force f in the nonlinear function given by (2) can
be expressed in the form of a linearized function as

f = N [a(ẋ − V ) + b] (9)

Substituting (9) into (6) and then rearranging yields

(b − aV )N
(
xQ − xP

) + (aN − c)
∫
T
ẋ2dt = 0

(10)

where xP and xQ represent the displacements of the
mass at points P and Q, respectively. Because these
are equal for pure slip motion, the first term of (10)
becomes zero, and because the integral of squared
velocity cannot be zero, (10) is true if and only if

c = aN (11)

Herein, the damping coefficient represented by (11) is
called the pure slip damping coefficient because it is
necessary to determine the pure slip condition. How-
ever, the above derivations cannot be carried out if the
kinetic friction force f is a nonlinear function; this is
the reasonwhy the kinetic friction coefficient should be
linearized when it is expressed as a nonlinear function
of relative velocity.

To obtain a linearized function μL that reflects the
characteristics of the nonlinear kinetic friction, the least
squares method was employed. While the mass under-
goes pure slip motion as illustrated in Fig. 5b, the dis-
sipative energy due to the viscous damping is supple-
mented by friction-induced energy on the mass dur-
ing a cycle. This means that the work done by non-
conservative forces over a period are equivalent, and
thus, the pure slip motion can be approximated as a
simple harmonic motion. Under these conditions, the
velocity of mass seems to be bounded in the range of
−V to V and the magnitude of relative velocity |vr | is
regarded to vary between 0 and 2V in this paper.

Motivated by the consideration that integration of
( f − cẋ)ẋ over a period should be zero for pure slip
motion, as presented in (6), linearization conditions for
the kinetic friction coefficient were obtained by mini-
mizing the following equation using the least squares
method:

S =
∫ V

−V
[μ(vr ) − μL(vr )]

2 ẋ2dẋ (12)

Substituting (8) into (12) and then substituting based on
the definition of relative velocity, (12) can be rewritten
as
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S =
∫ 2V

0
[μ(vr ) + a |vr | − b]2 (V − |vr |)2 d |vr |

(13)

The linearization constants a and b that minimize S are
those such that

∂S

∂a
= 0,

∂S

∂b
= 0 (14)

(13) and (14) lead to the following solutions for a and
b:

a = 5

2V 5

∫ 2V

0
μ(vr ) (V − |vr |)3 d |vr |,

b = 1

2V 4

∫ 2V

0
μ(vr ) (V − |vr |)2 (8V − 5 |vr |) d |vr |

(15)

By substituting (15) into (11), the damping coefficient
to determine the pure slip motion, i.e., the pure slip
damping coefficient c, can be expressed in terms of belt
speed, normal force, and kinetic friction coefficient as

c = 5N

2V 5

∫ 2V

0
μ(vr ) (V − |vr |)3 d |vr | (16)

From the form of (16), it can be seen that the mass m
and the spring stiffness k do not affect the pure slip
damping coefficient.

The above derivations allow pure slip damping
coefficients subjected to the exponential-type and
polynomial-type friction models to be found that cor-
respond to given system parameters. Substituting (3)
into (16) and then integrating the resulting equation,
the pure slip damping coefficient for the exponential-
type friction model can be obtained in closed form as

c = 5N (μs − μm)e−αV
[(
6αV + α3V 3

)
coshαV − (

6 + 3α2V 2
)
sinhαV

]
V 5α4

(17)

Similarly, substituting (4) into (16) and then integrat-
ing the resulting equation gives the pure slip damping
coefficient for the polynomial-type friction model in
closed form as

c = (μs − μm)N
(
21v2m − 26V 2

)
14v3m

(18)

From the forms of (17) and (18), it can be seen that the
pure slip damping coefficient is determined by the belt
speed V , the normal force N , and the friction parame-
ters μs , μm , α, and vm .

5 Validation and discussion

To validate the pure slip damping coefficients obtained
above, the solutions of (17) and (18) were compared
with pure slip damping coefficients obtained by means
of numerical computation, and they were also com-
pared with the damping coefficients obtain in previous
studies. To facilitate comparison, the physical parame-
ters and initial conditions used for the numerical com-
putation were the same as those given in Sect. 3. First,
analytical solutions for the pure slip damping coeffi-
cients were obtained using (17) and (18). Then, numer-
ical solutions for the pure slip damping coefficients
were obtained by calculating dynamic responses over
the range of damping coefficient c from 0 to 6kg/s, in
increments of 0.001kg/s, and then finding the damping
coefficient that yielded pure slip motion. Furthermore,
the pure damping coefficients obtained analytically and
numerically were also compared with the coefficients
of Thomsen and Fidlin [17] and Galvanetto and Bishop
[19]. As discussed in the Introduction, since the coef-
ficient of Thomsen and Fidlin [17] cannot be applied
to the exponential-type friction model, this coefficient
was compared with those for only the polynomial-type
friction model. The study results of [18–21] have no
intrinsic difference from each other, so only the results
of Galvanetto and Bishop [19] were included in the
comparison.

Figure 6 illustrates the pure slip damping coeffi-
cients versus belt speed V for the exponential-type fric-

tion model. Pure slip damping coefficients are repre-
sented by the solid and dashed lines and circle symbols,
corresponding, respectively, to the analytical solutions
of this study and Galvanetto and Bishop [19] and a
numerical result. For this numerical computation, belt
speedwas varied over the range from0 to 1m/s in incre-
ments of 0.01m/s. The analytical and numerical results
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agreed well, validating the proposed analytical method
to determine the criterion corresponding to the occur-
rence of stick–slip motion. However, the coefficients
obtained byGalvanetto andBishop [19] show large dif-
ference from the coefficients by this study. The critical
damping coefficients for the polynomial-type friction
model were compared between the present and previ-
ous studies and a numerical result, in Fig. 7, where the
dotted line represent the coefficient obtained by Thom-
sen and Fidlin [17]. This figure shows that the result
of the study closer than the numerical result than the
previous studies [17,19].

The relationships between the pure slip damping
coefficients and the belt speed were similar when the
exponential-type and polynomial-type friction models
were used. In both cases, the pure slip damping coef-
ficient decreased as the belt speed increased. That is
to say, for a specified damping coefficient, stick–slip
motion is replaced by damped slip motion as the belt
speed is increased. With reference to Figs. 6 and 7,
the left region represents the parametric area for stick–
slip motion, i.e., the stick–slip region, and the right
region represents the parametric area for damped slip
motion, i.e., the damped slip region; these regions are
separated by a solid line corresponding to conditions
that yield pure slip motion. For better understanding,
phase plots illustrating the behavior of parameter sets
markedwith pointsA andB in Fig. 6 are shown in Fig. 8
for the exponential-type friction model; similarly, plots
for points C and D in Fig. 7 are shown in Fig. 9 for the
polynomial-type friction model. The damping coeffi-
cient and belt speed corresponding to points A and C
are c = 2kg/s and V = 0.5m/s, and the damping coef-
ficient and belt speed corresponding to points B and
D are c = 2kg/s and V = 0.8 m/s; in these examples,
only the belt speed is changed while the damping coef-
ficient is held constant. Figures 8 and 9 convincingly
show that the stick–slip motion is replaced by damped
slipmotionwhen the belt speed exceeds a critical speed
corresponding to the pure slip state.

It is quite interesting to compare the transition
speeds for the exponential-type and polynomial-type
friction models. The transition speeds for the two fric-
tion models distinctly differ as the damping coeffi-
cient approaches zero. In the case of the exponential-
type friction model as illustrated in Fig. 6, as the
damping coefficient approaches zero, the transition
speed approaches infinity, and thus, the belt speed is
unbounded in the stick–slip region. In other words, for
very low damping coefficients, the oscillator cannot
escape from stick–slip vibration once it occurs. On the
other hand, when the polynomial-type friction model
is applied as illustrated in Fig. 7, even when the damp-
ing coefficient is equal to zero, the transition speed is
bounded at

√
21/26vm ≈ 0.9vm , as obtained from (18),

meaning that the belt speeds corresponding to stick–
slip motion are those such that V < 0.9vm . Thus,
regardless of the damping coefficient, stick–slip vibra-
tion cannot occur in the oscillator if the belt moves
faster than 0.9vm .
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Fig. 8 Phase plots when
adopting the
exponential-type friction
model for points A and B in
Fig. 6: a point A (c = 2kg/s,
V = 0.5m/s), b point B
(c = 2kg/s, V = 0.8m/s)
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Fig. 9 Phase plots when
adopting the
polynomial-type friction
model for points C and D in
Fig. 7: a point C
(c = 2kg/s, V = 0.5m/s), b
point D (c = 2kg/s,
V = 0.8m/s)
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As can be seen from the forms of (17) and (18), the
mass and the spring stiffness do not influence the pure
slip damping coefficient. In otherwords, the natural fre-
quency of the oscillator has no direct relevance to the
occurrence of stick–slip vibration. However, similar to
the belt speed, the normal force and the friction para-
meters are also related to the occurrence of stick–slip
vibration. Using the same parameters and conditions
as presented previously, the changes in the stick–slip
transition arising from the use of the differentminimum
friction coefficientsμm of 0.2, 0.3, and 0.4 were exam-
ined on the parametric plane of belt speed and damp-
ing coefficient for both friction models (Fig. 10). The
results indicate that the stick–slip region diminishes as
the minimum friction coefficient μm approaches the
static friction coefficient (μs = 0.5). In other words,
stick–slip vibration can easily occur when the differ-

ence between the maximum and minimum friction
coefficients is large.

6 Conclusions

A criterion for the occurrence of stick–slip vibration in
an oscillator excited by amoving base has been studied.
Whether stick–slip vibration occurs is determined by
friction and damping forces. We have derived criterion
equations for the occurrence of stick–slip based on the
principle of work and energy. To obtain solutions for
the criterion equations in closed form, a proposed least
squares linearization method has been applied to two
friction coefficient functions, an exponential-type fric-
tion model and a polynomial-type friction model. The
obtained solutions allow us to predict whether given
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Fig. 10 Pure slip damping coefficient curves for various values
ofμm whenμs = 0.5, for the two frictionmodels: a exponential-
type and b polynomial-type

sets of parameters fall within the regime of stick–slip
vibration, without requiring the use of time-consuming
simulations.

According to the analysis of the occurrence of stick–
slip vibration in the present study, we present two sig-
nificant results. First, the occurrence of stick–slip vibra-
tion depends upon the damping coefficient and the belt
speed; stick–slip vibration disappears when the damp-
ing coefficient or the belt speed exceed a range of transi-
tion values. Second, the occurrence of stick–slip vibra-
tion is influenced by the form of the frictionmodel used
and its relevant parameters. The two friction models
considered in our study had similar aspects with regard
to increases in the damping coefficient or belt speed;
however, if the damping coefficient is close to zero,
stick–slip vibration persists onlywhen the exponential-
type friction model is applied; this model yields only
negative slope with respect to the increment of rela-
tive velocity. The difference between the static friction
coefficient and the minimum coefficient also affects
the stick–slip transition. The stick–slip region in the
parameter plane of damping coefficient and belt speed
is reduced as the difference between maximum fric-
tion coefficient μs and minimum friction coefficient
μm decreases. Hence, it is sufficient to say that reduc-

ing the difference between theminimumandmaximum
friction coefficients is advantageous to avoid stick–slip
vibration. All these consequences can be considered
useful when engineers design or operate mechanical
systems.
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