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Abstract In this paper, we consider a predator–prey
model with herd behavior and cross-diffusion subject
to homogeneousNeumann boundary condition. Firstly,
the existence and priori bound of a solution for the
model without cross-diffusion are shown. Then, by
computing and analyzing the normal form on the cen-
ter manifold associated with the Turing–Hopf bifurca-
tion, we find a wealth of spatiotemporal dynamics near
the Turing–Hopf bifurcation point under suitable con-
ditions. Furthermore, some numerical simulations to
illustrate the theoretical analysis are carried out.

Keywords Predator–prey model · Herd behavior ·
Cross-diffusion · Turing–Hopf bifurcation · Spatially
inhomogeneous periodic solution

1 Introduction

It is well known that ecosystems are characterized by
interactions between different species, and between
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species and natural environment. And predator–prey
model is one of the important models in ecosys-
tems. Since the pioneering works of Lotka [1] and
Volterra [2], predator–preymodel describing thedynam-
ical interaction between two species have long been
and will continue to be one of the dominant themes in
both ecology and mathematics. We know that func-
tional response function that reflects predator–prey
interaction relationships is a crucial component of
predator–prey model. In order to describe the fea-
tures of the predator–prey interaction, many types of
usual functional response functions, such as Holling I–
IV types, ratio-dependent type, Hassell–Varley type,
Beddington–DeAngelis type, Crowley–Martin type
and the ones with Allee effect [3–6], have been pro-
posed and investigated widely.

In natural ecosystems, many living beings live form-
ing herds and all members of a group do not interact
at a time. There are many reasons for this herd behav-
ior, such as searching for food resources, defending the
predators. As for modelling group defense mathemati-
cally, the first being Freedman andWolkowicz [7]. Dif-
ferent functional responses as a result of prey–predator
forming groups have been considered. The most com-
mon and among the simplest method of incorporating
group defense in a predator–prey model is by using
Holling type IV functional responses [8]. However,
Holling type IV functional response will become neg-
atively sloped when the prey densities are large, which
is a consequence of group defense. And we note that
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Holling type IV functional responses usually result
in an upper threshold of prey density, beyond which
the predator cannot survive. This implies that choos-
ing Holling type IV functional responses to model
group defense is a strong group defense. Of course,
there are other ways of modelling group defense. More
recently, in [9], a new predator–prey interaction has
been studied for a more elaborated social model, in
which the individuals of one population in the large
herbivores populating the savannas gather together in
huge herds, with generally the strongest individuals
on the border and the weakest being concentrated in
the middle of the bunch, while the other one shows a
more individualistic behavior. This leads to the conse-
quence that the capture of a prey by a successful preda-
tor attack occurs mainly on the boundary, involving
therefore mostly the individuals that occupy the out-
ermost positions in the herd. Let u be the density of
a population that gathers in herds, and suppose that
herd occupies an area A. The number of individu-
als staying at outermost positions in the herd is pro-
portional to the length of the perimeter of the patch,
where the herd is located. Obviously, its length is pro-
portional to

√
A. Since u is distributed over a two-

dimensional domain,
√
u would therefore count the

individuals at the edge of the patch. Thus, when attack
of a predator on this population is to be modelled,
the functional response should be in terms of square
root of prey population. So, based on the above facts,
the authors in [9] have proposed a new predator–prey
model described by the following ordinary differential
equations{

du
dt = u(1 − u) − √

uv,

dv
dt = γ v(−β + √

u),
(1)

where u(t) and v(t) stand for the prey and preda-
tor densities, respectively, at time t . βγ is the death
rate of the predator in the absence of prey; γ is
the conversion or consumption rate of prey to preda-
tor. This model is also known as the predator–prey
model with herb behavior and has been shown that
the sustained limit cycles are possible and the solu-
tion behavior near the origin is more subtle and inter-
esting than the classical predator–prey models [9,
10].

In the real world, the predator and the prey may
move for many reasons, such as currents and turbu-
lent diffusion. So, we should consider the spatial dis-
perse associated with model (1). In [11], the authors

mainly focused on the delay effect on the reaction–
diffusion system corresponding tomodel (1) and inves-
tigated the stability/instability of the coexistence equi-
librium and associated Hopf bifurcation, the instability
of the Hopf bifurcation induced by diffusion and delay,
respectively, which can lead to the emergence of spatial
patterns.

Apart from the instability of Hopf bifurcation, we
know the diffusion-driven instability. In 1952, Tur-
ing [12] derived the conditions under which the spa-
tially uniform equilibrium solution is stable in the
absence of diffusion but becomes unstable in the pres-
ence of diffusion. The diffusion-driven instability of the
equilibrium leads to a spatially inhomogeneous distri-
bution of species concentration, which is the so-called
Turing instability. Although Turing instability was first
investigated in a morphogenesis, it has quickly spread
to ecological systems [3,4,6,13–24], chemical reac-
tion system [25–30] and other reaction–diffusion sys-
tem [31–38]. From [39], we know that the phenom-
enon of spatial pattern formation in (1) with diffu-
sion can not occur under all possible diffusion rates.
So, the authors in [39,40] change linear mortality
sv into quadratic mortality sv2 in (1) with diffusion
and have investigated Turing patterns, stability, Tur-
ing instability and Hopf bifurcations; for the same rea-
son, authors of [4,19] investigated the Turing instabil-
ity of a predator–prey model with hyperbolic mortality
rate.

Self-organized patterning in reaction–diffusion sys-
tem driven by self-diffusion has been extensively stud-
ied since the seminal paper of Turing [12]. Never-
theless, in many experimental cases, the gradient of
the density of one species induces a flux of another
species or of the species itself, and therefore, cross-
diffusion effects should be taken into account [41–
43]. Recently, cross-diffusion terms have appeared
to model different physical phenomena in diverse
contexts like population dynamics and ecology [44–
49] and chemical reactions [29,30,50–52]. But, as
far as we know, the work on the rich dynamics
deduced by the Turing–Hopf bifurcation in predator–
prey type reaction–diffusion systems [53–55] near the
bifurcation point was all reported numerically, except
paper [56,57]. In [56,57], the authors have discussed
the classification of the spatiotemporal dynamics in a
neighborhood of the bifurcation point in detail, which
can be figured out in the framework of the normal
forms.

123



Turing–Hopf bifurcation analysis of a predator–prey model 75

However, to the best of our knowledge, there are no
results on spatiotemporal dynamics near Turing–Hopf
bifurcation point of reaction–diffusion systems with
cross-diffusion. So, motivated by the above works, we
can now focus on the following predator–prey model
with herd behavior and cross-diffusion:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u
∂t =u(1−u)−√

uv+d11�u+d12�v, x ∈ �, t>0,
∂v
∂t =γ v(−β+√

u)+d21�u + d22�v, x ∈ �, t>0,
∂u
∂n= ∂v

∂n=0, x ∈ ∂�, t>0,

u(x, 0)=φ(x) ≥ 0, v(x, 0)=ψ(x) ≥ 0, x ∈ �,

(2)

where �u is a m-dimensional Laplace operator: �u =
ux1x1 + ux2x2 + · · · + uxmxm ,� is a bounded domain
in R

m,m ≥ 1,n is the outward unit normal vector of
the boundary of ∂� which we will assume is smooth.
The nonnegative constants d11 and d22 are the diffusion
coefficients of prey and predator, respectively, and d12
and d21, called cross-diffusion coefficients, describe
the respective population fluxes of preys and preda-
tors resulting from the presence of the other species,
respectively. In [58], we have investigated the cross-
diffusion-induced spatiotemporal patterns of model (2)
in the Turing region only. Based on the paper [58], we
shall continue to explore the other dynamics of model
(2) such as the existence and priori bound of a solu-
tion for the model without cross-diffusion, and com-
plex spatiotemporal dynamics near the Turing–Hopf
bifurcation point of the model with cross-diffusion in
the frameworkof normal form,which are different from
the results in [58]; for instance, the stable spatially inho-
mogeneous periodic solutions are found. Here, we have
to point out the fact that, although the method of com-
puting the normal form in this paper is motivated by
the one in [56,57], because of the existence of cross-
diffusion, the procedure of computing normal form in
this paper need be deduced again. This implies that
our results generalize the application scope of refer-
ences [56,57].

The rest of the paper is organized as follows. In
Sect. 2, we show the existence and priori bound of a
solution for the model (2) without cross-diffusion. In
Sect. 3, we investigate the existence of Turing–Hopf
bifurcation firstly. Then, by computing and analyzing
normal formon the centermanifold-associatedTuring–
Hopf bifurcation, we study the complex spatiotempo-
ral dynamics near the Turing–Hopf bifurcation point
of the model (2), which are presented by numerical

simulations. Finally, conclusions and discussions are
presented in Sect. 4.

2 The existence and priori bound of solution for
model (2) without cross-diffusion

In this section, we give out a sufficient condition for the
existence of a positive solution of system (2) without
cross-diffusion. Meanwhile, we derive a priori bound
of the solution.

When d12 = d21 = 0, system (2) becomes⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u
∂t = u(1 − u) − √

uv + d11�u, x ∈ �, t > 0,
∂v
∂t = γ v(−β + √

u) + d22�v, x ∈ �, t > 0,
∂u
∂n= ∂v

∂n=0, x ∈ ∂�, t > 0,

u(x, 0)=φ(x) ≥ 0, v(x, 0)=ψ(x) ≥ 0, x ∈ �,

(3)

It is easy to check that systems (1), (2) and (3) have
all the same uniform equilibria: two boundary equilib-
ria (0, 0) and (1, 0) and a unique positive equilibrium
(u∗, v∗) (0 < β < 1), where

u∗ = β2, v∗ = β(1 − β2).

Theorem 1 Suppose that 0 < β < 1, γ > 0 and
� ⊂ R

m is a bounded domain with smooth boundary.
Then

(i) for φ(x) ≥ 0, ψ(x) ≥ 0 and φ(x) �≡ 0, ψ(x) �≡ 0,
system (3) has a unique solution (u(x, t), v(x, t))
satisfying

0 < u(x, t) ≤ u∗(t), 0 < v(x, t) ≤ v∗(t)
for t > 0 and x ∈ �,

where (u∗(t), v∗(t)) is the unique solution of⎧⎨
⎩

du
dt = u(1 − u),
dv
dt = γ v(−β + √

u),

u(0)=φ∗= supx∈� φ(x), v(0)=ψ∗= supx∈� ψ(x);
(4)

(ii) for any solution (u(x, t), v(x, t)) of system (3), we
have

lim sup
t→∞

u(x, t) = 1, lim sup
t→∞

1

|�|
×
∫

�

v(x, t)dx ≤ 1 + βγ

β
.

Moreover, when d11 = d22, one can obtain
lim supt→∞ v(x, t) ≤ 1+βγ

β
,∀x ∈ �.
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Proof Let

f (u, v) = u(1 − u) − √
uv, g(u, v) = γ v(−β + √

u).

Then we have fv ≤ 0 and gu ≥ 0 for (u, v) ∈ R
2+ =

{(u, v)|u ≥ 0, v ≥ 0} and from [59,60] system (3) is
a mixed quasi-monotone system. Let

(u1(x, t), v1(x, t)) = (0, 0) and (u2(x, t), v2(x, t))

= (u∗(t), v∗(t)).

Since

∂u2
∂t

− d11�u2 − f (u2, v1) = 0 ≥ 0

= ∂u1
∂t

− d11�u1 − f (u1, v2),

∂v2

∂t
− d22�v2 − g(u2, v2) = 0 ≥ 0

= ∂v1

∂t
− d11�v1 − g(u1, v1)

and 0 ≤ φ(x) ≤ φ∗, 0 ≤ ψ(x) ≤ ψ∗, (u1(x, t),
v1(x, t)) and (u2(x, t), v2(x, t)) are the lower and
upper solutions of system (3), respectively. From The-
orem 8.3.3 in [59] or Theorem 5.3.3 in [60], we
know that (3) has a unique globally defined solution
(u(x, t), v(x, t)) which satisfies

0 ≤ u(x, t) ≤ u∗(t), 0 ≤ v(x, t) ≤ v∗(t), t > 0.

The strong maximum principle implies that u(x, t) >

0, v(x, t) > 0 when t > 0, for x ∈ �. This completes
the proof of (i).

From the above discussion, we know that u(x, t) ≤
u∗(t), v(x, t) ≤ v∗(t) for all t > 0, and u∗(t) is the
unique solution of

du

dt
= u(1 − u), u(0) = φ∗ > 0.

One can see that u∗(t) → 1 as t → ∞. Thus for any
ε > 0, there exists T0 > 0 such that

u(x, t) ≤ 1 + ε, for t > T0, x ∈ �,

which implies that

lim sup
t→∞

u(x, t) = 1.

Let

r(t) =
∫

�

u(x, t)dx, s(t) =
∫

�

v(x, t)dx,

w(t) = γ r(t) + s(t).

Then
dr

dt
=
∫

�

d11�udx +
∫

�

[
u(1 − u) − √

uv
]
dx,

ds

dt
=
∫

�

d22�vdx +
∫

�

[
γ v(−β + √

u)
]
dx .

By virtue of the Neumann boundary condition, we can
get

dw

dt
= γ

dr

dt
+ ds

dt

= −βγ s + γ

∫
�

u(1 − u)dx

= −βγ (γ r + s) + βγ 2r + γ

∫
�

u(1 − u)dx

≤ −βγw + γ (βγ + 1)r.

From

lim sup
t→∞

u(x, t) ≤ 1,

we have

lim sup
t→∞

r(t) ≤ |�|.
Thus for small ε > 0, there exists T1 > 0 such that

dw

dt
≤ −βγw + γ (βγ + 1)|�|, t > T1. (5)

It is well known that the solution w(t) of
dw

dt
= −βγw + γ (βγ + 1)(1 + ε)|�|

satisfies

lim
t→∞ w(t) = βγ + 1

β
(1 + ε)|�|.

In terms of comparison principle and using (5), we
obtain that, for T2 > T1,∫

�

v(x, t)dx = s(t) < w(t)

≤ βγ + 1

β
(1 + ε)|�| + ε, t > T2,

which implies that

lim sup
t→∞

∫
�

v(x, t)dx ≤ 1 + βγ

β
|�|.

Let

W (x, t) = γ u(x, t) + v(x, t).

If d11 = d22 = d, from system (3) it follows that⎧⎪⎨
⎪⎩

dW
dt = d�W + γ u(1 − u) − βγ v, x ∈ �, t > T0,
∂W
∂n = 0, x ∈ ∂�, t > T0,

W (x, T0) = u(x, T0) + v(x, T0), x ∈ �.

(6)
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From the previous proof, we also have u(x, t) ≤ 1+ ε,
for t > T0. Then, using similar to the above methods
and (6), we can obtain that

lim sup
t→∞

v(x, t) ≤ 1 + βγ

β
.

This completes the proof.

3 The dynamics induced by Turing–Hopf
bifurcation and numerical simulations

In this section, we shall analyze the dynamics near
the Turing–Hopf bifurcation point of the model (2) by
computing the normal form on the center manifold. In
the rest of this paper, we will assume, unless we state
explicitly otherwise, that � = (0, π),�u is a one-
dimensional Laplace operator: �u = uxx . And for the
Newmann boundary condition, define the real-valued
Sobolev space

X =
{
(u, v)T ∈

(
W 2,2(0, π)

)2
,

∂u

∂x
= ∂v

∂x
= 0 at x = 0, π

}
,

and for U1 = (u1, v1)T,U2 = (u2, v2)T ∈ X, define
the inner product

[U1,U2] =
∫ π

0
(u1u2 + v1v2) dx

such that X becomes a Hilbert space.

3.1 Existence of Turing–Hopf bifurcation

In this subsection, we show the existence of Turing–
Hopf bifurcation. From Sect. 2, we know that the
only positive equilibrium of system (2) is (u∗, v∗) =
(β2, β(1 − β2))(0 < β < 1). Thus, the linearization
of system (2) at positive equilibrium (u∗, v∗) is as fol-
lows:(

∂u
∂t
∂v
∂t

)
= d�

(
u
v

)
+ A

(
u
v

)
, (7)

with

d� =
(
d11

∂2

∂x2
d12

∂2

∂x2

d21
∂2

∂x2
d22

∂2

∂x2

)
,

A =
(
a11 a12
a21 a22

)
=
( 1

2 (1 − 3β2) −β
1
2γ (1 − β2) 0

)
.

It is well known that the eigenvalue problem

−η′′ = μη, x ∈ (0, π); η′(0) = η′(π) = 0

has eigenvalues μk = k2(k = 0, 1, . . .), with
corresponding normalized eigenfunctions ηk(x) =

cos kx
|| cos kx ||2,2 . Let(

φ

ψ

)
=

∞∑
k=0

(
ak

bk

)
ηk(x)

be an eigenfunction of d� + A corresponding to an
eigenvalue σ , that is

(d� + A)(φ,ψ)T = σ(φ,ψ)T.

Then, we have

Qk

(
ak

bk

)
= σ

(
ak

bk

)
, k = 0, 1, . . . ,

where

Qk =
(
a11 − d11k2 a12 − d12k2

a21 − d21k2 a22 − d22k2

)
,

which follows that the eigenvalues of d�+ A are given
by the eigenvalues ofQk, k = 0, 1, . . . .We know that
the linear stability of the positive equilibrium (u∗, v∗)
can be analyzed by introducing a small inhomogeneous
perturbation to the system (7) at the zero equilibrium.
So, we introduce the perturbation solution of system
(7), which can be written as a spectral decomposition
given by(
u
v

)
=

∞∑
k=0

qTk

(
ξ1k
ξ2k

)
eλt , qk =

(
qk1
qk2

)
∈ C

2, (8)

where

ξ1k (x) =
(

ηk(x)
0

)
, ξ2k (x) =

(
0

ηk(x)

)
, k = 0, 1, 2, . . . .

Substituting (8) in (7) yields to the following sequence
of quadratic equations

�k � λ2 − Tkλ + Dk = 0, (9)

where

Tk = 1

2
(1 − 3β2) − (d11 + d22)k

2,

Dk = (d11d22 − d12d21)k
4 −

(
1

2
d22(1 − 3β2)

+ d21β − 1

2
d12γ (1 − β2)

)
k2 + 1

2
βγ (1 − β2).

(10)

From the necessary conditions for yielding Turing pat-
terns and together with (9) and (10), we can get that
d11d22 − d12d21 > 0 and

(1 − 3β2)d22 + 2βd21 − (1 − β2)γ d12

− 2
√
2(d11d22 − d12d21)βγ (1 − β2) = 0,

which is denoted by L in the γ − β plane.
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So, in the following, we shall show the existence
of Turing–Hopf bifurcation under the condition of
d11d22 −d12d21 > 0. For this aim, we give out the def-
inition of Turing–Hopf bifurcation firstly. If there exist
a nonnegative integer k1 and a positive integer k2 �= k1
such that �k1 = 0 has a pair of purely imaginary roots

and �k2 = 0 a simple zero root, and no other roots of
(9) has a zero real part, and the transversality condition
holds, then we call the bifurcation as a Turing–Hopf
bifurcation. It is easy to see that the positive equilib-

rium (u∗, v∗) is asymptotically stale as
√
3
3 < β < 1

and unstable as 0 < β <
√
3
3 when system (2) has

no diffusion. And we can get that �0 = 0 has a pair

of purely imaginary roots ±i
√
D0 iff β =

√
3
3 , which

implies that system (2) undergoes a Hopf bifurcation

at β =
√
3
3 near the positive equilibrium (u∗, v∗). Fur-

ther, we consider the case that system (2) has diffusion.
Then, in the γ −β plane, we denote this Hopf bifurca-

tion curve β =
√
3
3 by H0. Meanwhile, we let Dk = 0,

that is

(d11d22 − d12d21)k
4 −

(
1

2
d22(1 − 3β2)

+d21β − 1

2
d12γ (1 − β2)

)
k2 + 1

2
βγ (1 − β2) = 0,

(11)

which is called Turing bifurcation curve denoted by Lk

in the γ − β plane.

Obviously, if d11d22 > d12d21 +
√
3
3 d21, then the

Turing bifurcation curve Lk doesn’t interact with the
Hopf bifurcation curve H0. That is, system (2) is always
stable over the Hopf bifurcation curve H0. On the other

hand, if d12d21 < d11d22 < d12d21 +
√
3
3 d21, substitut-

ing β =
√
3
3 into (11) and solving (11) for γ , we have

that

γ (k) = 3d21k2 − 3
√
3(d11d22 − d12d21)k4√
3d12k2 + 1

, k ∈ [1, k∗],

where k∗ =
[√ √

3d21
3(d11d22−d12d21)

]
and [·] stands for the

integer part function.

Let

f (x) = 3d21x − 3
√
3(d11d22 − d12d21)x

2
√
3d12x + 1

, x ∈ [1, k∗].

It is easy to verify that f
′
(x) ≥ 0 for x ≤ x∗ and

f
′
(x) < 0 for x > x∗, where

x∗ = −(d11d22 − d12d21) + √
(d11d22 − d12d21)2 + d12d21(d11d22 − d12d21)√
3d12(d11d22 − d12d21)

.

Setting

k∗ =

⎧⎪⎪⎨
⎪⎪⎩
1, if x∗ ≤ 1,
[√x∗], if γ ([√x∗]+1) ≤ γ ([√x∗]), 1<x∗ < k∗,
[√x∗]+1, if γ ([√x∗]) < γ ([√x∗] + 1), 1<x∗<k∗,
k∗, if x∗≥k∗,

(12)

we can conclude that there exists a k∗ ∈ [1, k∗] such
that γ ∗ = γ (k∗) = max1≤k≤k∗ γ (k). Thus, the Hopf
bifurcation curve H0 intersects with the Turing bifurca-
tion curve Lk∗ at (γ ∗, β∗) =(
3d21k2∗−3

√
3(d11d22−d12d21)k4∗√
3d12k2∗+1

,
√
3
3

)
, which is Turing–

Hopf bifurcation point. And we shall discuss the
dynamics of system (2) near the Turing–Hopf bifur-
cation point (γ ∗, β∗) in the next subsection.

Next, we continue to verify the transversality con-
dition. For fixed γ , taking β as parameter and then
denoting the root of (9) by λ(β), we have

dRe{λ(β)}
dβ

∣∣∣
H0

= −
√
3

2
< 0,

and
dRe{λ(β)}

dβ

∣∣∣
Lk∗

= 2(3d22β − d21 − d12βγ )k2 + γ (1 − 3β2)

2Tk
< 0,

which are derived by direct computation together with
(11) and (12).

Based on the above discussion and the qualitative
theory of the dynamical systems, we have the following
results.

Theorem 2 Assume that 0 < β < 1, H0 is defined by

β =
√
3
3 and Lk∗ is defined (11) with k∗ given in (12).

Then we conclude

(1) if d12d21 +
√
3
3 d21 < d11d22, then system (2) is

always stable over the Hopf bifurcation curve H0,
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Turing–Hopf bifurcation analysis of a predator–prey model 79

that is, system (2) doesn’t undergo Turing–Hopf
bifurcation;

(2) if d12d21 < d11d22 < d12d21 +
√
3
3 d21, then we can

obtain that

(i) the Hopf bifurcation curve H0 intersects
with the Turing bifurcation curve Lk∗ and
a codimension-2 Turing–Hopf bifurcation
occurs at the intersect point (γ ∗, β∗), where

γ ∗ = 3d21k2∗ − 3
√
3(d11d22 − d12d21)k4∗√
3d12k2∗ + 1

,

β∗ =
√
3

3
;

(ii) for (γ, β) = (γ ∗, β∗), the equation �0 = 0
has a pair of purely imaginary roots ±iωc

and �k = 0 has a simple zero root, and for
(9), there are no other roots with zero real
parts, where

ωc = 1

2

√
2β∗γ ∗(1 − β∗2).

Remark 1 Taking d11 = d12 = 1, d21 = 11, d22 = 15,
together with the results in Sect. 3.1, we can conclude
that k∗ = k∗ = 1 and

H0 : β =
√
3

3
; L1 : 8 − 15(1 − 3β2) − 22β

+ γ (1 + β)(1 − β2) = 0;
L : 15(1 − 3β2) + 22β − (1 − β2)γ

−4
√
2βγ (1 − β2) = 0.

Furthermore, the Hopf bifurcation curve H0 inter-
sects with Turing bifurcation curve L1 at the point

(γ ∗, β∗) = (4.4711,
√
3
3 ) and system (2) undergoes

Turing–Hopf bifurcation near the positive equilibrium

( 13 ,
2
√
3

9 ); see Fig. 1.

3.2 Normal form on the center manifold for the
Turing–Hopf bifurcation

In this subsection, we compute the normal form on
the center manifold associated with codimension-2
Turing–Hopf bifurcation such that the spatiotemporal
dynamics of system (2) can be determined in the neigh-
borhood of Turing–Hopf bifurcation point (γ ∗, β∗).
Since the methods used are standard, we omit the
detailed calculations and only give the main results
here. For researchers who are interested in these cal-
culations, we refer them to references [57], where the

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

γ

β

H0
L1

L

Fig. 1 Bifurcation diagram for system (2) in γ − β plane with
k∗ = 1. H0 denotes the Hopf bifurcation curve, L1 denotes the
Turing bifurcation curve

calculationof normal form forTuring–Hopf bifurcation
is developed for the reaction–diffusion system with-
out cross-diffusion. Although the procedure in [57] is
developed for the case without cross-diffusion, it is still
applicable for the case with cross-diffusion.

Firstly, introduce a new parameter μ = (μ1, μ2) ∈
R
2 by settingμ1 = γ −γ ∗, μ2 = β−β∗ such thatμ =

0 is the value of Turing–Hopf bifurcation, and rewrite
the positive equilibrium as a parameter-dependent form
(u∗(μ), v∗(μ)) with

u∗(μ) =
(√

3

3
+ μ2

)2

,

v∗(μ) =
(√

3

3
+ μ2

)⎛
⎝1 −

(√
3

3
+ μ2

)2
⎞
⎠ .

Secondly, set ũ(·, t) = u(·, t) − u∗(μ), ṽ(·, t) =
v(·, t)− v∗(μ), Ũ (t) = (ũ(·, t), ṽ(·, t)) and then drop
the tildes for simplification of notations.One can obtain
that system (2) can be written as the equation

dU (t)

dt
= d�U + L0(U ) + f (U, μ), (13)

where

d� =
⎛
⎝ d11

∂2

∂x2
d12

∂2

∂x2

d21
∂2

∂x2
d22

∂2

∂x2

⎞
⎠ ,

L0(U ) =
(

1
2 (1 − 3β∗2)u − β∗v 1

2γ ∗(1 − β∗2)u
)

,

f (U, μ) =
∑

i+ j+l1+l2≥2

1

i ! j !l1!l2! fi jl1l2u
iv jμ

l1
1 μ

l2
2 ,

fi jl1l2 =
(
f (1)
i jl1l2

, f (2)
i jl1l2

)T
, (14)
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with f (k)
i jl1l2

= ∂ i+ j+l1+l2 f̃ (k)(0,0,0,0)

∂ui ∂v j ∂μ
l1
1 ∂μ

l2
2

, k = 1, 2, and

f̃ (1)(u, v, μ1, μ2) = (u + u∗(μ))(1 − (u + u∗(μ)))

−√
u + u∗(μ)(v + v∗(μ)),

f̃ (2)(u, v, μ1, μ2) = (γ ∗ + μ1)(v + v∗)(−(β∗ + μ2)

+√
u + u∗(μ)).

For the linearized system of (13) at the origin

dU

dt
= L (U ), (15)

where L (U ) = d�U + L0(U ). Denote by � =
{iωc,−iωc, 0} the finite set of all its eigenvalues having
zero real parts, withwhich a stable invariantmanifold is
associated. Set Bk = span{[

ϕ(·), ξ ik
]
ξ ik | ϕ ∈ X, i = 1, 2

}
. Then it is easy to ver-

ify that

L0(Bk) ⊂ span
{
ξ1k , ξ2k

}
, k ∈ N0.

Assume that y(t) ∈ R
2 and

yT(t)

(
ξ1k
ξ2k

)
∈ Bk .

Then, on Bk , the linear partial differential equation
(15) is equivalent to the ODE on R

2

ẏ(t) =
(−d11k2 −d12k2

−d21k2 −d22k2

)
y(t) + L0(y(t)), (16)

where for y(t) ∈ R
2, we use the same formal expres-

sion L0(y(t)) as in (14). Clearly, the linear ordinary
differential equation (16) has the same characteristic
equation (9) as the linear partial differential equation
(15).

Notice

Mk =
( −d11k2 + 1

2 (1 − 3β∗2) −d12k2 − β∗
−d21k2 + 1

2γ
∗(1 − β∗2) −d22k2

)
,

(17)

is the characteristic matrix of (16). Then�k is the finite
set of all eigenvalues of thematrix (17) having zero real
parts. The standard adjoint theory forODEs can be used
to decompose C2 by �k as

C
2 = Pk ⊕ Qk,

where Pk is the generalized eigenspace associated with
the eigenvalues in �k and Qk

= {
ϕ ∈ C

2 : 〈ψ, ϕ〉 = 0 for all ψ ∈ P∗
k

}
,where P∗

k is
the dual space of Pk and 〈·, ·〉 is the scalar product of
two complex vectors defined by

〈
ψT, ϕ

〉
= ψTϕ, for ϕ,ψ ∈ C

2

such that for dual bases �k and �k of Pk and P∗
k ,

respectively, 〈�k,�k〉 = Imk , where mk = dim Pk
and Imk is a mk × mk identity matrix.

Notice that k = 0, k∗ > 0 in the Turing–
Hopf bifurcation. By a straightforward calculation,
we obtain �0 = (p0, p̄0) ,�k∗ = pk∗ , �0 =
col

(
qT0 , q̄T0

)
, �k∗ = qTk∗ , where

p0 =
(

1
1
2 (1−3β∗2)−iωc

β∗

)
, q0 =

(
1
2

− β∗
2iωc

)
,

pk∗ =
(

1

− d11k2∗− 1
2 (1−3β∗2)

d12k2∗+β∗

)
, qk∗ =

⎛
⎝ − d22k2∗

Tk∗
d12k2∗+β∗

Tk∗

⎞
⎠ .

Then, by the procedure developed in [57], the normal
form for Turing–Hopf bifurcation point (γ ∗, β∗) can
be obtained as follows

ρ̇ = α1(μ)ρ + κ11ρ
3 + κ12ρr

2,

ṙ = α2(μ)r + κ21ρ
2r + κ22r

3, (18)

with

α1(μ) = Re (B11) μ1 + Re (B21) μ2,

α2(μ) = B13μ1 + B23μ2,

κ11 = Re(B210), κ12 = Re(B102),

κ21 = B111, κ22 = B003,

where

B11 = p01
(
qT0 f1010

)
+ p02

(
qT0 f0110

)
,

B21 = p01
(
qT0 f1001

)
+ p02

(
qT0 f0101

)
,

B13 = pk∗1
(
qTk∗ f1010

)
+ pk∗2

(
qTk∗ f0110

)
,

B23 = pk∗1
(
qTk∗ f1001

)
+ pk∗2

(
qTk∗ f0101

)
,

and the calculation of B210, B102, B111 and B003

are very complicated and we leave them in
“Appendix.”

3.3 Numerical simulations

In this subsection, we present some numerical sim-
ulations to illustrate our analytical results. Choosing
d11 = d12 = 1, d21 = 11, d22 = 15, together with the
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Fig. 2 Bifurcation and
phase portraits of system
(19) near point

(γ ∗, β∗) = (4.4711,
√
3
3 ).

Here, the origin of the
μ1 − μ2 plane corresponds
to point

(γ ∗, β∗) = (4.4711,
√
3
3 ) in

γ − β plane

Fig. 3 When (μ1, μ2) = (0.08, 0.01) lies in region 1©, the positive constant equilibrium (u∗, v∗) = (0.3333, 0.3849) is asymptotically
stable. The initial condition u(x, 0) = 0.3333 − 0.2 cos x, v(x, 0) = 0.3849 − 0.1 cos x

results in Sect. 3.1, we can conclude that k∗ = k∗ = 1
and

H0 : β =
√
3

3
; L1 : 8 − 15(1 − 3β2) − 22β

+ γ (1 + β)(1 − β2) = 0.

Furthermore, the Hopf bifurcation curve H0 inter-
sects with Turing bifurcation curve L1 at the point

(γ ∗, β∗) = (4.4711,
√
3
3 ) and system (2) undergoes

Turing–Hopf bifurcation near the positive equilibrium

( 13 ,
2
√
3

9 ); see Fig. 1.

Following the procedure in Sect. 3.2 with k∗ = 1,
we can obtain the following normal form truncating to
the third-order terms

{
ρ̇= − 0.8660μ2ρ − 0.1790ρ3 + 0.5245ρr2,
ṙ=(−0.0329μ1−0.7750μ2)r−0.3293ρ2r−0.6954r3.

(19)

Noticing that ρ > 0 and r is an arbitrary real num-
ber gives that system (19) has a zero equilibrium
A0 = (0, 0) for all μ1, μ2, three trivial equilib-
ria A1 = (

√−4.8380μ2, 0) for μ2 < 0, A±
2 =
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Fig. 4 When (μ1, μ2) = (0.5,−0.01) lies in region 2©, the pos-
itive equilibrium (u∗, v∗) = (0.3219, 0.3847) becomes unstable
and there exists a stable spatially homogeneous periodic solution.

The initial condition u(x, 0) = 0.3219 + 0.30 cos x, v(x, 0) =
0.3847 + 0.30 cos x

Fig. 5 When (μ1, μ2) = (−0.5,−0.03) lies in region 3©, the
positive equilibrium (u∗, v∗) = (0.2996, 0.3834) is unstable.
There are unstable spatially inhomogeneous steady states and a

stable homogeneous periodic solution, and there exists an orbit
connecting these two states. The initial condition u(x, 0) =
0.2996 + 0.25 cos x, v(x, 0) = 0.3834 + 0.25 cos x

(0,±√−0.0473μ1 − 1.1145μ2) for 0.0473μ1 +
1.1145μ2 < 0, and two nontrivial equilibria

A±
3 = (

√−0.0582μ1 − 3.3940μ2,

±√−0.0199μ1 + 0.4926μ2)

for 0.0580μ1 + 3.3993μ2 < 0 and −0.0198μ1 +
0.4908μ2 > 0. Define the critical bifurcation lines as
follows:⎧⎨
⎩

H0 : μ2 = 0; T : μ2 = −0.0424μ1;
T1 : μ2 = −0.0171μ1, μ1 < 0; T2 :

μ2 = 0.0404μ1, μ1 < 0.

Then, according to the results in [61], the bifurcation
diagram in the μ1 − μ2 parameter plane and the cor-
responding phase portraits of system (19) in the ρ − r
plane is shown in Fig. 2. The (μ1, μ2) parameter plane
is divided into six regions characterized by the phase
portraits; see Fig. 2. And we know that the zero equi-
librium A0 of system (19) corresponds to the positive
equilibrium (u∗, v∗) of the original system (2). The
equilibrium A1 in the ρ-axis of (19) corresponds to the
spatially homogeneous periodic solution of the original
system (2). The equilibria A±

2 in the r -axis of (19) cor-
respond to the nonconstant steady-state solutions of the
original system (2) like a shape of cos x-shape. But the
nontrivial equilibria A±

3 generate solutions of the orig-
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Fig. 6 When (μ1, μ2) = (−4.30,−0.02) lies in region 4©,
the positive equilibrium (u∗, v∗) = (0.3107, 0.3842) is unstable
and there are stable spatially inhomogeneous periodic solutions.
The initial condition is u(x, 0) = 0.3107 − 0.015, v(x, 0) =

0.3842 + 0.01 cos x . a, c are transient behaviors for u and v,
respectively. b, d are long-term behaviors for u and v, respec-
tively

inal system (2) with spatial structure like cos x-shape
and periodic temporal structure, which is called as spa-
tially inhomogeneous periodic solutions. So, for system
(2), the spatiotemporal dynamics near the Turing–Hopf
bifurcation point (γ ∗, β∗) can be identified in terms of
the dynamics of the normal form system (19).

In what follows, we shall analyze the stability and
existence of six equilibrium and carry out some numer-
ical simulations in six regions, respectively. In region
1©, system (19) has only one equilibrium A0 and it is
asymptotically stable. Correspondingly, there is only
one positive constant equilibrium (u∗, v∗) of the origi-
nal system (2),which is asymptotically stable, as shown
in Fig. 3 for (μ1, μ2) = (0.08, 0.01) and the initial
condition u(x, 0) = 0.3333 − 0.2 cos x, v(x, 0) =
0.3849 − 0.1 cos x .

In region 2©, system (19) has two equilibria: A0 and
A1, and A0 is unstable, A1 is asymptotically stable.
Taking (μ1, μ2) = (0.5,−0.01) and and the initial
condition u(x, 0) = 0.3219 + 0.30 cos x, v(x, 0) =
0.3847 + 0.30 cos x , the positive constant equilibrium
becomes unstable and only theHopf bifurcation occurs.
The emerging state of system (2) is homogeneously
periodic oscillation as shown in Fig. 4.

In region 3©, system (19) has four equilibria:
A0, A1, A

+
2 and A−

2 , and A0 and A1 are unsta-
ble, and A+

2 and A−
2 are still asymptotically sta-

ble. Therefore, the original system (2) has an unsta-
ble positive constant equilibrium (u∗, v∗), and there
are two spatially inhomogeneous steady states and a
homogeneous periodic solution. Taking (μ1, μ2) =
(−0.5,−0.03) and the initial condition u(x, 0) =
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Fig. 7 When (μ1, μ2) = (−0.02,−4.30) lies in region 4©, the
positive equilibrium (u∗, v∗) = (0.3107, 0.3842) is unstable and
there are stable spatially inhomogeneous periodic solutions. The
initial condition is u(x, 0) = 0.3140 − 0.25 cos x, v(x, 0) =

0.3844 + 0.25 cos x . a, c are transient behaviors for u and v,
respectively. b, d are long-term behaviors for u and v, respec-
tively

0.2996 + 0.25 cos x, v(x, 0) = 0.3834 + 0.25 cos x ,
the dynamics of system (2) is that the spatially inho-
mogeneous steady states are unstable and the homo-
geneous periodic solution is asymptotically stable, and
there exists an orbit connecting the unstable steady state
to the stable spatially homogeneous periodic solution,
as shown in Fig. 5.

In region 4©, system (19) has six equilibria:
A0, A1, A

±
2 and A±

3 , and A0, A1, A
±
2 are unstable, and

A+
3 and A−

3 are asymptotically stable. This implies
that system (2) has two stable spatially inhomoge-
neous periodic solution. For the fixed the parame-
ter (μ1, μ2) = (−4.30,−0.02) and different initial
conditions, system (2) converges to the stable spa-
tially inhomogeneous periodic solution. For the ini-

tial condition u(x, 0) = 0.3140 − 0.015, v(x, 0) =
0.3844+0.01 cos x close to the unstable periodic solu-
tion, the dynamics of system (2) evolves from unsta-
ble spatially homogeneous periodic solution to stable
spatially inhomogeneous periodic solution, as shown
in Fig. 6. However, for the initial condition u(x, 0) =
0.3140 − 0.25 cos x, v(x, 0) = 0.3844 + 0.25 cos x
close to the unstable nonconstant steady state, the
dynamics of system (2) evolves from unstable noncon-
stant steady state like cos x-shape to the stable spatially
inhomogeneous periodic solution, as shown in Fig. 7.

In region 5©, system (19) has five equilibria: A0, A
±
2

and A±
3 , and A0, A

+
2 and A−

2 are unstable, and A+
3 and

A−
3 are asymptotically stable. Choosing (μ1, μ2) =

(−3.0000, 0.0005) and the initial condition u(x, 0) =
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Fig. 8 When (μ1, μ2) = (−3.0000, 0.0005) lies in region 5©,
the positive equilibrium (u∗, v∗) = (0.3340, 0.3849) is unstable
and there are stable spatially inhomogeneous periodic solutions.
The initial condition is u(x, 0) = 0.3340−0.25 cos x, v(x, 0) =

0.3849 + 0.25 cos x . a, c are transient behaviors for u and v,
respectively. b, d are long-term behaviors for u and v, respec-
tively

0.3340 − 0.25 cos x, v(x, 0) = 0.3849 + 0.25 cos x
close to the unstable nonconstant steady state, the
dynamics of system (2) evolves from unstable noncon-
stant steady state like cos x-shape to the stable spatially
inhomogeneous periodic solution as shown in Fig. 8.

In region 6©, system (19) has three equilibria:
A0, A

+
2 and A−

2 , and A0 is unstable, and A+
2 and A−

2 are
asymptotically stable. That is, the original system (2)
has an unstable positive constant equilibrium (u∗, v∗)
and two stable nonconstant steady states like cos x-
shape, for the fixed (μ1, μ2) = (−3.850, 0.0675),
which are shown in Fig. 9a, b for the initial condition
u(x, 0) = 0.4159 + 0.25 cos x, v(x, 0) = 0.3767 +
0.25 cos x and Fig. 9c, d for the initial condition
u(x, 0) = 0.4159 − 0.25 cos x, v(x, 0) = 0.3767 −
0.25 cos x .

4 Conclusion

In this paper, the dynamical behavior of a predator–prey
model (2) with herd behavior and cross-diffusion sub-
ject to homogeneous Neumann boundary condition are
investigated. Firstly, we showed the existence and pri-
ori bound of a solution for the model (2) without cross-
diffusion. Then, we discussed complex spatiotemporal
dynamics near the Turing–Hopf bifurcation point of
the model (2) with cross-diffusion in the framework
of normal form. Since the Turing–Hopf bifurcation
is codimension-2 bifurcation, we choose β, which is
proportional to the death rate of the predator, and the
conversion or consumption rate γ of prey to preda-
tor as bifurcation parameters. Following the method
of computing the normal form in [56,57], we have
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Fig. 9 When (μ1, μ2) = (−3.850, 0.0675) lies in region 6©,
the positive constant equilibrium (u∗, v∗) = (0.4159, 0.3767)
is unstable and there are two stable spatially inhomogeneous
steady states like cos x . a, b The initial condition is u(x, 0) =

0.4159 + 0.25 cos x, v(x, 0) = 0.3767 + 0.25 cos x . c, d The
initial condition is u(x, 0) = 0.4159 − 0.25 cos x, v(x, 0) =
0.3767 − 0.25 cos x

obtained the normal form of model (2). Based on the
obtained normal form,we then classified the spatiotem-
poral patterns and their stability, which have been well
verified quantitatively by numerical simulations; see
Figs. 3, 4, 5, 6, 7, 8 and 9. Particularly, the stable
spatially inhomogeneous periodic solutions is found
in regions 4© and 5©, respectively; see Figs. 6, 7 and
8. From the analysis above, we can see that the con-
version or consumption rate of prey to predator and
death rate of the predator are two important factors
for predator–prey system or other ecosystems and can
affect the stability of predator–prey system. So, we can
make the predator and prey coexist through controlling

the conversion or consumption rate of prey to predator
and death rate of the predator. Of course, the methods
and the results in the present paper generalized the ones
in [56,57] and can also be applied to other reaction–
diffusion systemswith andwithout cross-diffusion.We
hope that our work could be instructive to study in pop-
ulation dynamics.
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Appendix: calculation of B210, B102, B111 and B003

B210 = C210 + 3

2
(D210 + E210) ,

B102 = C102 + 3

2
(D102 + E102) ,

B111 = C111 + 3

2
(D111 + E111) ,

B003 = C003 + 3

2
(D003 + E003) ,

where

C210 = 1

π
qT0 F210, C102 = 1

π
qT0 F102,

C111 = 1

π
qTk∗F111, C003 = 3

2π
qTk∗F003,

with

F210 = 1

2

(
f3000 |p01|2 p01 + f0300 |p02|2 p02

+ f2100
(
p201 p02 + 2 |p01|2 p02

)
+ f1200

(
p202 p01 + 2 |p02|2 p01

))
,

F102 = 1

2

(
f3000 p01 p

2
k∗1 + f0300 p02 p

2
k∗2

+ f2100
(
p02 p

2
k∗1 + 2p01 pk∗1 pk∗2

)
+ f1200

(
p01 p

2
k∗2 + 2p02 pk∗1 pk∗2

))
,

F111 =
(
f3000 |p01|2 pk∗1 + f0300 |p02|2 pk∗2

+ f2100
(
|p01|2 pk∗2 + 2pk∗1Re

{
p01 p02

})
+ f1200

(
|p02|2 pk∗1 + 2pk∗2Re

{
p02 p01

}))
,

F003 = 1

3!
(
f3000 p

3
k∗1 + f0300 p

3
k∗2

)
+ 1

2

(
f2100 p

2
k∗1 pk∗2 + f1200 pk∗1 p

2
k∗2

)
,

D210 = 1

3πωci

(
−
(
qT0 F200

) (
qT0 F110

)

+ 1

3

∣∣∣qT0 F020∣∣∣2 + 2
∣∣∣qT0 F110∣∣∣2

)
,

D102 = 1

3πωci

(
−
(
qT0 F200

) (
qT0 F002

)
+
(
qT0 F110

)
(
qT0 F002

)
+ 2

(
qT0 F002

) (
qTk∗F101

))
,

D111 = − 4

3πωc
Im

{(
qT0 F110

) (
qTk∗F101

)}
,

D003 = − 2

3πωc
Im

{(
qT0 F002

) (
qTk∗F101

)}
,

and

E210 = 1

3
√

π
qT0

(
(p01 f2000 + p02 f1100) h

(1)
0110

+ (p02 f0200 + p01 f1100) h
(2)
0110

+ (
p01 f2000 + p02 f1100

)
h(1)
0200

+ (
p02 f0200 + p01 f1100

)
h(2)
0200

)
,

E102 = 1

3
√

π
qT0

(
(p01 f2000 + p02 f1100) h

(1)
0002

+ (p02 f0200 + p01 f1100) h
(2)
0002

+ (
pk∗1 f2000 + pk∗2 f1100

)
h(1)
k∗101

+ (
pk∗2 f0200 + pk∗1 f1100

)
h(2)
k∗101

)
,

E111 = 1

3
√

π
qTk∗

(
(p01 f2000 + p02 f1100) h

(1)
k∗011

+ (p02 f0200 + p01 f1100) h
(2)
k∗011(

p01 f2000 + p02 f1100
)
h(1)
k∗101

+ (
p02 f0200 + p01 f1100

)
h(2)
k∗101

)
+qTk∗

((
pk∗1 f2000 + pk∗2 f1100

)
(

1

3
√

π
h(1)
0110 + 1

3
√
2π

h(1)
(2k∗)110

)
+ (

pk∗2 f0200 + pk∗1 f1100
)

(
1

3
√

π
h(2)
0110 + 1

3
√
2π

h(2)
(2k∗)110

))
,

E003 = qTk∗
((
pk∗1 f2000 + pk∗2 f1100

)
(

1

3
√

π
h(1)
0002 + 1

3
√
2π

h(1)
(2k∗)002

)
+ (

pk∗2 f0200 + pk∗1 f1100
)

(
1

3
√

π
h(2)
0002 + 1

3
√
2π

h(2)
(2k∗)002

))
.

where h(i)
jm1m2m3

, (i = 1, 2, j = 0, 2k∗,ml = 1, 2, l =
1, 2, 3) are given by

h0200 = 1√
π

(2iωc I − M0)
−1

(
F200 −

(
qT0 F200 p0 + q̄T0 F200 p̄0

))
,

h0020 = 1√
π

(−2iωc I − M0)
−1

(
F020 −

(
qT0 F020 p0 + q̄T0 F020 p̄0

))
,

h0002 = − 1√
π
M−1

0
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(
F002 −

(
qT0 F002 p0 + q̄T0 F002 p̄0

))
,

h0110 = − 2√
π
M−1

0(
F110 −

(
qT0 F110 p0 + q̄T0 F110 p̄0

))
,

hk∗101 = 2√
π(

iωc I − Mk∗
)−1

(
F101 − qTk∗F101 pk∗

)
,

hk∗011 = 2√
π

(−iωc I − Mk∗
)−1

(
F011 − qTk∗F011 pk∗

)
,

h(2k∗)002 = − 1√
2π

M−1
2k∗ F002, h(2k∗)110 = (0, 0)T.
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