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Abstract Loop delays are taken into our considera-
tion when positive position feedback controller is used
to control the vibrations of forced and self-excited non-
linear beam. External excitation is a harmonic excita-
tion caused by support motion of the cantilever beam.
Self-excitation is caused by fluid flow and modeled
by a nonlinear damping with a negative linear part
(Rayleigh’s function). The multiple timescales per-
turbation technique is applied to obtain a first-order
approximate solution. Effects of time delay on the sys-
tem are extensively studied, and optimal conditions
for the system operation are deduced. The equilib-
rium solution curves are plotted for several values of
controller parameters. The stability of the steady-state
solution is investigated using frequency-response equa-
tions. The analytical results are validated by numerical
integration of the original closed-loop system model
equations, time histories and Poincaré map for the sys-
tem. We realized that all predictions from analytical
solutions are in good agreement with the numerical
simulation.
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List of symbols

x1, ẋ1, ẍ1 Displacement, velocity and acceleration
of the beam, respectively

x2, ẋ2, ẍ2 Displacement, velocity and acceleration
of the controller, respectively

α1 Negative viscous damping coefficient of
the beam

β1 The cubic damping coefficient of the
beam

ω! Ratio of the natural frequency of the
composite beam with the lumped mass
with respect to that of the reference beam
without the lumped mass.

γ1 Coefficient describes the beam geomet-
rical nonlinearity

δ Coefficient describes the beam inertia
nonlinearity

x0 Amplitude of the support motion
Ω Frequency of the support motion
μ Constant
λ1 The control signal gain
α2 Linear damping coefficient of the con-

troller
ω2 Controller natural frequency
λ2 Positive control feedback gain
τ1 Actuation delay
τ2 Measurement delay
ε Small perturbation parameter
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1 Introduction

Many closed-loop control systems contain loop delays
“time delays”. Time delays are inevitable in any active
control system as a result of measuring system states,
processing the control algorithms, control interfaces,
transport delay and actuation delay. The presence of
time delays imposes strict limitations on the control
system. With delays in measurement, the controller
receives “outdated” information about process behav-
ior. Also, the control action cannot be applied “on time”
as a result of delays in actuation. Thus, time delay
reduces the compensation efficiency to the effect of dis-
turbances. So controller design and operation become
complicated. Time delays can affect the stability of
the system. Thus, the control system with time delays
became a subject of researchers interest. Control issues
in systems with loop delays have been studied exten-
sively [1]. A saturation-based controller has been used
to suppress a nonlinear beam vibration where time
delay was taken into consideration and the effects of
time delay on the system behavior were studied [2].
Time- delayed position feedback controller was used to
reduce the horizontal vibration of a magnetically lev-
itated body subjected to multi-force excitations, and
the effects of time delay were investigated to indicate
the safe region of system operation [3]. The effect of
time delays on the saturation control of the first-mode
vibration of a stainless-steel beam have been studied
[4]. The delayed feedback control has been applied
to suppress or stabilize the vibration of the primary
system in a two- degree-of-freedom dynamical system
with a parametrically excited pendulum [5]. Xu et al.
[6] and others improved a nonlinear saturation con-
troller by using quadratic velocity coupling term with
time delay instead of the original quadratic position
coupling term in the controller, and they added a neg-
ative time-delay velocity feedback to the primary sys-
tem and then utilized this controller to suppress high-
amplitude vibrations of a flexible, geometrically non-
linear beam-like structure. The authors in [7–13] have
been studied extensively the vibration control of many
systems with the time delay by using different con-
trollers. An active linear absorber based on positive
position feedback control strategy has been developed
and applied to suppress the high-amplitude response
of a flexible beam subjected to a primary external exci-
tation [14]. Positive position feedback controller has
been modified, and a new active vibration control tech-

nique was developed and applied to piezoelectrically
controlled systems [15]. An active vibration control
of clamp beams using positive position feedback con-
troller with a sensor /moment pair actuator has been
investigated [16]. Authors in [17] have used a nonlin-
ear saturation controller to control the vibrations of a
nonlinear beam with self- and external excitations, and
they concluded that the closed-loop system might lose
stability when the two type excitations interacted near
the fundamental resonance zone.

An active vibration control of a nonlinear beamwith
self- and external excitations by using positive position
feedback (PPF) controller is investigated in this work.
Loop delays are taken into our consideration. Exter-
nal excitation is a harmonic excitation caused by sup-
port motion of the cantilever beam. Self-excitation is
caused by fluid flow andmodeled by a nonlinear damp-
ing with a negative linear part (Rayleigh’s function).
Systems with self-excitation are common in applica-
tions of solid or fluid mechanics. Multiple timescales
perturbation (MTSP) technique is applied to obtain a
first-order approximate solution. Effects of time delays
on the system are studied extensively. In our study,
time margin of the system is deduced for many values
of controller parameters to deduce the optimal condi-
tions for system operation. Where time margin is the
amount of time delay that system can bear without
being unstable. The equilibrium solution curves were
plotted for various values of controller parameters. The
stability of the steady-state solution was investigated
using frequency-response equations. Analytical results
using MTSP technique are verified by numerical inte-
gration of the original closed-loop system model equa-
tions, time histories and Poincaré map for the system.
We found that all predictions from analytical solutions
are in good agreement with the numerical simulation.

2 Model of the structure

The model of the beam and its characteristic parame-
ters are presented in Fig. 1 and Fig. 2 presents the block
diagram of the closed loop system. The physical para-
meter’s values are given in [17]. The cantilever beam is
mounted on an armature of an electrodynamic shaker
which is a source of external excitation along the x-
axis. This model can be used practically to describe
the wing of a plane such that the wing of the plane is
suspended to external excitation from plane body and
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Effects of time delay on an active vibration control 139

Fig. 1 Model of the nonlinear beamwith self- and external exci-
tations

Fig. 2 Block diagram of the closed-loop system

self-excitation from the wind flow. The external exci-
tation is written as

x = x0 sin(Ωt). (1)

The differential equation of the beam (the plant) is
given by [17] in the dimensionless form as follows:

ẍ1 + (−α1 ẋ1 + β1 ẋ
3
1) + ω2

1x1 + γ1x
3
1

+δ(x1 ẋ
2
1 + x21 ẍ1)

= x0μΩ2 sin(Ωt) + λ1 fc(t). (2)

Self-excitation is represented by a nonlinear damping
with a negative linear part (Rayleigh’s function).A con-
trol force fc(t) is added to right-hand side of differen-
tial Eq. (2). Positive position feedback controller (PPF)
is coupled to the beam. The equation governing the
dynamics of this controller (PPF) is suggested as

ẍ2 + α2 ẋ2 + ω2
2x2 = λ2 f f (t). (3)

In this work, time delays in the control signal and the
feedback signal are taken into our consideration, so the
control signal fc(t) and feedback signal f f (t) are given
by

fc(t) = x2(t − τ1) and f f (t) = x1(t − τ2). (4)

So the closed-loop system equations are

ẍ1(t) + (−α1 ẋ1(t) + β1 ẋ
3
1(t)) + ω2

1x1(t)

+ γ1x
3
1(t) + δ(x1(t)ẋ

2
1 (t) + x21 ẍ1(t))

= x0μΩ2 sin(Ωt) + λ1x2(t − τ1), (5)

ẍ2(t) + α2 ẋ2(t) + ω2
2x2(t) = λ2x1(t − τ2). (6)

3 Perturbation analysis

Approximate analytical solution is obtained by using
multiple scales perturbation technique (MSPT) [18].
Assume that the system is weakly nonlinear. We obtain
first-order approximate solutions of Eqs. (5) and (6) by
seeking the solution in the forms:

x1(t, ε) = x10(T0, T1) + εx11(T0, t1), (7)

x2(t, ε) = x20(T0, T1) + εx21(T0, T1), (8)

x1(t − τ2, ε) = x10τ2(T0, T1) + εx11τ2(T0, T1), (9)

x2(t − τ1, ε) = x20τ1(T0, T1) + εx21τ1(T0, T1) (10)

where ε is a small dimensionless perturbation parame-
ter (ε << 1), T0 = t and T1 = εt are the fast and
slow timescales, respectively. Time derivatives are as
follows:

d

dt
= D0 + εD1 + · · · ,

d2

dt2
= D0

2 + 2εD0D1 + · · ·

⎫
⎪⎪⎬

⎪⎪⎭

(11)

where Dj = ∂

∂Tj
, j = 0, 1. To obtain a uniformly

valid approximate solution of this problemwe order the
dimensionless parameters of the system by the formal
small parameter ε as follows:

α1 = εα̂1, β1 = εβ̂1, γ1 = εγ̂1, δ = εδ̂,

μ = εμ̂, λ1 = ελ̂1, α2 = εα̂2 λ2 = ελ̂2.

}

(12)

Substitute equations from (7) to (12) into Eqs. (5) and
(6), and thereafter, equate coefficients of like powers of
ε. We obtain the following set of ordinary differential
equations:

(
D2
0 + ω2

1

)
x10 = 0, (13)

(
D2
0 + ω2

2

)
x20 = 0. (14)
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(
D2
0 + ω2

1

)
x11 = Ω2μ̂x0 sin(Ωt) − γ̂1x

3
10 + λ̂1x20τ1

+ α̂1D0x10 − δ̂x10(D0x10)
2

− β̂1(D0x10)
3 − 2D0D1x10

− δ̂x210D
2
0x10, (15)

(
D2
0 + ω2

2

)
x21 = λ̂2x10τ2 − α̂2D0x20 − 2D0D1x20.

(16)

The general solution of Eqs. (13) and (14) can be
expressed in the forms:

x10(T0, T1) = A(T1)e
i ω1T0 + Ā(T1)e

−iω1T0 (17)

x20(T0, T1) = B(T1)e
i ω2T0 + B̄(T1)e

−iω2T0 (18)

where the overbar denotes the complex conjugate func-
tions. The coefficients A(T1), B(T1) are unknown func-
tions of T1. These coefficients will be determined later
by eliminating the secular and small devisor terms.
From (17) and (18), we get

x10τ2(T0, T1) = Aτ2(T1)e
iω1(T0−τ2)

+ Āτ2(T1)e
−iω1(T0−τ2) (19)

x20τ1(T0, T1) = Bτ1(T1)e
iω2(T0−τ1)

+ B̄τ1(T1)e
−iω2(T0−τ1). (20)

Expanding Aτ2 and Bτ1 in Taylor series, we get

Aτ2(T1) = A(T1 − ετ2) ∼= A(T1) − ετ2A
′(T1)

+ O(ε2), (21)

Bτ1(T1) = B(T1 − ετ1) ∼= B(T1) − ετ1B
′(T1)

+ O(ε2) (22)

where prime denotes derivative w.r.t. T1 . Substituting
Eqs. (17–22) into (15) and (16), respectively, we get
(
D2
0 + ω2

1

)
x11 =

(
i α̂1ω1A + 2δ̂ω2

1A
2 Ā − 3i β̂1ω

3
1A

2 Ā

− 3γ̂1A
2 Ā − 2iω1D1A

)
eiω1T0

+
(
2δ̂ω2

1A
3 + i β̂1ω

3
1A

3 − A3γ̂1
)
e3iω1T0

+
(
λ̂1B − ετ1λ̂1D1B

)
e−iω2(τ1−T0)

− 1

2
iμ̂x0Ω

2eiΩT0 + cc, (23)
(
D2
0 + ω2

2

)
x21 = −

(
i α̂2ω2B + 2iω2D1B

)
eiω2T0

+
(
λ̂2A − ετ2λ̂2D1A

)
e−iω1(τ2−T0) + cc (24)

where cc stands for the complex conjugate of the pre-
ceding terms. The particular solution of (23) and (24)
is

x11 = −
(
2δ̂ω2

1A
3 + i β̂1ω

3
1A

3 − A3γ̂1

)

8ω2
1

e3iω1T0

+ (λ̂1B − ετ1λ̂1D1B)
(
ω2
1 − ω2

2

) e−iω2(τ1−T0)

− iμ̂x0Ω2

2(ω2
1 − Ω2)

eiΩT0 + cc, (25)

x21 = − (λ̂2A − ετ2λ̂2D1A)
(
ω2
1 − ω2

2

) e−iω1(τ2−T0) + cc. (26)

From (25) and (26), the resonance cases in this approx-
imation order are

(I) Primary resonance: Ω = ω1.
(II) Internal resonance: ω2 = ω1.
(III) Simultaneous resonance: Ω = ω1 and ω2 = ω1

Simultaneous resonance case (Ω = ω1 and ω2 = ω1)
is studied in this work. Closeness of simultaneous res-
onance can be described using detuning parameters σ1
and σ2 as follows:

Ω = ω1 + σ1 = ω1 + εσ̂1,

ω2 = ω1 + σ2 = ω1 + εσ̂2

}

(27)

Insert (27) into the secular and small devisor terms in
(23) and (24) to find the solvability conditions

−iμ̂x0Ω2

2
ei(ω1+εσ̂1)T0 +

(
i α̂1ω1A + 2δ̂ω2

1A
2 Ā

− 3i β̂1ω
3
1A

2 Ā − 3γ̂1A
2 Ā − 2iω1D1A

)
eiω1T0

+
(
λ̂1B − ετ1λ̂1D1B

)
e−iτ1ω2ei(ω1+εσ̂2)T0 = 0

(28)
(
λ̂2A − ετ2λ̂2D1A

)
e−iτ2ω1ei(ω2−εσ̂2)T0

−
(
i α̂2ω2B + 2iω2D1B

)
eiω2T0 = 0 (29)

Divide (28) and (29) by eiω1T0 and eiω2T0 respectively,
to obtain
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Effects of time delay on an active vibration control 141

i α̂1ω1A + 2δ̂ω2
1A

2 Ā − 3i β̂1ω
3
1A

2 Ā − 3γ̂1A
2 Ā

− 2iω1D1A − iμ̂x0Ω2

2
eiεσ̂1T0

+ (
λ̂1B − ετ1λ̂1D1B

)
e−iτ1ω2eiεσ̂2T0 = 0, (30)

(
λ̂2A − ετ2λ̂2D1A

)
e−iτ2ω1e−iεσ̂2T0

− (
i α̂2ω2B + 2iω2D1B

) = 0. (31)

To analyze the solution of (30) and (31), express A and
B in polar form as follows:

A = a1
2
eiβ1 , D1A = a′

1

2
eiβ1 + i

a1β ′
1

2
eiβ1 , (32)

B = a2
2
eiβ2 , D1B = a′

2

2
eiβ2 + i

a2β ′
2

2
eiβ2 (33)

where a1 and a2 are the steady-state displacement
amplitudes of the beamand controller, respectively, and
β1, β2 are the phases of the motion.

By inserting (32) and (33) into (30) and (31), return-
ing each scaled parameter back to its real value and
separating real and imaginary parts, we get

ω1a1β̇1 + 1
4δω

2
1a

3
1 − 3

8γ1a
3
1 + 1

2μ x0Ω
2 sin(ϕ1)

+ 1
2τ1λ1a2β̇2 sin(ϕ2 − τ1ω2)

+ 1
2

(
λ1a2 − τ1λ1ȧ2

)
cos(ϕ2 − τ1ω2) = 0, (34)

1
2α1ω1a1 − 3

8ω
3
1β1a

3
1 − ω1ȧ1 − 1

2μ x0Ω
2 cos(ϕ1)

+ 1
2

(
λ1a2 − τ1λ1ȧ2

)
sin(ϕ2 − τ1ω2)

− 1
2τ1λ1a2β̇2 cos(ϕ2 − τ1ω2) = 0, (35)

ω2a2β̇2 − 1
2τ2λ2a1β̇1 sin(ϕ2 + τ2ω1)

+ 1
2

(
λ2a1 − τ2λ2ȧ1

)
cos(ϕ2 + τ2ω1) = 0, (36)

1
2α2ω2a2 + ω2ȧ2 − 1

2

(
τ2λ2ȧ1 − λ2a1

)
sin(ϕ2 + τ2ω1)

+ 1
2τ2λ2a1β̇1 cos(ϕ2 + τ2ω1) = 0, (37)

where dot represents derivative w.r.t t . Hence,

ϕ1 = εσ̂1T0 − β1 = σ1t − β1,

ϕ2 = εσ̂2T0 − β1 + β2 = σ2t − β1 + β2.

}

(38)

Differentiate (38) w.r.t. t to obtain

β̇1 = σ1 − ϕ̇1 and β̇2 = (
ϕ̇2 − ϕ̇1 + σ1 − σ2

)
. (39)

Insert (39) into Eqs. (34–37) and extract values of
ȧ1, ȧ2, ϕ̇1 and ϕ̇2, and then, the autonomous amplitude-
phase modulating equations are

ȧ1 = η1 + η2 cos(ϕ1) + η3 cos(ϕ1 + ψ)

+ η4 sin(ϕ2 + τ2ω1) + η5 cos(ψ)

+ η6 sin(ψ) + η7 sin(ϕ2 − τ1ω2), (40a)

ϕ̇1 = η8 − η2

a1
sin(ϕ1) − η3

a1
sin(ϕ1 + ψ)

+ η4

a1
cos(ϕ2 + τ2ω1) + η9 cos(ψ)

+ η10 sin(ψ) + η7

a1
cos(ϕ2 − τ1ω2), (40b)

ȧ2 = η11 + η12 sin(ϕ1 − ϕ2 + τ2ω2)

+ η13 sin(ϕ1 − ϕ2 − τ2ω1)

+ η14 sin(ϕ2 + τ2ω1)

+ η15 cos(ϕ2 + τ2ω1) + η16 cos(ψ)

+ η17 sin(ϕ2 − τ1ω2) + η18 cos(ϕ2 − τ1ω2), (40c)

ϕ̇2 = η19 − η13

a2
cos(ϕ1 − ϕ2 − τ2ω1) − η2

a1
sin(ϕ1)

− η12

a2
cos(ϕ1 − ϕ2 + τ1ω2)

− η3

a1
sin(ϕ1 + ψ) + η20 cos(ϕ2 + τ2ω1)

+ η21 sin(ϕ2 + τ2ω1) + η22 sin(ϕ2 − τ1ω2)

+ η23 cos(ϕ2 − τ1ω2) + η24 sin(ψ)

+ η25 cos(ψ) (40d)

where ψ = τ2ω1 + τ1ω2 and the coefficients ηi , i =
1, 2, · · · , 25 are defined in the “Appendix”.

4 Equilibrium solution

The steady-state response of both the beam and the
controller can be obtained as follows

ȧ1 = ȧ2 = ϕ̇1 = ϕ̇2 = 0. (41)

Substituting by (41) into (39), we get

β̇1 = σ1, β̇2 = σ1 − σ2. (42)

Substituting by (41) and (42) into (34) to (37), we get

ω1a1σ1 + 1
4δω

2
1a

3
1 − 3

8γ1a
3
1 + 1

2μ x0Ω
2 sin(ϕ1)

+ 1
2τ1λ1a2(σ1 − σ2) sin(ϕ2 − τ1ω2)

123



142 H. Abdelhafez, M. Nassar

+ 1
2λ1a2 cos(ϕ2 − τ1ω2) = 0, (43)

1
2α1ω1a1 − 3

8ω
3
1β1a

3
1 − 1

2μ x0Ω
2 cos(ϕ1)

+ 1
2λ1a2 sin(ϕ2 − τ1ω2)

− 1
2τ1λ1a2(σ1 − σ2) cos(ϕ2 − τ1ω2) = 0, (44)

ω2a2(σ1 − σ2) − 1
2τ2λ2a1σ1 sin(ϕ2 + τ2ω1)

+ 1
2λ2a1 cos(ϕ2 + τ2ω1) = 0, (45)

1
2α2ω2a2 + 1

2λ2a1 sin(ϕ2 + τ2ω1)

+ 1
2τ2λ2a1σ1 cos(ϕ2 + τ2ω1) = 0. (46)

From (45) and (46), we can extract values of sin(ϕ2)

and cos(ϕ2) as follows

sin(ϕ2) = η26 sin(τ2ω1) − η27 cos(τ2ω1), (47)

cos(ϕ2) = −η26 cos(τ2ω1) − η27 sin(τ2ω1). (48)

Substitute sin(ϕ2) and cos(ϕ2) in (43) and (44) and
extract values of sin(ϕ1) and cos(ϕ1), and we get

sin(ϕ1) = η28 + η29 cos(ψ) + η30 sin(ψ), (49)

cos(ϕ1) = η31 − η30 cos(ψ) + η29 sin(ψ) (50)

By squaring and adding (45) and (46), we get the first
closed-form equation

1
4a

2
2ω

2
2

(
α2
2 + 4(σ1 − σ2)

2
)

= 1
4a

2
1λ

2
2

(
1 + σ 2

1 τ 22
)
.

(51)

By squaring and adding (49) and (50),weget the second
closed-form equation

(η28 + η29 cos(ψ) + η30 sin(ψ))2

+ (η31 + η29 sin(ψ) − η30 cos(ψ))2 = 1 (52)

where ηi , i = 26, · · · , 31 are defined in the “Appen-
dix”. Eqs. (51) and (52) are the frequency response
equations that describe the system steady-state solution
behavior for the practical case, i.e. (a1 �= 0, a2 �= 0).

5 Stability analysis

Stability of equilibrium solution is investigated by
using Jacobian matrix J of the right-hand side of
Eq. (40). To derive the stability criteria, we need to

examine the behavior of small deviations from the equi-
librium solutions. Thus, we assume that:

a1 = a11 + a10, a2 = a21 + a20,

ϕ1 = ϕ11 + ϕ10 ϕ2 = ϕ21 + ϕ20,

ȧ1 = ȧ11, ȧ2 = ȧ21

ϕ̇1 = ϕ̇11, ϕ̇2 = ϕ̇21.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(53)

Such that a10, ϕ10, a20, ϕ20 denote values of a1, ϕ1, a2,
ϕ2 at equilibrium solution. And a11, ϕ11, a21, ϕ21 are
perturbations, which are assumed to be small compared
to a10, ϕ10, a20, ϕ20. Substituting (53) into (40) and
keeping linear terms in a11, ϕ11, a21, ϕ21, we get

ȧ11 = r11a11 + r12ϕ11 + r13a21 + r14ϕ21 (54)

ϕ̇11 = r21a11 + r22ϕ11 + r23a21 + r24ϕ21 (55)

ȧ21 = r31a11 + r32ϕ11 + r33a21 + r34ϕ21 (56)

ϕ̇21 = r41a11 + r42ϕ11 + r43a21 + r44ϕ21 (57)

The characteristic determinant of Eqs. (54) to (57) can
be expressed as follows

∣
∣
∣
∣
∣
∣
∣
∣

r11 − λ r12 r13 r14
r21 r22 − λ r23 r24
r31 r32 r33 − λ r34
r41 r42 r43 r44 − λ

∣
∣
∣
∣
∣
∣
∣
∣

= 0. (58)

Thus, the stability of the steady-state solution depends
on the eigenvalues of the Jacobian matrix [J ], which
can be obtained from (58) where ri j , i.e., i = 1, 2, 3, 4
and j = 1, 2, 3, 4 are given in the “Appendix”.

6 Analytical and numerical results

In this section, the steady-state response of the closed-
loop system composed of the beam and the PPF con-
troller is discussed analytically and numerically. The
dimensionless parameters of the beam take the values
α1 = 0.01, β1 = 0.05, ω1 = 3.06309, γ1 = 14.4108,
δ = 3.2746 and μ = 0.89663, and the amplitude and
frequency of excitation vary, respectively, in the ranges
x0 ∈ (0, 0.1) and Ω ∈ (1.5, 4.5) approximately. The
PPF controller parameters are chosen as α2 = 0.05,
ω2 = ω1 + σ2, σ2 = 0, λ1 = 0.5 and λ2 = 0.5
unless specifying otherwise. In the obtained figures,
solid lines correspond to stable solutions, while dashed
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(a)

(b)

Fig. 3 Amplitude-delay τ1 response curve for a beam and b
controller at τ2 = 0

lines correspond to unstable solutions and the numeri-
cal results for steady-state solutions are plotted as small
circles.

The system without control was studied exten-
sively by [17]. Figure 3 shows the amplitude-delay τ1
response curve at τ2 = 0 for different values of λ1.
It can be seen that the stability region of the solution
decreases when control signal gain λ1 increases. For
the amplitude-delay τ1 response curve at λ1 = 0.5, in
the interval AB the roots of the characteristic equation
are conjugate complex roots with negative real part, so
the solution is stable and the beamvibrates periodically.
However, in interval BC, two roots of the characteris-
tic equation are conjugate complex roots with positive
real part which corresponds to unstable focus, so the
solution is unstable. So interval AB represents the time
delay that systemcan bearwithout being unstable ”time
margin”. The behavior of the beam at λ1 = 0.5 is stud-

ied extensively in Figs. 4 and 5 by using time history
and Poincaré map at different values of τ1.

Interval AB in Fig. 3 is studied extensively in Fig. 4
by studying the point τ1 = 0.04 as a sample from this
interval.

Figure 4a, b studies the beam response at τ1 = 0.04
by using time history and Poincaré map, respectively.
Figure 4a, b shows that the beam passes through a
transient region into a steady-state region and that
the steady- state solution is stable. Figure 4a shows
another comparison between the numerical solution
using numerical integration of Eqs. (5), (6) and analyti-
cal solution usingMSPT. The dashed black lines repre-
sent the modulation of beam displacement amplitudes
a1 which resulted from numerical solution of Eqs. (40);
in addition, the continuous blue lines represent the time
history of beamdisplacement amplitudewhich resulted
from numerical solution of Eqs. (5), (6). The simula-
tion results show that Eqs. (40) describe transient and
steady-state amplitudeswith great precision. This com-
parison is used in this work with all time-histories in
order to verify our results.

(a)

(b)

Fig. 4 a Time history and b Poincaré map of the beam at τ1 =
0.04 and λ1 = 0.5
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Interval BC in Fig. 3 is studied extensively in Fig. 5
by studying the beam response at τ1 = 0.12 as a sam-
ple from this interval. Figure 5a, b studies the beam
response at τ1 = 0.12 by using time history and
Poincaré map, respectively. Figure 5a, b shows that
the beam vibrates a quasi-periodic motion and stability
analysis shows that solution is unstable.

Amplitude-delay τ1 response curve at τ1 = 0.02 is
presented in Fig. 6 for the beam and controller, respec-
tively, at different values of λ1. From Figs. 3, 6 we
deduced that the time margin of the solution depends
on the overall delay of the system τ1 + τ2. So we can
exchange values of τ1 and τ2 for a constant value of
σ1 to get the same time margin. It can be seen that,
when control signal gainλ1 increases, the displacement
amplitude of the beam decreases and the time margin
decreases.

The frequency response curve for beam and con-
troller under different values of τ1 and τ2 is presented
in Fig. 7. The figure shows that there is a good vibra-
tion suppression bandwidth indicated by the dotted rec-
tangle in the figure and the system response is stable.

(a)

(b)

Fig. 5 a Time history and b Poincaré map of the beam at τ1 =
0.12 and λ1 = 0.5

(a)

(b)

Fig. 6 Amplitude-delay τ1 response curve for a beam and b
controller at τ2 = 0.02

Increasing values of τ1 and/or τ2 “within time margins
which are indicated byFigs. 3, 6” has no effect on vibra-
tion suppression bandwidth but changes only the peak
displacement amplitudes for the beam and controller.
Figure 8 verifies the results of Fig. 7 numerically at
τ1 = τ2 = 0.02. It can be seen that the numerical sim-
ulation results are in good agreement with analytical
solution result. From previous results, if overall time
delay in the system is small then we can increase val-
ues of λ1 and λ2 to increase the vibration suppression
bandwidth.

Figure 9a, b presents the frequency response of the
beam and controller, respectively, at τ2 = 0.03 when
τ1 changes within the permissible time margin. Effect
of changing τ1 on the peak displacement amplitudes is
obvious in the figure.

In this work, it is assumed that the beam vibrates in
the presence of external harmonic excitation close to
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(a)

(b)

Fig. 7 Frequency responses curves for different values of μ: a
the main system b the controller

its natural frequency. From previous results, there is a
good vibration suppression bandwidth around excita-
tion frequency especially when overall time delay in
the system is small as seen in Figs. 7, 9. However, if
excitation frequency turns to make the beam out of the
indicated vibration suppression bandwidth,we can tune
controller natural frequency to be (Ω = ω2), i.e., as
indicated by [3]. If excitation frequency increases, i.e.,
beam turns to vibrate with the right peak displacement
amplitude, it is advisable to increase controller natural
frequency. If excitation decreases, i.e., beam turns to
vibrate with the left peak displacement amplitude, it is
advisable to decrease controller natural frequency. This
tuning process can be applied practically if the rate of
change of excitation frequency can be accompanied by
tuning controller natural frequency, i.e., Ω = ω2. This
idea is explained explicitly in the following parts.

(a)

(b)

Fig. 8 Numerical simulation of FRC of a beam and b controller
at τ1 = τ2 = 0.02

Figure 10 studies amplitude-delay τ1 response curve
at different values of σ2. We use this figure to know the
time margin at these values of σ2. From this figure,
we can observe that, in case of σ1 = σ2 = 0.1, the
displacement amplitudes of the beam and controller
increase slightly, but the time margin increases; in case
of σ1 = σ2 = −0.1, the displacement amplitudes of
the beam and controller are smaller than the previous
case, but the time margin decreases.

In addition, Fig. 11 studies the effect of controller
natural frequency on FRC of beam and controller at
τ1 = τ2 = 0.01, respectively. This figure shows that
minimum beam steady-state displacement amplitude
occurs when σ1 = σ2, i.e., (Ω = ω2). So it is rec-
ommended to tune the controller natural frequency to
be equal to excitation frequency for dynamical sys-
tems which are subjected to the variable excitation fre-
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Fig. 9 aBeam response and b controller response versus σ1 and
τ1 at τ2 = 0.03

quency. This tuning process can be applied practically
if the rate of change of excitation frequency can be
accompanied by tuning controller natural frequency,
i.e.,Ω = ω2. However, the existence of long time delay
can prevent this tuning for negative values of because
this can lead system to instability as shown in Fig. 10.

Figure 12 presents the force–amplitude response
curve of the beam and controller, respectively. Fig-
ure 12a shows the force–amplitude response curve for
the uncontrolled beam and two cases (A, B) for con-
trolled beam. In case A, the overall time delay in the
closed-loop system is large, so we used small values
for λ1 and λ2 to protect the system from instability. So
parameters values in case A are τ1 = τ2 = 0.04 and
λ1 = λ2 = 0.5. If the controlled beam response in case
A is compared with the uncontrolled beam response,
we will find that the beam response in case A is better
than the response of the uncontrolled beam. If overall
time delay in the closed-loop system is small, we can

(a)

(b)

Fig. 10 Amplitude-delay τ1 response curve for a beam and b
controller at different values of σ1 = σ2

get a better response than that of case A by using larger
values of λ1 and λ2. So parameters values in case B are
τ1 = τ2 = 0.005 and λ1 = λ2 = 3. Vibration suppres-
sion in case B is better than case A, but we cannot use
case B if overall time delay in the closed-loop system
is small. All analytical results in Fig. 12 are verified
numerically by using small circles with the same color
of the corresponding analytical result.

Figure 13 shows the time history of the uncontrolled
beam at σ1 = 0. Figure 14 shows the time history of
the beam and controller at σ1 = σ2 = 0, τ1 = 0.02
and τ2 = 0.01. Figure 15 shows the time history of
the beam and controller at σ1 = σ2 = 0, τ1 = 0.04
and τ2 = 0.03. From Figs. 14, 15, we see that when
time delays increase within the time margin the tran-
sient state for the system increases and the system
approximately reaches the same steady-state displace-
ment amplitudes. Time history for the beam and con-
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(a)

(b)

Fig. 11 Frequency responses curves of a beam and b controller
for different values σ2

troller at σ1 = σ2 = 0.1, τ1 = 0.04 and τ2 = 0.03
is shown in Fig. 16. The transient region in Fig. 16 is
less than the transient region in Fig. 15. The steady-
state displacement amplitude decreases when control
and/or feedback gains increase. Also, we can see that
the steady- state displacement amplitudes of the beam
in Figs. 14 to 16 are much smaller than the steady-state
displacement amplitude of the uncontrolled beam in
Fig. 13.

7 Conclusion

The model of a beam and its characteristic parameters
are presented [17]. In this paper, the time delays, in
the control signal and the feedback signal, are taken
into our consideration for different values of controller
parameters. We are interested in determining the time

(a)

(b)

Fig. 12 Force–amplitude response curve of a beam and b con-
troller at (σ1 = σ2 = 0)

Fig. 13 Time history of the uncontrolled beam at σ1 = 0

margin which is the amount of time delay that system
can bear without being unstable. The analytic solution
is investigated using MTSP method [18]. A compari-
son of the analytic results and the solutions obtained by
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(a)

(b)

Fig. 14 Time response of a beam and b controller at σ1 = σ2 =
0, τ1 = 0.02 and τ2 = 0.01

Runge–Kutta fourth-order accuracy numerical method
is illustrated which prove a good agreement. Theoret-
ical results showed that the time margin depends on
the overall delay of the system τ1 + τ2. The proposed
control with time delay shows that the time margin
decreases when control and feedback gains “λ1 and/or
λ2” increase; however, increasing control and feedback
gains can widen the vibration suppression bandwidth.
The choice of λ1 and/or λ2 values depends on the over-
all delay of the system τ1+τ2. There is a good vibration
suppression bandwidth and stable system operation if
time delays change within the specified time margin.
Increasing values of τ1 and/or τ2 within the specified
time margins have no effect on vibration suppression
bandwidth but changes only the peak displacement
amplitudes for the beam and controller. Apart from
the considered resonance case, there are two peak dis-
placement amplitudes of the beam. This problem can
be solved by tuning the controller natural frequency
such that Ω = ω2. So the minimum beam steady-state
displacement amplitude occurs at σ2 = σ1. From this
result, we can recommend tuning the controller nat-
ural frequency to be equal to the excitation frequency.

(a)

(b)

Fig. 15 Time response of a beam and b controller at σ1 = σ2 =
0, τ1 = 0.04 and τ2 = 0.03

(a)

(b)

Fig. 16 Time response of a beam and b controller at σ1 = σ2 =
0.1, τ1 = 0.04 and τ2 = 0.03
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This recommendation can be applied to the dynami-
cal systems which are subjected to variable excitation
frequency out the original vibration suppression band-
width around σ1 = 0 when the rate of change in excita-
tion frequency can be accompanied by tuning controller
natural frequency, i.e., Ω = ω2 and loop delay τ1 + τ2
is small. The time margin increases monotonically as
controller natural frequency is increased. The transient
response region increases as time delays increase.
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