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Abstract We study the AB system describing mar-
ginally unstable baroclinic wave packets in geophysi-
cal fluids and also ultrashort pulses in nonlinear optics.
We show that the breather can be converted into dif-
ferent types of stationary nonlinear waves on con-
stant backgrounds, including the multi-peak soliton,
M-shaped soliton,W-shaped soliton and periodicwave.
We also investigate the nonlinear interactions between
these waves, which display some novel patterns due to
the nonpropagating characteristics of the solitons: (1)
Two antidark solitons can produce a W-shaped soliton
instead of a higher-order antidark one; (2) the interac-
tion between an antidark soliton and a W-shaped soli-
ton can not only generate a higher-order antidark soli-
ton, but also form a W-shaped soliton pair; and (3) the
interactions between an oscillation W-shaped soliton
and an oscillation M-shaped soliton show the multi-
peak structures. We find that the transition occurs at
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a modulational stability region in a low perturbation
frequency region.
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1 Introduction

Echoing soliton concepts that flourished in the multi-
disciplinary since a few decades ago, rogue wave has
attracted recently the attention of researchers in var-
ious physical settings, e.g., in hydrodynamics [1,2],
capillary waves [3,4], plasma physics [5], nonlinear
optics [6] and Bose–Einstein condensation [7]. Due to
their harm to various hydrotechnic constructions, the
investigation of rogue waves becomes a very impor-
tant problem [8,9]. Rogue waves, which have a peak
amplitude generally more than twice the significant
wave height, are thought to appear from nowhere
and disappear without a trace in the ocean and most
experimental optical systems [10–13]. Among various
models describing such waves, the focusing nonlin-
ear Schrödinger (NLS) equation [14,15] is the most
accepted one. The NLS equation admits a type of ratio-
nal solution that is localized in both space and time, i.e.,
the Peregrine soliton [16]. This simplest rational solu-
tion of the NLS equation, which was first predicted
as far as 30 years ago [16], is frequently used as a
model of a rogue wave [9,17]. Breather solutions are
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presently regarded as potential prototypes for the rogue
waves in many fields of physics [2,3,18–20]. Breathers
develop due to the instability of small-amplitude per-
turbations that may grow in size to disastrous propor-
tions [21]. There are two types of breathers, namely the
Kuznetsov–Mabreathers (KMBs) [22] andAkhmediev
breathers (ABs) [23]. The KMBs are periodic in space
and localized in time, while the ABs are periodic in
time and localized in space [22,23]. Taking the period
of both solutions to infinity leads to a first-order doubly
localized Peregrine soliton.

The modulational instability (MI) is generally con-
sidered to be one of factors which may give rise to
rogue-wave excitation [16]. As a fundamental charac-
teristic of many nonlinear dispersive systems, MI is
related to the growth of periodic perturbations on an
unstable continuous-wave background [24]. A rogue
wave may be the result of MI, but not every type
of MI results in rogue-wave generation [25–27]. One
of theoretical researches has revealed the close rela-
tionship between rogue waves and baseband MI, i.e.,
MI whose bandwidth includes components of arbitrar-
ily low frequency [28–30]. Another possible explana-
tion presented by Zhao and Ling is that rogue wave
comes from MI under the “resonance” perturbation
with continuous-wave background [31].

Recent studies have revealed the intricate link
between the rogue waves (or breathers) and solitons
of a certain class of nonlinear evolution equations.
When the eigenvalues meet a certain locus on the com-
plex plane, Akhmediev et al. have discovered that the
breather solutions of the Hirota [32] equation and fifth-
order NLS [33] equation can be converted into soliton
solutions on a background, which does not exist in the
standard NLS equation. He et al. have reported that the
rational solution of a mixed NLS equation can describe
five soliton states, including a paired bright–bright soli-
ton, a single soliton, a paired bright-gray soliton, a
paired bright-black soliton and a rogue-wave state [34].
They have found that the state transition among these
five states is induced by tuning the effects of self-
steepening and self-phase modulation. Liu et al. have
shown that the breathers can be converted into different
types of nonlinear waves in the coupled NLS-MB sys-
tem, including the multi-peak soliton, periodic wave,
antidark soliton and W-shaped soliton [35]. In particu-
lar, they have indicated that the transition between the
rogue waves and W-shaped solitons of the Hirota and
coupled Hirota equations occurs as a result of the atten-

uation ofMI growth rate to vanish in the zero-frequency
perturbation region [36,37].

In this paper, we study the AB system [38,39],(
∂

∂T
+ c1

∂

∂X

) (
∂

∂T
+ c2

∂

∂X

)
A = l1A − l2AB,

(
∂

∂T
+ c2

∂

∂X

)
B =

(
∂

∂T
+ c1

∂

∂X

)
|A|2, (1.1)

where A is the amplitude of the wave packet and B is a
quantity measuring the correction of the basic flow due
to the wave packet, T and X denote the time and space
variables, respectively, c1 and c2 stand for two group
velocities of the underlying linear problem, and l1 rep-
resents a parameter measuring the state of the basic
flow. When the basic flow is supercritical, l1 > 0, and
when the basic flow is subcritical, l1 < 0. The para-
meter l2 reflects the interaction of the wave packet and
the meanflow, and it is always positive. System (1.1)
describes marginally unstable baroclinic wave packets
in geophysical fluids and also ultrashort pulses in non-
linear optics.

As shown in Ref. [40], System (1.1) can be reduced
to a simpler form

Axt = αA + βAB, Bx = −1

2
γ (|A|2)t , (1.2)

with

α = l1c2
(c1 − c2)2

, β = − l2c2
(c1 − c2)2

, γ = − 2

c2
,

(1.3)

by the transformations

x = X − c1T, t = T − X

c2
.

Recently, certain properties of System (1.2) have been
investigated. System (1.2) can be transformed to the
Sine-Gordon equation when A is the real value and
to the self-induced transparency system when A is the
complex value [38,39]. Lax pair and some periodic
solutions of System (1.2) have been derived in Ref.
[39]. MI and breather dynamics of System (1.2) have
been discussed in Ref. [41]. Reference [42] has stud-
ied the envelope solitary waves and periodic waves of
System (1.2). Thehigher-order rogue-wave solutions of
System (1.2) have been foundvia themodifiedDarboux
transformation (mDT) in Ref. [43]. The semirational
solutions have been derived in Ref. [30], and the link
between the baseband MI and the existence condition
of these rogue waves has been revealed. Recently, the
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rogue waves andMI have been demonstrated for a cou-
pled AB system, i.e., a wave–current interaction model
describing baroclinic instability processes in geophys-
ical flows [40].

The aim of the present paper is to study the breather–
soliton dynamics of System (1.2). We present intrigu-
ing different kinds of nonlinear localized and peri-
odicwaves, including themulti-peak soliton,M-shaped
soliton, W-shaped soliton and periodic wave. Interest-
ingly, these waves are stationary nonlinear waves with
respect to x-axis. Further, due to the nonpropagating
characteristic, the nonlinear interactions show some
novel properties. The breather-to-soliton transition is
related to a special type of MI analysis that involves
a MI stability region in a low perturbation frequency
region.

The arrangement of the paper is as follows: In
Sect. 2, we present different types of stationary non-
linear waves of System (1.2), including the multi-peak
soliton, M-shaped soliton, W-shaped soliton and peri-
odic waves. And the transition condition will be analyt-
ically given. The properties of interactions between dif-
ferent types of nonlinear waves are graphically studied
in Sect. 3. The connection between the MI growth rate
and transition condition is revealed in Sect. 4. Finally,
Sect. 5 gives the conclusions of this paper.

2 Different types of stationary nonlinear waves

In this section, wemainly study the transitions between
the first-order breather and various nonlinear waves for
System (1.2). The first-order breather solution of Sys-
tem (1.2) is given [30]

A[1]
B =

(
a + n1

G[1]
B + i H [1]

B

D[1]
B

)
eiρ,

B[1]
B = b + 4i

β

(
m1E

[1]
B + in1F

[1]
B

D[1]
B

)
t

, (2.1)

with

ρ = ωx + kt, k = −α + bβ

ω
,

G[1]
B = k1k2 cos(tVH + xhR) cosh(2χI )

cosh(tVT + xhI ) sin(2χR),

H [1]
B = k1k2 sin(tVH + xhR) sinh(2χI )

+ cos(2χR) sinh(tVT + xhI ),

D[1]
B = −k1k2 cos(tVH + xhR) sin(2χR)

+ cosh(tVT + xhI ) cosh(2χI ),

E [1]
B = k1k2 cos(tVH + xhR) sin(2χR)

− cosh(tVT + xhI ) cosh(2χI ),

F [1]
B = k1k2 sin(tVH + xhR) cos(2χR)

− sinh(tVT + xhI ) sinh(2χI ),

h =
√
a2βγ + (2λ + ω)2 = hR + ih I ,

χ = 1

2
arccos

(
h

2

)
, k1 = 1, k2 = ±1, λ = m + in,


 = h

2

(
x + k

2λ
t

)
= (x + (
R + i
I )t)

h

2
,

VT = 2(
RhI + 
I hR),

VH = 2(
RhR − 
I h I ).

From the above expression, one can find that the
breather solution (2.1) comprises the hyperbolic func-
tions sinh(tVT + xhI ), cosh(tVT + xhI ) and the
trigonometric functions sin(tVH + xhR), cos(tVH +
xhR), where 
R + 
I hR

hI
and 
R − 
I h I

hR
are the cor-

responding velocities. The hyperbolic functions and
trigonometric functions, respectively, characterize the
localization and the periodicity of the transverse distri-
bution t of those waves. The nonlinear wave described
by solution (2.1) canbedeemed to anonlinear combina-
tion of a soliton and a periodic wave with the velocities

R + 
I hR

hI
and
R − 
I h I

hR
. In the following, we show

that solution (2.1) can describe different kinds of non-
linear wave states depending on the values of velocity

difference

I (h2R+h2I )

hRhI
.

When 
I (
h2R+h2I
hRhI

) �= 0 (or 
I �= 0), solution (2.1)
characterizes the localizedwaveswith breathingbehav-
ior on constant backgrounds (i.e., the breathers and
rogue waves). Further, if m = −ω

2 , we have the ABs

with |n| < | a
√

βγ
2 |, the KMBs with |n| > | a

√
βγ
2 | and

the Peregrine soliton with |n| = | a
√

βγ
2 |. Those solu-

tions have been obtained in Refs. [30,41,43].
Conversely, if 
I = 0, the soliton and a periodic

wave in solution (2.1) have the same velocity 
R .
Meanwhile, we should point out that the case 
I = 0
is equivalent to the following condition

VT
hI

= VH

hR
, (2.2)

i.e.,

b = −α

β
. (2.3)
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Fig. 1 A breather transformed into a multi-peak soliton with a = 2, b = 1, γ = 1, ω = 1, α = −1, β = 1, k1 = 1, k2 = −1 and
λ1 = λ∗

2 = 7.2 − 0.7i . b Is the contour plot of a. c Is the cross-sectional view of a at t = 0

Fig. 2 Abreather transformed into an oscillationW-shaped solitonwith a = 2, b = 1, γ = 1, ω = 1, α = −1, β = 1, k1 = 1, k2 = −1
and λ1 = λ∗

2 = −0.8 − 0.7i . b Is the contour plot of a. c Is the cross-sectional view of a at t = 0

Equation (2.2) means the extrema of trigonometric
and hyperbolic functions in solution (2.1) are located
along the same straight lines in the (x, t) plane, which
results in the transformation of the breather into a con-
tinuous soliton. Additionally, the case b = −α

β
is also

equivalent to k = 0. Then, the parameters 
R , 
I ,
VT and VH vanish, and solution (2.1) only depends on
x and is independent of t . Thus, the nonlinear waves
described by solution (2.1) possess the nonpropagating
characteristic.

Under the transition condition (2.3), we demonstrate
several kinds of transformed nonlinear waves on con-
stant background for A, including the multi-peak soli-
tons, M-shaped soliton, periodic waves and W-shaped
soliton. We omit the results in the B component, since
it only describes the plane wave in the case of k = 0.
Figure 1 shows a multi-peak soliton on constant back-
ground that does not propagate along x direction. Such
structure is composed of a soliton and periodic wave.
Adding the absolute value of real part to the eigenvalue,
|m|, we find that the peak numbers of multi-peak local-

ized structure decrease, as depicted in Fig. 2. From
the cross-sectional views, it is observed that both of
those multi-peak solitons have one main peak which is
located at (0, 0). The maximum amplitude of |A|2 at
(0, 0) can be given analytically

|A(0, 0)|2 =
(
a − 4

n√
βγ

)2

. (2.4)

Equation (2.4) indicates that the imaginary part of
eigenvalue (n) has real effects on the maximum ampli-
tude of |A|2 at (0, 0).

Further, the structure in Fig. 2 (we call it an
oscillation W-shaped soliton) corresponds to the case
|A(0, 0)|2xx > 0 with the appropriate value of n (n =
−0.7). In other words, the coordinate origin (0, 0) is a
local maximum of |A(x, 0)|2. Nevertheless, when the
value of n exceeds a certain range, |A(0, 0)|2xx is less
than zero, whichmeans that the coordinate origin (0, 0)
is a local minimum of |A(x, 0)|2. In this case, the oscil-
lationW-shaped soliton translates into aM-shaped soli-
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Stationary nonlinear waves, superposition modes and modulational instability characteristics 189

Fig. 3 A breather transformed into a M-shaped soliton with a = 2, b = 1, γ = 1, ω = 1, α = −1, β = 1, k1 = 1, k2 = −1 and
λ1 = λ∗

2 = −0.8 + i . b Is the contour plot of a. c Is the cross-sectional view of a at t = 0

Fig. 4 Effects of the imaginary part of eigenvalue n on
|A(0, 0)|2xx with a = 2, b = 1, γ = 1, ω = 1, α = −1,
β = 1, k1 = 1, k2 = −1 and m = −0.8. Two zeros of the
|A(0, 0)|2xx are in (0, 0) and (1.25, 0), respectively

ton shown in Fig. 3. It is observed that this structure has
two main peaks with identical amplitudes. In order to
reveal the effect of the value of n on |A(0, 0)|2xx , we
plot Fig. 4 with a = 2, b = 1, γ = 1, ω = 1, α =
−1, β = 1, k1 = 1, k2 = −1 and m = −0.8. If
0 < n < 1.25, namely, |A(0, 0)|2xx < 0, the solu-
tion (2.1) describes the M-shaped soliton, whereas it
describes the W-shaped one.

Next, we derive two special nonlinear waves from
the solution (2.1), i.e., the antidark soliton and periodic
wave. The former exists in isolation when hR vanishes,
while the latter independently exists when hI vanishes.
Therefore, the antidark soliton and periodic wave are
shown in forms of exponential and trigonometric func-
tions, respectively. Specifically, the analytical expres-
sions read as, for the soliton,

A[1]
S =

(
a + n1

G[1]
S + i H [1]

S

D[1]
S

)
eiρ, B[1]

S = b, (2.5)

with

G[1]
S = k1k2 cosh(2χI ) − cosh(xhI ) sin(2χR),

H [1]
S = cos(2χR) sinh(xhI ),

D[1]
S = −k1k2 sin(2χR) + cosh(xhI ) cosh(2χI ),

and for the periodic wave,

A[1]
P =

(
a + n1

G[1]
P + i H [1]

P

D[1]
P

)
eiρ, B[1]

P = b. (2.6)

with

G[1]
P = k1k2 cos(xhR) cosh(2χI ) − sin(2χR),

H [1]
P = k1k2 sin(xhR) sinh(2χI ),

D[1]
P = −k1k2 cos(xhR) sin(2χR) + cosh(2χI ).

Figure 5 describes a soliton that does not propagate
along x direction. It is shown that this soliton lies on a
plane-wave background with the peak (a

√
βγ − 2n)2.

This kind of wave is referred to the antidark soliton
which was firstly reported in the scalar NLS system
with the third-order dispersion [44,45]. Recent studies
on the NLS-MB system have also presented the similar
structures [35]. Further, for the value of a that becomes
zero, this solitonwill be converted into a standard bright
soliton. Figure 6 exhibits the periodic wave with the
period P = π

hR
. It is interesting, as it looks like higher-

order wave but appears from the same solution.
In particular, as the periodhR is close to zero, namely

n → a
√

βγ , the periodic wave will turn into the W-
shaped soliton, as shown in Fig. 7. In this case, the
solution (2.1) is transformed into

A[1]
RS = −aeixω

(
a2βγ x2 − 3

)
a2βγ x2 + 1

. (2.7)
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Fig. 5 A breather transformed into an antidark soliton with a = 2, b = 1, γ = 1, ω = 1, α = −1, β = 1, k1 = 1, k2 = 1 and
λ1 = λ∗

2 = −0.5 − 1.8i . b Is the contour plot of a. c Is the cross-sectional view of a at t = 0

Fig. 6 A breather transformed into a periodic wave with a = 2, b = 1, γ = 1, ω = 1, α = −1, β = 1, k1 = 1, k2 = −1 and
λ1 = λ∗

2 = −0.5 + 0.7i . b Is the contour plot of a. c Is the cross-sectional view of a at t = 0

Fig. 7 A rogue wave transformed into a W-shaped soliton with a = 2, b = 1, γ = 1, ω = 1, α = −1, β = 1, k1 = 1, k2 = 1 and
λ1 = λ∗

2 = −0.5 + i. b Is the contour plot of a. c Is the cross-sectional view of a at t = 0

The maximum height (9a2) of the W-shaped wave
is nine times the background intensity, while the mini-
mum is zero. By comparisonwith theW-shaped soliton
in Fig. 2, the soliton in Fig. 7 has two different features:
(1) It shows a single-peak structure without oscillating
tails; (2) it has a rational expression.

We further discuss the effects of the coefficients α, β
and γ on the transformed solitons. The coefficientsα,β

and γ , which are related to the parameters c1, c2, l1 and
l2, are defined by Eq. (1.3). Figure 8a, b indicates that
the amplitudes of the multi-peak solitons decrease with
increasing the values of β and γ . In addition, increas-
ing the values of β and γ leads to stronger localization
and a smaller oscillation period for the multi-peak soli-
ton. This means that we can control the amplitudes of
the transformed nonlinear waves by adjusting the two
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Fig. 8 The effects of α, β and γ on the multi-peak solitons with a = 2, ω = 1, k1 = 1, k2 = −1 and λ1 = λ∗
2 = 7.2 − 0.7i.

a α = −1, β = 1; b α = −1, γ = 1; c β = 1, γ = 1

group velocity coefficients c1 and c2 and the parameter
l2 that reflects the interaction of the wave packet and
the meanflow. However, as shown in Fig. 8c, changing
the value of α does not affect the characteristics of the
multi-peak soliton.

3 Nonlinear wave interactions

In this section, we study the characteristics of inter-
actions between the nonlinear waves presented above.
Due to the diversity of the transformed waves (in fact,
there are many kinds of nonlinear wave interactions),
we only exhibit several typical nonlinear superposition
patterns that derive from the two-breather solutions.

By virtue of the n-fold DT [30,41], the two-breather
solution of System (1.2) is given as

A[2]
B = A[0]+ 4i√

βγ

Δ
[2]
1

Δ[2] , B[2]
B = B[0]−4i

β

(
Δ

[2]
2

Δ[2]

)
t

,

(3.1)

with

A[0] = aeiρ, B[0] = b,

λ1 = λ∗
2 = m1 + n1i, λ3 = λ∗

4 = m2 + n2i,

ψ2 = −ϕ∗
1 , ϕ2 = ψ∗

1 ; ψ4 = −ϕ∗
3 , ϕ4 = ψ∗

3 ;
ϕ j = k1

ih j + 2iλ j + iω

a
√

βγ
ei(
 j+ ρ

2 ) + k2e
−i(
 j− ρ

2 ),

ψ j = k1e
i(
 j− ρ

2 ) + k2
ih j + 2iλ j + iω

a
√

βγ
e−i(
 j+ ρ

2 ),

j = 1, 3, k1 = k2 = 1,

Δ
[2]
1 =

∣∣∣∣∣∣∣∣

λ1ϕ1 ϕ1 −λ21ϕ1 ψ1

λ2ϕ2 ϕ2 −λ22ϕ2 ψ2

λ3ϕ3 ϕ3 −λ23ϕ3 ψ3

λ4ϕ4 ϕ4 −λ24ϕ4 ψ4

∣∣∣∣∣∣∣∣
,

Fig. 9 Elastic collision between two breathers with a = 2, b =
1, γ = 4, ω = 1, α = 4, β = 1, k1 = 1, k2 = 1, λ1 = λ∗

2 =
1.8i and λ3 = λ∗

4 = −0.8 + 1.8i

Δ
[2]
2 =

∣∣∣∣∣∣∣∣

−λ21ϕ1 ϕ1 λ1ψ1 ψ1

−λ22ϕ2 ϕ2 λ2ψ2 ψ2

−λ23ϕ3 ϕ3 λ3ψ3 ψ3

−λ24ϕ4 ϕ4 λ4ψ4 ψ4

∣∣∣∣∣∣∣∣
,

Δ[2] =

∣∣∣∣∣∣∣∣

λ1ϕ1 ϕ1 λ1ψ1 ψ1

λ2ϕ2 ϕ2 λ2ψ2 ψ2

λ3ϕ3 ϕ3 λ3ψ3 ψ3

λ4ϕ4 ϕ4 λ4ψ4 ψ4

∣∣∣∣∣∣∣∣
.

Figure 9 displays the elastic interaction between
two breathers of System (1.2). It is found that the
two-breather interaction produces a second-order cen-
tral rogue wave in (x–t) plane. Similar to the case in
Sect. 3, to convert the two-breather solutions into the
two-soliton ones on constant backgrounds, the parame-
ter b also needs to meet the transition condition (2.3),
namely k = 0. For different kinds of nonlinear super-
positions, we can choose the corresponding real (m j )
and imaginary (n j ) parts of eigenvalues (λ j ) in solu-
tion (3.1). The values of m j and n j ( j = 1, 3) control
the types of the transformed nonlinearwaves. In the fol-
lowing, we present six kinds of nonlinear superposition
patterns.

123
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Fig. 10 The interaction
between two W-shaped
solitons with a = 2, b =
1, γ = 4, ω = 1,
α = −1, β = 1, k1 =
1, k2 = 1, λ1 = λ∗

2 =
−0.5 + 2.1i and
λ3 = λ∗

4 = −0.5 + 2.2i.
The nonlinear interaction
forms an oscillation
W-shaped soliton

Fig. 11 The interaction
between two antidark
solitons with a = 2, b =
1, γ = 4, ω = 1,
α = −1, β = 1, k1 =
1, k2 = 1, λ1 = λ∗

2 =
−0.5 − 2.2i and
λ3 = λ∗

4 = −0.5 − 2.3i.
The nonlinear interaction
forms a W-shaped soliton

3.1 The oscillation W-shaped soliton

We first consider the nonlinear superposition of two
stationary W-shaped solitons, which is exhibited in
Fig. 10. The two eigenvalues λ1 = −0.5 + 2.1i
and λ3 = −0.5 + 2.2i meet the conditions of the
W-shaped solitons. Interestingly, instead of a higher-
orderW-shaped soliton, these two localizedwaves form
an oscillation W-shaped soliton with higher intensity
(|A(0, 0)|2 = 4(1+ n1 + n2)2). |A|2 → a2 by assum-
ing z → ∞, t → ∞which gives the asymptotic plane.
Due to the nonpropagating characteristic of the non-
linear waves, the nonlinear superposition could show
some novel features. The interaction between two same
type waves generates a different one.

3.2 The W-shaped soliton

Next,wedemonstrate the nonlinear interactionbetween
two antidark solitons in Fig. 11. The two eigenvalues
λ1 = m1 + in1 and λ3 == m3 + in3 are set to be
−0.5 − 2.2i and −0.5 − 2.3i , respectively. Surpris-
ingly, we find that the interaction between the antidark
solitons does not produce a second-order antidark soli-
ton, but instead generates a W-shaped soliton.

3.3 The antidark soliton and W-shaped soliton pair

We then study the interaction between two differ-
ent types of nonlinear waves, for example, the anti-
dark soliton and a W-shaped soliton. The eigenvalue
λ1 = −0.5 − 2.1i is for the antidark soliton while
λ3 = −0.5 + 4i for the W-shaped one. As shown in
Fig. 12, an intriguing phenomenon is that the interac-
tion forms an antidark soliton. By adjusting the values
of eigenvalues λ1 (still for antidark soliton) and λ3 (still
for W-shaped soliton), we observe a W-shaped soliton
pair inFig. 13.Each component in theW-shaped soliton
pair has the same intensity. In spite of the similar single
wave as the seeds, the nonlinear interactions can pro-
duce different patterns due to the choices of different
eigenvalues λ1 and λ3. This means the mechanism of
nonlinear superposition is controlled by the two eigen-
values. A complete and analytical study of the control
mechanism of such composite solutions is an issue that
requires special investigation.

3.4 The multi-peak solitons

Finally, we display some multi-peak structures. Fig-
ure 14 describes the nonlinear interactions between
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Fig. 12 The interaction
between an antidark soliton
and a W-shaped soliton with
a = 2, b = 1, γ = 4, ω =
1, α = −1, β = 1, k1 =
1, k2 = 1, λ1 = λ∗

2 =
−0.5 − 2.1i and
λ3 = λ∗

4 = −0.5 + 4i

Fig. 13 The interaction
between an antidark soliton
and a W-shaped soliton with
a = 2, b = 1, γ = 4, ω =
1, α = −1, β = 1, k1 =
1, k2 = 1, λ1 = λ∗

2 =
−0.5 − 2.7i and
λ3 = λ∗

4 = −0.5 + 2.699i

Fig. 14 The interaction
between an oscillation
W-shaped soliton and an
oscillation M-shaped soliton
with a = 2, b = 1, γ =
4, ω = 1, α = −1, β =
1, k1 = 1, k2 = 1, λ1 =
λ∗
2 = 4.5 − 2.7i and

λ3 = λ∗
4 = 5.5 + 5.2i

the oscillation W-shaped soliton and oscillation M-
shaped soliton. The superposition leads to the forma-
tion of a three-peak soliton that corresponds to the case
|A(0, 0)|2xx > 0. Using different eigenvalues, we plot
a four-peak soliton (|A(0, 0)|2xx < 0) also produced
by the oscillation W-shaped soliton and oscillation M-
shaped soliton, as depicted in Fig. 15. A higher-order
multi-peak soliton, which is composed of two first-
order multi-peak solitons, is plotted in Fig. 16.

4 MI characteristics

In this section, we reveal the explicit relation between
the transition and the distribution characteristics of MI
growth rate for System (1.2). Firstly, let us recall the
results of MI analysis on System (1.2). As shown in
Ref. [30], System (1.2) admits the following continuous-
wave solutions,

A(x, t) = aei(ωx+kt),
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Fig. 15 The interaction
between an oscillation
W-shaped soliton and an
oscillation M-shaped soliton
with a = 2, b = 1,
γ = 4, ω = 1, α =
−1, β = 1, k1 = 1, k2 =
1, λ1 = λ∗

2 = 6 − 3.05i and
λ3 = λ∗

4 = 5 + 2i

Fig. 16 The interaction
between two multi-peak
solitons with a = 2, b =
1, γ = 4, ω = 1, α = −1,
β = 1, k1 = 1, k2 =
1, λ1 = λ∗

2 = −19 − 5i and
λ3 = λ∗

4 = −20 + 2i

B(x, t) = b, (4.1)

where a, ω, k and b are real parameters. A perturbed
nonlinear background can be expressed as

A(x, t) = (
a + ε Â(x, t)

)
ei(ωx+kt),

B(x, t) = b + ε B̂(x, t). (4.2)

Taking Eq. (4.2) into System (1.2) yields the evolution
equation for the perturbations as

−aβ B̂(x, t) + ik Â(1,0)(x, t) + iω Â(0,1)(x, t)

+ Â(1,1)(x, t) = 0,

B̂(1,0)(x, t) + 1

2
aγ Â(0,1)(x, t)

+1

2
aγ Â∗(0,1)(x, t) = 0. (4.3)

Noting the linearity of Eq. (4.3) with respect to Â and
B̂, we introduce

Â(x, t) = U cos(Λx − Ωt) + iV sin(Λx − Ωt),

B̂(x, t) = K cos(Λx − Ωt), (4.4)

which is characterized by the wave number Λ and fre-
quency Ω . Using Eq. (4.4) into Eq. (4.3) gives a linear
homogeneous system of equations for U and K :

−iaUΛk + iaωUΩ + iaVΛΩ = 0, (4.5)

−aVΛk + aωVΩ − a2UβγΩ

Λ
+ aUΛΩ = 0.

(4.6)

From the determinant of the coefficient matrix of
Eqs. (4.5)–(4.6), the dispersion relation for the lin-
earized disturbance can be determined as

Ω2
(
−aβγ + Λ2 − ω2

)
−k2Λ2+2kΛωΩ = 0. (4.7)

Solving the above equation, we have

Ω =
kΛω ±

√
k2Λ2

(
Λ2 − aβγ

)
aβγ − Λ2 + ω2 . (4.8)

Figure 17 shows the characteristics of MI on the
(Λ, k) plane. It is found that the MI exists in the region
−a

√
βγ < Λ < a

√
βγ . Reference [30] has found that

the rogue-wave existence condition of System (1.2) is
strictly related to baseband MI, namely the MI whose
bandwidth includes arbitrary small frequencies. In this
case, we obtain the parameter condition βγ > 0 [30].
Hereby,wediscover that theMIgrowth rate distribution
is symmetric with respect to
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Fig. 17 Characteristics of MI growth rate Ω on (Λ, k) plane
with a = 1, γ = 4, β = 1 and ω = 1. Here the dashed red
lines represent the stability region in the perturbation frequency
region −a

√
βγ < Λ < a

√
βγ , which is given as b = − α

β
.

(Color figure online)

k = 0, (4.9)

i.e.,

b = −α

β
. (4.10)

The k = 0 line (red dashed line) in Fig. 17 corre-
sponds to a modulational stability (MS) region where
the growth rate is vanishing in the low perturbation fre-
quency region. More interestingly, one can find that the
MS condition (4.9) [or (4.10)] is completely consistent
with the condition (2.3) which converts breathers into
stationary nonlinear waves. Our finding suggests that
the transition between breathers and stationary nonlin-
ear waves can occur in the MS region with the low-
frequency perturbations.

5 Conclusions

In summary,wehave investigated the transitionbetween
breathers and stationary nonlinear waves for Sys-
tem (1.2). Some intriguing different types of station-
ary nonlinear waves, including multi-peak solitons, M-
shaped soliton, periodic wave, antidark soliton and W-
shaped soliton, have been demonstrated graphically
and analytically. The reasons and the conditions for
transition have been presented explicitly. We have
found that the real part of eigenvalue m has effects
on the peak numbers of the multi-peak solitons, while
the imaginary part n controls the transition between

the oscillatingW-shaped soliton andM-shaped soliton.
Further, we have studied the interactions between those
transformed nonlinear waves. Due to the nonpropagat-
ing characteristic, the nonlinear superposition of two
types of nonlinear waves has exhibited some novel fea-
tures (see Figs. 10, 11, 12, 13, 14, 15, 16). Finally, we
have shown that this transition is strictly associatedwith
the MI analysis that involves a MS region.
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