
Nonlinear Dyn (2016) 86:235–244
DOI 10.1007/s11071-016-2885-z

ORIGINAL PAPER

A third-order extension to the Liénard oscillator
and it’s competitive modes analysis

Robert A. Van Gorder

Received: 24 February 2016 / Accepted: 31 May 2016 / Published online: 6 June 2016
© Springer Science+Business Media Dordrecht 2016

Abstract We study the dynamics of nonlinear differ-
ential equations of the form

...
x + f (x)ẍ + g(x, ẋ)ẋ +

h(x) = 0, which is a third-order extension to the Lié-
nard oscillator equation. This equation holds a num-
ber of interesting and physically relevant third-order
dynamical systems as special cases. We present a gen-
eral competitivemodes analysis in order to derive some
necessary conditions under which the such systems
admit chaos. For several of the interesting reductions in
the equations, we demonstrate that the approach allows
us to determine parameter values and initial conditions
which permit chaotic trajectories. We also demonstrate
that, while competitive modes can be useful for finding
chaotic regimes, the competitiveness conditions them-
selves are not a sufficient condition for chaos. In this
way,we are able to discuss both the benefits and the lim-
itations of the competitive modes approach. By doing
this, we demonstrate that there are several reduction
in this general third-order equation which give chaos,
including those of interest in theoretical physics and
electrical engineering.
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1 Introduction

The second-order equation governing the Liénard
oscillator [1] reads

ẍ + F(x)ẋ + G(x) = 0. (1)

Equations of this type can be used to model oscillat-
ing circuits, and the Van der Pol oscillator is a special
case. Mathematically, this equations and second-order
generalizations have been studied in order to gener-
ate a variety of oscillating and in some cases peri-
odic solutions [2,3]. The problem with negative damp-
ing was considered in [4]. Solutions under one-sided
growth restrictions were studied in [5]. Solutions with
quadratic damping were studied in [6].

Consider the third-order extension of the Liénard
oscillator,

...
x + f (x)ẍ + g(x, ẋ)ẋ + h(x) = 0. (2)

Note that while this seems somewhat arbitrary, it is
a natural extension of (1). Indeed, the equation cap-
tures many of the properties of (1) in some reductions
(as we shall later show), yet is of higher order, mean-
ing that a variety of new dynamics should be possi-
ble. This third-order equation can be used to describe
a number of physically relevant problems, as we shall
demonstrate later. We may write (2) as the first order
system
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236 R. A. Van Gorder

ẏ1 = y2,

ẏ2 = y3,

ẏ3 = − f (y1)y3 − g(y1, y2)y2 − h(y1),

(3)

which shall be useful in our latermathematical analysis.
Note also that equilibrium points (steady states) of (2)
correspond to x∗ ∈ R such that h(x∗) = 0, and hence,
equilibrium points of the system (3) will take the form
(y∗

1 , y
∗
2 , y

∗
3 ) = (x∗, 0, 0) for such x∗.

Sprott [7] studied a subclass of Eq. (2) of the form
f (x) = A, g(x, ẋ) = B, where A and B are positive
real-valued constants, that is,
...
x + Aẍ + Bẋ + h(x) = 0. (4)

As discussed in [7], Eq. (4) is essentially a damped
harmonic oscillator driven by a linearmemory term that
involves the integral ofh(x). Formany specific formsof
h(x), chaos was observed, both in the paper [7] and by
others. Chaos was observed when h(x) takes the form
of a cubic function [8], while piecewise linear forms
of h(x) have also been shown [9–11] to yield chaos
in (4). An RLC circuit has also been devised to give
chaos for particular forms of h(x), see [12,13]. Since
(2) is therefore a generalization of the Sprott systems,
we anticipate that chaotic dynamics will emerge from
many equations of the form (2).

The goal of this paper is to investigate the nonlinear
dynamics emergent in general equations of the form
(2). In Sect. 2, we give a general competitive modes
analysis for (3), in order to determine forms of (3)
which might permit chaotic solutions. In Sect. 3, we
consider three concrete physical applications (Sprott
equations, electronic oscillator equations, and memris-
tor oscillators) which can be described by systems of
the form (3). By way of these applications, we demon-
strate the utility of considering systems of the form (3),
as well as the utility of the competitive modes analysis
of Sect. 2. In Sect. 4, we consider a specific form of
(2) which satisfies the competitive modes conditions
yet which nonetheless cannot yield chaotic dynamics.
This illustrates the fact that the competitiveness con-
ditions are not sufficient for the existence of chaotic
trajectories in nonlinear systems. Concluding remarks
are given in Sect. 5.

2 Analytical considerations for (2)

Recall that the method of competitive modes involves
recasting a dynamical system as a coupled system

of oscillators [14–20]. Consider the general nonlinear
autonomous system of dimension n given by

ẋi = fi (x1, x2, . . . , xn). (5)

Differentiation of (5) once gives a coupled system of
second-order equations,

ẍi =
n∑

j=1

f j
∂ fi
∂x j

= −xi gi (x1, x2, . . . , xi , . . . , xn)

+ hi (x1, x2, . . . , xi−1, xi+1, . . . , xn). (6)

When a gi is positive, its respective i th equation
behaves like an oscillator. The following conjecture is
posed in [15]:
Competitive modes requirements The conditions for
dynamical systems to be chaotic are given by:

(A) there exist at least two modes, labeled gi in the
system;

(B) at least two g’s are competitive or nearly competi-
tive, that is, for some i and j , gi ≈ g j > 0 at some
t ;

(C) at least one of the g’s is a function of evolution
variables such as t ; and

(D) at least one of the h’s is a function of system vari-
ables.

The requirements (A)–(D) essentially tell us that a
condition for chaos is that two or more equations in (6)
behave as oscillators (gi > 0) and that two of these
oscillators lock frequencies at one or more times. In
practice, we find that the frequencies agree at a count-
ably infinite collection of time values [14,19]. The fre-
quencies should be functions of time (i.e., we have non-
linear frequencies), and there should be at least one
forcing function which depends on a state variable.

Returning to the equations of interest, differentiation
of (3) once yields

ÿ1 = H1(y3),

ÿ2 + G2(y1, y2)y2 = H2(y1, y3),

ÿ3 + G3(y1, y2)y3 = H3(y1, y2),

(7)

where H1(y3) = y3, H2(y1, y3) = − f (y1)y3 −
h(y1), H3(y1, y3) = −g1(y1, y2)y22 − h′(y1)y2 +
f (y1)g(y1, y2)y2+ f (y1)h(y1),G1 = 0,G2(y1, y2) =
g(y1, y2), G3(y1, y2) = f ′(y1)y2 + g2(y1, y2)y2 +
g(y1, y2) − ( f (y1))2. Note that we define the partial
derivative notation ∂g

∂y1
= g1 and

∂g
∂y2

= g2.
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A third-order extension to the Liénard oscillator 237

Since the equation for y1 can never be an oscillator
equation, hence G1 = 0, only the modes y2 and y3 can
ever be competitive. Therefore, consider the case when
both modes are competitive, that is, when the mode
frequencies satisfyG2(y1, y2) = G3(y1, y2). Then, we
have that y1 and y2 must satisfy

f ′(y1)y2 + g2(y1, y2)y2 − ( f (y1))
2 = 0. (8)

Therefore, if condition (8) holds at a point t = t0 ≥ 0,
then the modes y2 and y3 are competitive at t = t0.

2.1 g constant in y2

In the case where g is constant in y2, that is g = g(y1),
we must have that G2 = g(y1) > 0 and G3 =
f ′(y1)y2+g(y1)−( f (y1))2 > 0. The competitiveness
condition (8) becomes

f ′(y1)y2 − ( f (y1))
2 = 0, (9)

so

y2 = ( f (y1))
2/ f ′(y1) (10)

is the explicit form of the competitiveness condition.
This suggest that ODEs of the form

...
x + f (x)ẍ + g(x)ẋ + h(x) = 0 (11)

can admit chaotic behaviors if g(x(t0)) > 0 and
ẋ(t0) = ( f (x(t0)))2/ f ′(x(t0)) at some t = t0.

Note that if f ′(x(t0)) = 0, the modes can still be
competitive. The conditions required in this case are
g(x(t0)) > 0 and f (x(t0)) = 0.

2.2 g(y1, y2) = k(y1) + l(y1)y2

In the case where g depends linearly on y2, such
as g(y1, y2) = k(y1) + l(y1)y2, we must have the
conditions G2 = k(y1) + l(y1)y2 > 0 and G3 =
f ′(y1)y2 + k(y1) + 2l(y1)y2 − ( f (y1))2 > 0. Con-
dition (8) then becomes

f ′(y1)y2 + l(y1)y2 − ( f (y1))
2 = 0. (12)

The modes y2 and y3 are then competitive at t = t0
provided that

k(y1(t0)) + l(y1(t0))y2(t0) > 0, (13)

f ′(y1(t0))y2(t0) + k(y1(t0)) + 2l(y1(t0))y2(t0)

−( f (y1(t0)))
2 > 0, (14)

and

y2(t0) = f (y1(t0))2

f ′(y1(t0)) + l(y1(t0))
. (15)

Performing some simplifications, this suggests that
third-order ODEs of the form

...
x + f (x)ẍ + k(x)ẋ + l(x)ẋ2 + h(x) = 0 (16)

can admit chaos if

ẋ(t0) = f (x(t0))2

f ′(x(t0)) + l(x(t0))
(17)

and

k(x(t0)) + l(x(t0)) f (x(t0))2

f ′(x(t0)) + l(x(t0))
> 0, (18)

at some t = t0.
We should remark that, if f ′(x(t0)) + l(x(t0)) = 0,

the modes can still be competitive. The conditions for
this case become k(x(t0)) > 0 and f (x(t0)) = 0.

2.3 The zero locus of (8)

In general, we cannot find a closed-form expression for
y2 in terms of y1 from (8) when g(y1, y2) is a general
nonlinear function. However, one can study the zero
locus which constitutes the solution set of ordered pairs
(y1, y2) to (8).

Note also that, since only two modes can ever
be competitive, we only have one relation to check
[namely, (8)], along with the positivity conditions. In
general, for a third-order system, we would have three
possible comparisons to make. This simplicity is due
to the form of the Eq. (2) considered.

2.4 Volume expansion or contraction

In addition to competitive modes, one can use volume
expansion or contraction in an attempt to better under-
stand the dynamics of specific equations of the form
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(2). Note that the system (3) has volume expansion or
contraction in phase space depending on the sign of

1

V
dV
dt

= �V = ∂ ẏ1
∂y1

+ ∂ ẏ2
∂y2

+ ∂ ẏ3
∂y3

= − f (y1) = − f (x). (19)

In particular, for a chaotic attractor, we should have

0 ≥ 1

V
dV
dt

= − f (x) (20)

for long time if we want trajectories in phase space to
converge upon such an attractor. For more on dissipa-
tivity and the utility of this approach for locating hidden
attractors, see [21–24].

In light of (20), f (x) ≥ 0 seems to be a useful con-
dition on equations of the form (2)whenwe seek chaos.
For some situations, such as the blue skye catastrophe
[25], there is volume expansion locally for some time
during bursting events, while for most times there is
strong volume contraction. For such a case, a restric-
tion that
∫ t f

t0
f (x(t))dt ≥ 0, (21)

for every large enough time interval [t0, t f ], may be
most useful. This says that, over every large enough
time interval, the dynamics are dissipative, although
there can be regions of local bursting behavior. As we
shall see later in Sect. 3, the physical models which
occur as special cases of (2) will satisfy this property.

3 Concrete examples

In this section, we shall provide some examples of non-
linear oscillator equations of the form (2). We demon-
strate that someequations of this formcanpermit chaos,
and hence, the extension of (1) to order three gives the
possibility for many more types of dynamics.

3.1 Sprott equations

Sprott [7] considered various equations of the form

...
x + aẍ + bẋ + h(x) = 0, (22)

and some specific functional forms of h(x) for which
chaotic trajectories exist were found. Such equations

have volume contraction when a > 0 or are volume
neutral when a = 0.

The mode frequencies for (22) are found to be
G1 = 0,G2 = b, andG3 = b−a2. Since themode fre-
quencies are all constant, if G2 = G3, then the mode
frequencies are always competitive. In this case, the
modes lock and the system may not exhibit chaos for
some response functions h(x) (see [7]). However, if the
mode frequencies are nearly competitive, G2 ≈ G3,
then chaos can still occur. This would imply that we
should have the condition 0≤ a2 < 1, and this is actu-
allywhatwe see in all of the chaotic systems of the form
(22) given in Table 1 of [7]. From the positivity condi-
tions on G2 and G3, we must also have b − a2 > 0.
Therefore, it makes sense to look for chaos in the sys-
tem (22) when

a2 << 1 and a2 < b. (23)

When h(x) is a linear function, note that the Eq.
(22) can never give chaos; hence, a competitive modes
analysis is not sufficient for chaos. We shall pick var-
ious nonlinear forms of h(x). In particular, we take
h(x) = x − x2, h(x) = x − 2 tanh(x), and h(x) =
− sin(x), and plot the resulting phase portraits in Figs.
1, 2, and 3, respectively. For each case, we pick parame-
ter values giving chaos, using the results of [7] as guid-

Fig. 1 Plot of the phase portrait for the system (22) when a = 0,
b = 2.8, and h(x) = x − x2. Initial conditions are taken to be
x(0) = 0.5, x ′(0) = −1, and x ′′(0) = 1. Since a = 0, the modes
are always competitive, while since b = 1 > a2 the positivity
condition is always satisfied
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A third-order extension to the Liénard oscillator 239

Fig. 2 Plot of the phase portrait for the system (22) when
a = 0.19, b = 1, and h(x) = x − 2 tanh(x). Initial condi-
tions are taken to be x(0) = 0, x ′(0) = 1, and x ′′(0) = 0.
Since a2 = 0.0361	 1, the modes are always nearly competi-
tive, while since b = 1 > a2 the positivity condition is always
satisfied

Fig. 3 Plot of the phase portrait for the system (22) when a =
0.2, b = 1, and h(x) = − sin(x). Initial conditions are taken to
be x(0) = 0, x ′(0) = 1, and x ′′(0) = 0. Since a2 = 0.04 	 1,
themodes are always nearly competitive,while since b = 1 > a2

the positivity condition is always satisfied

ance. For each case, one positive, one zero, and one neg-
ative Lyapunov exponent exists. Note that the modes
are competitive or nearly competitive for each, while

the positivity conditions always hold. Therefore, even
through the competitiveness and positivity conditions
are independent of time (and hence hold for all time,
when appropriate parameter values are employed), we
still see emergent chaotic behavior within the dynamics
of Eq. (22).

3.2 Electronic oscillator

In [26], a simple chaotic oscillator from an electric cir-
cuit was constructed. This oscillator was modeled by
the ODE system

Ẋ = Y,

Ẏ = aY − X − Z ,

ε Ż = b + Y − c(eZ − 1),

(24)

where a, b, c, ε are constant parameters. Importantly,
chaotic dynamics were shown to exist for such oscilla-
tors in [26].

In our coordinates, the relevant oscillator equation
is given by

...
x + (

Cex − A
)
ẍ + (

Cex ẋ + D − Aex
)
ẋ

+ (
Cex − B

) = 0. (25)

Our function x(t) is z(t) in [26], while the parameters
a, b, c, ε of [26] are transformed by A = ac

ε
, B =

b+c
ε
, C = c

ε
, D = 1

ε
+ 1. Note that x = ln(B/C) is

an equilibrium value. We have volume contraction in
phase space when Cex − A > 0.

We find that the positivity conditions are given by

(Cẋ − A)ex + D > 0 (26)

and

(3Cẋ + 2AC − A)ex − C2e2x − A2 > 0. (27)

The competitiveness condition becomes

2Cex ẋ − (Cex − A)2 = 0, (28)

Hence, if there exists t = t0 such that (28) holds, then
the mode frequencies G2 and G3 are equal. In terms of
the unknown functions, the competitiveness condition
is equivalent to
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Fig. 4 Plot of the phase portrait for the system (25) when
a = 0.4, b = 30, c = 4 × 10−9, and ε = 0.13, which in turn
give A = 1.2307 × 10−9, B = 230.769, C = 3.0769 × 10−8,
and D = 8.6923. Initial conditions are taken to be x(0) = 1,
x ′(0) = 0, and x ′′(0) = 0. The corresponding plot showing the
competitiveness condition is given in Fig. 5

ẋ(t0) = C

2
ex(t0) − A + A2

2C
e−x(t0). (29)

If we use the competitiveness condition in the pos-
itivity condition, we find that (after some algebraic
manipulations) they may be reduced to a single rela-
tion of the form

1

2
C2e2x − A(C + 1)ex + 1

2
A2 > max {0,−D} . (30)

Note that the parameter B does not matter for either
positivity or competitiveness, while D enters only into
the positivity condition. In contrast, both A and C fea-
ture in both the positivity and competitiveness condi-
tions and are hencemore likely to play the role of bifur-
cation parameters.

We plot a representative chaotic solution in Fig. 4 for
fixed parameter values. In Fig. 5, we plot the competi-
tiveness condition (28) as well as the positivity condi-
tion (30) corresponding to this chaotic solution.We see
that the competitiveness condition holds intermittently
over the time domain, which appears as a common fea-
ture among chaotic systems [27]. Therefore, the com-
petitive modes analysis can be successfully applied to
the solutions of (25).

Fig. 5 Plot of the competitiveness and positivity conditions for
Eq. (25), given parameter values and initial conditions of Fig. 4.
When the competitiveness condition equals zero and the function
showing the positivity condition is greater than zero, then the cri-
teria for the competitive modes test are met, and the two relevant
modes are indeed competitive. This occurs at what appears to be
countably many intermittent times

3.3 Memristor oscillator

Itoh and Chua [28] studied a variety of nonlinear
dynamics arising from memristor oscillators. We shall
consider the specific third-order system

Ẋ = α(Y − W (Z)X),

Ẏ = −ξ X + βY,

Ż = X,

(31)

where W (Z) is a prescribed function. This equation
arises in the study of memristors and appears as equa-
tion (65) of [28]. The functional form of W will deter-
mine the particular physics of the system.

Putting this equation into the form of a single ODE
by reduction in order [29], and setting x(t) = Z(t), we
obtain

...
x + (αW (x)− β)ẍ +α(W ′(x)ẋ − βW (x)+ ξ)ẋ = 0.

(32)

We have f (x) = αW (x) − β and g(x, ẋ) =
α(W ′(x)ẋ − βW (x) + ξ). We have volume contrac-
tion in phase space provided that αW (x) − β > 0.

The competitiveness condition is

2αW ′(x)ẋ − (αW (x) − β)2 = 0, (33)
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A third-order extension to the Liénard oscillator 241

and for W ′(x) 
= 0 this gives

ẋ(t0) = (αW (x(t0)) − β)2

2αW ′(x(t0))
. (34)

Meanwhile, the positivity condition becomes

α(W ′(x)ẋ − W (x) + ξ) > 0, (35)

which is equivalent to (using (34))

α2

2
(W (x))2 − α(1 + β)W (x) + β2

2
+ αξ > 0. (36)

On the other hand, if W ′(x(t0)) = 0, we must have the
competitiveness conditionW (x(t0)) = β

α
. The positiv-

ity condition is then ξ >
β
α
.

In [28],W (x)was taken to be of the form of a family
of step functions. For our purposes, consider a family
of step functions satisfying

W (x) =
{
a if |x − k| < 1,

b if |x − k| > 1.
(37)

Since this function is discontinuous, let us approximate
it via a continuous and smooth function. To this end,
consider

W (x) = a + (b − a) tanh2 ( j (x − k)) , (38)

which for large j >> 1 gives a smooth approximation
of (37).

In Fig. 6, we plot the resulting solution x(t) to
(32) for various values of the initial condition near the
algebraic competitiveness condition, corresponding to
x ′(0) = −0.0317 when x(0) = 0.9. We find that the
trajectories tend to a stable positive equilibrium. For
other parameters, stable limit cycles exist (as discussed
in [28]). Therefore, while we have competitiveness of
two modes, we do not have chaos.

Let us consider the positivity condition (35) and the
competitiveness condition (33). We plot both in Fig.
7, for parameter values and initial conditions taken in
Fig. 6. Initially, the modes are competitive, but then
fail to be competitive for all time t > 0. The positivity
condition is satisfied for all t > 0. This highlights the
fact that themodes should be intermittently competitive
in order for there to be chaos, while modes which are
competitive only at finitely many times do not yield

Fig. 6 Plot of the solution x(t) to (32) given α = 0.2, β = 0,
ξ = 2, while W (x) is taken as in (38) with parameters a = 0,
b = 1, j = 20, k = 1. Initial conditions are x(0) = 0.9,
x ′′(0) = 0, while x ′(0) is varied. When x ′(0) = −0.0317 we
have from (34) that the modes are competitive

Fig. 7 Plot of the competitiveness (33) and positivity (35) con-
ditions for Eq. (32), given parameter values and initial conditions
of Fig. 6. We select x ′(0) = −0.0317, noting similar results for
nearby initial conditions. Observe that the positivity condition
always holds, while the competitiveness condition holds only at
t = 0, and not for any positive time. Chaos does not emerge,
which highlights the need for modes to be intermittently com-
petitive for all time if chaotic trajectories are sought

chaotic dynamics (as was discussed in [27]). As such,
it is insufficient for modes to be competitive at only a
point (or, by extension, a finite collection of points) if
we seek chaotic trajectories.

We remark that the competitive modes analysis has
picked up on something interesting. Since the modes
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242 R. A. Van Gorder

are competitive at only one time, this means that as
time gets arbitrarily large, the modes will never again
be competitive. (Similarly, if themodes are competitive
at finitely many times, then for all times larger than the
maximum of those finite times, the modes will not be
competitive.) As such,we anticipate rather tame behav-
iors: trajectories leading to finite steady states, diver-
gence to infinity, or limit cycles. That is, we essentially
expect those dynamics commonly seen in two dimen-
sions.With this inmind, let us note that equations of the
form (32) with sufficiently smooth W (x) can actually
be written in the form

d

dt
{ẍ + αW (x)ẋ − β ẋ + αW (x) + αξ x} = 0, (39)

and hence for such a case, Eq. (32) clearly has a first
integral for the form

ẍ + αW (x)ẋ − β ẋ + αW (x) + αξ x = I, (40)

where I is a real-valued constant of integration. Since
this is a second-order equation, and the nonlinear terms
are smooth, we can only obtain non-chaotic solutions.
Hence, even if modes start out competitive, they should
separate, with one mode eventually becoming domi-
nant for increasingly large time.

Let us note that one can modify the oscillator equa-
tion (31) in order to obtain chaotic trajectories.We con-
sider the system

Ẋ = α(Y − W (Z)X),

Ẏ = −ξ X + βY − V (Z),

Ż = X,

(41)

where we now have coupled the Ẏ equation with Z
direction, through use of the function V (Z). Then,
again identifying x(t) = Z(t), we obtain the analog
of (32), to wit:

...
x + (αW (x) − β)ẍ + α(W ′(x)ẋ − βW (x) + ξ)ẋ

+αV (x) = 0. (42)

Recall that the function h(x) in (2) will not enter
into either the competitiveness or positivity conditions;
therefore, we can use the same conditions as derived
above. In Fig. 8, we plot a solution to (42) for which
the modes are competitive at t = 0. This solution cor-
responds to the choice V (x) = 5 sin(x). In Fig. 9, we

Fig. 8 Plot of the phase portrait for the system to (42) given
α = 0.2, β = 0, ξ = 2, while W (x) is taken as in (38) with
parameters a = 0, b = 1, j = 20, k = 1. We also take V (x) =
5 sin(x) for sake of example. Initial conditions are x(0) = 0.9,
x ′(0) = −0.0317, and x ′′(0) = 0. Recall that when x ′(0) =
−0.0317, we have from (34) that the modes are competitive

Fig. 9 Plot of the competitiveness (33) and positivity (35) con-
ditions for Eq. (32), given parameter values and initial conditions
of Fig. 8. We select x ′(0) = −0.0317, noting similar results for
nearby initial conditions. Observe that the positivity condition
holds over most of the domain, including for all sufficiently large
times, while the competitiveness condition holds at t = 0 and
for a collection of larger times. Eventually, the modes become
locked at a nearly competitive state, with the curve denoting the
competitiveness condition tending toward a value of about−0.04
for large time, which is sufficiently close to zero. As such, we
observe the chaos as shown in Fig. 8
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A third-order extension to the Liénard oscillator 243

plot the competitiveness condition along with the pos-
itivity condition. As we can see, there are intermittent
regions where modes are not competitive, while for
most times the modes are indeed competitive. For large
time, the competitiveness condition is nearly, but not
exactly, zero, and the modes appear to remain nearly
competitive for all time.Meanwhile, the positivity con-
dition is simultaneously satisfied for large time.

4 Competitive modes are not sufficient for chaos

While we demonstrated certain conditions for which
two modes being competitive did not yield chaos
(mainly, when two modes were competitive at only
finitely many points), in this section we shall more gen-
erally consider the insufficiency of competitive modes,
as illustrated by a subclass of equations of the form (2).

When (2) is equivalent to (1), we do not expect
chaos, since in this case the dynamics are two-
dimensional. Differentiation of (1) with respect to t
yields a third-order system

...
x + F(x)ẍ + F ′(x)ẋ2 + G ′(x)ẋ = 0. (43)

Equations (2) and (1) are therefore equivalent when
f (x) = F(x), g(x, ẋ) = F ′(x)ẋ + G ′(x) and h(x) =
0. In other words, when h(x) = 0 and when g takes the
form g(x, ẋ) = f ′(x)ẋ + g0(x), (2) has a first integral,
and hence, its dynamics are two-dimensional.

For a concrete example, consider the third-order
nonlinear differential equation

...
x + x ẍ + ẋ2 +

(
1

2
x2 + 1

)
ẋ = 0. (44)

The competitiveness condition is

ẋ − 1

2
x2 = 0, (45)

while the positivity condition is

x2 + 1 > 0, (46)

which always holds. Let us take t0 = 0 to be a point
when the modes are competitive. Then, the mode fre-
quencies G2 = G3 at t = 0 provided that ẋ(0) =
1
2 x(0)

2. Therefore, (44) has two competitive modes at

time t = 0 provided that the initial condition is selected
appropriately.

While (44) has two competitivemodes at time t = 0,
we can show that the system (44) cannot admit any
chaotic trajectories. Note that (44) is equivalent to

d

dt

{
ẍ + x ẋ + 1

6
x3 + x

}
= 0. (47)

Yet, (47) has an exact first integral, given by

ẍ + x ẋ + 1

6
x3 + x = C. (48)

The dynamics of (48) are planar; therefore, there can
be no chaotic trajectories. Yet, (44) and (48) are equiv-
alent systems, so there can be no chaotic trajectory in
(44). This demonstrates that the competitiveness of two
modes cannot be a sufficient condition for chaos in
dynamical systems of order greater than two.

Of course, this does not diminish the utility of the
competitive modes analysis. The method remains use-
ful for detecting parameter regimes that might lead to
chaos. However, there still is a certain skill required to
extract such information from the method. In this way,
we see that the approach is certainly not a black box
method and that onemust exercise cautionwhen apply-
ing the method. Still, the approach has been demon-
strated to assist in finding parameter regimes admitting
chaos, for appropriate applications of the method.

5 Conclusions

A new, third-order, extension of the Liénard oscilla-
tor equation (2) was considered. A general competitive
modes analysis for this third-order system was consid-
ered, as nonlinear third-order systems can possibly give
chaos. This equation holds the third-order equations
studied in [7] as special cases, and hence, we are able
to study chaos in a much more general setting. Indeed,
through a competitive modes analysis, we were able to
derive some criteriawhich allowone to search for chaos
in such third-order systems. The results demonstrate
that the natural extension (2) of the Liénard oscillator
equation to third-order permits a variety of dynamics,
some previously explored for specific forms of (2).

Physically relevant examples were considered, in
order to illustrate the utility of studying such third-order
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oscillator equations. In each of these cases, the afore-
mentioned competitive modes analysis was employed
in order to search for parameter regimes permitting the
existence of chaotic trajectories. The results also point
out thatmodes should be at least intermittently compet-
itive over the time domain. When modes are competi-
tive or nearly competitive at a single point (or a finite
collection of points) in time, the dynamics observed are
non-chaotic.

Non-sufficiency of competitive modes analysis was
demonstrated for a specific reduction in (2). In par-
ticular, one may have modes which are competitive
or nearly competitive, even when planar dynamics
are observed. This means that the competitive modes
analysis can be used as a diagnostic tool for trying to
identify parameter regimes and initial conditionswhich
permit chaotic trajectories in phase space, yet cannot
be said to be sufficient conditions for the existence of
such chaotic trajectories. Indeed, the existence of two
competitive modes may be necessary (as conjectured
elsewhere), although as we show here certainly is not
sufficient, for the existence of chaotic trajectories in
autonomous, continuous nonlinear systems of dimen-
sion three or greater.
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