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Abstract In this paper, a smooth curve model of
memcapacitor and its equivalent circuit are designed.
Based on this memcapacitor, a novel memcapacitive
chaotic circuit is presented. Dynamical behaviors of
the circuitwith various parameters are investigatedboth
theoretically and experimentally. The numerical results
indicate that the circuit displays complex nonlinear
properties including coexisting and symmetrical bifur-
cations. The main characteristic of this memcapaci-
tive chaotic circuit is the various coexisting attractors.
Different kinds of coexisting attractors and their cor-
responding conditions are given. The equilibrium set,
Lyapunov exponent spectrum and the basin of attrac-
tion are also analyzed. Besides, experimental results
are given to confirm the correction of the numerical
simulations.
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1 Introduction

Memristor is postulated as the fourth basic circuit ele-
ment by Chua [1] in 1971. However, the interest in
memristive systems has not grown rapidly until a solid-
state memristor was developed by Hewlett-Packard in
2008 [2]. Because of particular nonlinear characteris-
tics of a memristor, it is widely employed to gener-
ate chaos by replacing nonlinear resistance elements
in classic chaotic circuits, and some novel dynamic
behaviors could be observed [3–6]. Recently, memris-
tors are also used to compose and improve neural net-
works. Ref. [7] investigates the problem of exponential
lag synchronization control of memristive neural net-
works (MNNs) via the fuzzy method and applications
in pseudorandom number generators. Ref. [8] intro-
duces a general class of memristive neural networks
with time delays. And a general class of memristive
neural networks with discrete and distributed delays is
investigated in Ref. [9], where some Lagrange stabil-
ity criteria dependent on the network parameters are
derived via nonsmooth analysis and control theory.

Furthermore, Chua et al. proposed the concept of
meminductor and memcapacitor generalized from the
memristor in 2009 [10], whose properties depend on
the history of the device.Although the actual solid-state
memcapacitors are not fabricated until now, the poten-
tial values have attracted more and more attentions.
Differing from a memristor’s hysteretic loop character
between charge and voltage, a memcapacitor appears
a hysteretic loop between current and voltage.
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Previous researches of memcapacitors involved
designing SPICE simulators in order to explore the
behaviors of different memcapacitor models [11–13].
A mutator is also used to transform a memristor to
a memcapacitor in Refs. [14,15]. Ref. [16] proposes
a memcapacitor emulator based on an analog model
of a memristor, and Ref. [17] introduces a new mem-
capacitor emulator without using any memristor. Ref.
[18] designs a floating memcapacitor emulator with-
out grounded restriction that can be practically applied
in electronic circuits, and Ref. [19] implements a
memcapacitor emulator with off-the-shelf electronic
devices. The analytical analysis of these two mem-
capacitors connected in series and in parallel is dis-
cussed in Ref. [20], which obtains the formulas of
instantaneous memcapacitance for each memcapac-
itor. Recently, the researches of the memcapacitor-
based circuits have gradually become a focus. Ref. [21]
describes a memcapacitor-based chaotic circuit with a
novel method to emulate a charge-controlled memca-
pacitor. In Ref. [22], a CMOS neural amplifier based
on memcapacitor has been realized, where a perfor-
mance comparison between memcapacitor-based real-
ization and conventional integrated one has been intro-
duced. Furthermore, a resistive-less memcapacitor-
based relaxation oscillator is introduced in Ref. [23]
and the boundary dynamics of the charge-controlled
memcapacitor for Joglekar’s window function is dis-
cussed in Ref. [24].

In this paper, a newmemcapacitive chaotic circuit is
presented. Differing from other memcapacitor-based
researches reported in Refs. [17–24], this circuit has
special properties of coexisting bifurcations and coex-
isting attractors. It is remarkable that coexisting attrac-
tors generated in memcapacitor-based circuits are rare
to be reported. In fact, the phenomenon of coexisting
attractors is essentially multistability, which is a com-
mon occurrence in many nonlinear dynamical systems,
corresponding to the coexistence of more than one sta-
ble attractor for the same set of system parameters [25].
And many researchers have committed themselves to
investigate the special dynamic behaviors of coexisting
attractors over the past few years. Ref. [26] introduces
a new 3D autonomous quadratic chaotic system which
not only generates four-scroll chaotic attractors but also
produces coexisting attractors. Ref. [27] investigates a
special chaotic system with only one stable equilib-
rium but coexistence of point, periodic and chaotic
attractors. Many researches are reported in order to

explore the internal mechanism and potential engi-
neering applications of coexisting attractors [28–30].
The research on coexisting attractors and extreme mul-
tistability might have important consequences in the
reproducibility of certain experimental systems [31].
For example, some chemical reactions show a random
long-term behavior for the same set of experimental
conditions [32,33]. The cause of this randomness is not
known, whereas multistability offers a possible mech-
anism for the behavior [31].

To our best knowledge, the researches of the coex-
isting attractors in memcapacitive (or memristive) cir-
cuits are still relatively less. The main purpose of this
paper is to investigate various coexisting attractors in
the presented memcapacitor-based circuit and the cor-
responding conditions. The paper focuses on analysis
of complex dynamics depended on the starting condi-
tions, and it has somepractical significancewith respect
to memcapacitor-based applications.

The rest of this paper is organized as follows. In
Sect. 2, mathematical modeling of the memcapacitor
and its equivalent circuit are performed by theoretical
analysis and multisim simulations. A memcapacitor-
based oscillator is presented, and its equilibrium points
are analyzed. In Sect. 3, the dynamical behaviors of the
circuit are described, including bifurcation diagrams,
Lyapunov exponents, basins of attraction, coexisting
bifurcations and coexisting attractors. In Sect. 4, the
experimental verification is performed. The conclu-
sions are summarized in the last section.

2 Memcapacitor model and a memcapacitor-based
chaotic oscillator

2.1 Memcapacitor model and its equivalent circuit

The definition of a general memcapacitor is presented
in Ref. [10]. According to the definition, an nth-
order voltage-controlled memcapacitive system can be
described by the equations

q(t) = C(x, uc, t)uc(t) (1)

σ̇ = f (σ, uc, t) (2)

whereq(t) is the chargegoes through thememcapacitor
at time t , σ is the integral of q(t), uc(t) is the voltage
across the memcapatitor, and C is its corresponding
memcapacitance at time t , which depends on the state
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Fig. 1 The relationship of the inverse memcapacitanceC−1 and
variable σ

of the system. Similarly, an nth-order charge-controlled
memcapacitive system is defined as

uc(t) = C−1(σ, q, t)q(t) (3)

σ̇ = f (x, q, t) (4)

where C−1 is an inverse memcapacitance.
In this paper, a charge-controlled memcapacitor is

used to construct a chaotic oscillator, whose memca-
pacitance depends on the device’s charge and changes
nonlinearly. The inverse memcapacitance is defined
[21] as

C−1 = a + bσ 2 (5)

σ =
∫ t

t0
q(t)dt (6)

Then, the nonlinear charge–voltage relationship of the
memcapacitor can be defined as follows

uc(t) = (a + bσ 2)q(t) (7)

σ̇ = q(t) (8)

where a and b are constant coefficients. If we set a =
3.58, b = 3.9, the relationship between the inverse
memcapacitanceC−1 and variable σ is shown in Fig. 1.

An equivalent circuit of a charge-controlledmemca-
pacitor is designed according to Eq. (7), which is shown
in Fig. 2. The input current is collected by R10 and the
output of U5 is sent to integral circuits consisted by
operational amplifiers U1 and U2, which are respon-
sible to get the signs of −q and σ . U3 works for the
inversion of the sign of −q. The amplifier U4 works as
inverting adder and its output is described as

uc = −
(
R9

R7
+ R9

R8
σ 2

)
q(t) (9)

In order to better explore the property of this mem-
capacitor emulator, we set the applied current ui =
5 sin(2π f ) with f varying, and then, the simulation
results are shown in Fig. 3.

2.2 Memcapacitor-based chaotic oscillator and
typical chaotic attractors

Based onmemcapacitormodel in Eq. (7), a new chaotic
oscillator is designed as shown in Fig. 4.

From Fig. 4, we can obtain a set of four first-order
differential equations, which define the relationship
among the four circuit variables (i1, i2, q, σ )⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

di1
dt = 1

L1
(ucm − Ri1)

di2
dt = 1

L2
(Gi2 − ucm)

dq
dt = i2 − i1
dσ
dt = q

(10)

where ucm = (a + bσ 2)q. Let circuit parameters as
Table 1. For initial condition as (0.01, 0, 0, 0), sys-

Fig. 2 The equivalent circuit of the charge-controlled memcapacitor characterized by Eq. (7)
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Fig. 3 Multisim
simulations to emulate
q(t)–uc hysteresis loop of
the memcapacitor in
conditions of f = 20Hz,
f = 40Hz and f = 80Hz

Fig. 4 Thepresentedoscillation circuit basedon amemcapacitor
model

tem (10) is chaotic and the chaotic attractors are shown
in Fig. 6. In this case, the corresponding Lyapunov
exponents are LE1 = 0.015969, LE2 = −0.00296,
LE3 = −0.013488, LE4 = −0.21438, and the Lya-
punov dimension is dL = 2.964.

2.3 Dissipativity and stability

To generate chaotic attractors, it is necessary for the
system to be dissipative. The dissipativity of Eq. (10)
is described as

�V = ∂ i̇1
i1

+ ∂ i̇2
i2

+ ∂q̇

q
+ ∂σ̇

σ
= − R

L1
+ G

L2
(11)

When the circuit parameters are set as a = 3.58, b =
3.9, 1/L1 = 7.33H−1, R = 1.79K�, G = 1.78mS
and 1/L2 = 7.25H−1, the exponential constrain rate
satisfies the following relation

�V = −0.2157 < 0 (12)

Table 1 Circuit parameters for simulations and experiments

Parameters Significations Values

L1 Inductance 1/7.33 H

L2 Inductance 1/7.25 H

R Resistance 1.79 k�

G Conductance 1.78 mS

a Variable 3.58

b Variable 3.9

Obviously, the dissipativity of Eq. (10) is negative,
implying that all trajectories are ultimately confined
to a specific subset of zero volume [34].

The equilibrium state of system (5) is given by an
equilibrium set E = {(i1, i2, q, σ )|i1 = i2 = q =
0, σ = c}, where c is a real constant. The Jacobian
matrix J at this equilibrium set E is given as

J =

⎡
⎢⎢⎢⎢⎢⎣

− R
L1

0 bc2+a
L1

0

0 G
L2

−bc2−a
L2

0

−1 1 0 0

0 0 1 0

⎤
⎥⎥⎥⎥⎥⎦

(13)

and its characteristic equation is given by

λ4 − GL1 − L2R

L1L2
λ3

−−L1bc2 − L2bc2 + GR − L1a − L2a

L1L2
λ2

−Gbc − Rbc + Ga − Ra

L1L2
λ = 0 (14)
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Fig. 5 Chaotic attractors and chaotic q–u hysteresis loops ofmemcapacitor in the chaotic oscillation circuit: a, b and c chaotic attractors;
d chaotic q–u hysteresis loops
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Fig. 6 The stable and unstable regions with the conditions
varying

If we keep parameters b and c as variables and set other
parameters in Table 1, Eq. (14) can be simplified as:

λ

[
λ3 + 1.79 − 12.905L1

L1
λ2

+3.9c2 − 19.52 + 26L1 + 28.3L1c2

L1
λ

+0.26 + 0.283c2

L1

]
= 0 (15)

Since the coefficients of cubic polynomial equation in
Eq. (15) are all nonzero values, according to Routh–
Hurwitz condition, the necessary and sufficient con-
ditions of the root’s real parts of this polynomial are
negative is
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Table 2 Different
eigenvalues λi (i = 1, 2, 3)
of the equilibrium set E

|c| λ1 λ2 λ3 Stability

3 −0.05209 −0.08181 + 19.86i − 0.08181 − 19.86i Stable point

1.63266 −0.2156 − 5.869i 5.869i Hopf branching point

1.4511 −1.436 0.6101 + 1.998i 0.6101 − 1.998i Unstable focal point

1.2857 4.58 0.2314 −5.027 Unstable saddle point

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.79−12.905L1
L1

> 0

3.9c2−19.52+26L1+28.3L1c2

L1
> 0

0.26+0.283c2
L1

> 0

1.79−12.905L1
L1

3.9c2−19.52+26L1+28.3L1c2

L1

− 0.26+0.283c2
L1

> 0

(16)

Then, we can obtain 0 < L1 < 0.1387. If we set
L1 ∈ (0, 0.2) and |c| ∈ [0, 3], the region satisfying
the conditions of Eq. (16) is shown as blue color in
Fig. 6, which means that the equilibrium set is stable.
And the yellow color indicates the region of unstable.

Table 3 Circuit parameters for coexisting bifurcations

Parameters Significations Values

L2 Inductance 1/7.25H

R Resistance 1.79 k�

G Conductance 1.78mS

a Variable 8.7

b Variable 1.86

If we set L1 = 1/7.33H, the three eigenvalues
λi (i = 1, 2, 3) of the equilibrium set E are listed in
Table 2 for typical values of constant c except for the
zero eigenvalue, from which we can obtain the con-
clusion that the dynamical behaviors of this circuit are
heavily depending on the initial state of the variable c.
Being sensitive to the initial condition is similar to the
memristive systems.

3 Dynamical behaviors of the oscillator

3.1 Coexisting bifurcation with L1

When the inductor L1 in Fig. 4 is varying and other
circuit parameters are set in Table 3, the bifurcation
diagram of the state variable σ(t) is shown in Fig. 7a,
where the orbit colored with red starts from the initial
conditions of (−0.45, 0, 0, 0) and that coloredwith blue
starts from the initial conditions of (0.45, 0, 0, 0). The
corresponding Lyapunov exponent spectra are shown
in Fig. 7b (for better clarity, the fourth Lyapunov expo-
nents are presented partly and it has smaller negative
values).
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Fig. 7 Dynamic characters of the oscillator (10) with respect to 1/L1: a bifurcation diagram and b Lyapunov spectrum
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Fig. 8 Coexisting attractors in different conditions of:a 1/L1 = 7.31,b1/L1 = 7.3267, c 1/L1 = 7.4,d 1/L1 = 7.46, e 1/L1 = 7.491,
f 1/L1 = 7.6

123



44 F. Yuan et al.

Table 4 Circuit parameters for symmetrical bifurcation

Parameters Significations Values

L1 Inductance 1/7.328 H

L2 Inductance 1/7.25 H

R Resistance 1.79 k �

G Conductance 1.78 mS

a Variable 7.5

b Variable 1.86

With reference to Fig. 7a, we can conclude that
the dynamics of the memcapacitive circuit starts from
periodic orbit and then enters into period-doubling
orbit through chaotic orbit with the parameter 1/L1

increasing gradually. In Fig. 7b, the correspondingLya-
punov exponent spectra are presented in the region of
1/L1 ∈ (7.3, 8), wherewe can observe several periodic
windows in the chaotic region.

The novel property of this bifurcation diagram is the
coexisting bifurcation. The phenomenon of coexisting
bifurcation results from the circuit existing coexisting
attractors, which means that there are disparate attrac-
tors in the conditions of different initial values with the
fixed circuit parameters. In this memcapacitive oscilla-
tion described by Eq. (10), if we fix circuit parameters
in Table 3 and keep L1 varying, we can observe sev-
eral kinds of coexisting attractors with different initial
conditions. Figure 8 shows the coexisting attractors in
detail, where the blue attractor starts from the initial

conditions of (0.45, 0, 0, 0) and the red one starts from
(−0.45, 0, 0, 0). It can be found that the two coex-
isting attractors start from a symmetric pair of limit
cycles and then evolve into a symmetric pair of single-
scroll attractors and finally the single-scroll attractors
develop double-scroll attractors. Since the state vari-
able σ(t) of the coexisting attractors are symmetrical
about the origin, it is not difficult to get the conclusion
that the coexisting bifurcations of σ(t) are also sym-
metrical about straight line σ = 0 as shown in Fig. 7a.

3.2 Symmetrical bifurcation with initial conditions

Different fromcoexisting bifurcationmentioned above,
the proposed chaotic circuit also has other kind of sym-
metrical bifurcation. If we set circuit parameters in
Table 4 and regard the initial conditions (i1(0), 0, 0, 0)
as bifurcation parameter, the bifurcation diagrams of
the state variable σ(t) and the corresponding Lyapunov
exponent spectra are presented in Fig. 9. It is remark-
able that the bifurcation diagram is symmetrical about
the origin. As initial condition i1(0) increases gradu-
ally within the region [−1, 1], the orbit of the mem-
capacitive circuit starts from point attractors and turns
into limit cycles at i1(0) = −0.75, and the maximum
Lyapunov exponents LE2 and LE3 increase from neg-
ative to zero along with LE1. Then, the system orbit
goes to chaotic status via period-doubling bifurcations.
There are several narrow period windows in the chaotic
region. Correspondingly, the positive Lyapunov expo-
nent LE1 descends into zero rapidly. Therefore, LE1
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Fig. 9 Dynamic characters of the oscillator (10) with respect to i1(0): a bifurcation diagram and b Lyapunov spectrum
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Fig. 10 Coexisting attractors in different conditions: a i1(0) = −1, i1(0) = −0.75, b i1(0) = −0.5, i1(0) = −0.05, c i1(0) = 0.5,
i1(0) = 0.05, d i1(0) = 1 and i1(0) = 0.75

Table 5 Coexisting attractors for various parameters and conditions

Regimes Initial conditions Diagram

Point attractor with limit cycles (−1 0 0 0) and (−0.75 0 0 0) Figure 10a

Chaotic attractors with limit cycles (−0.5 0 0 0) and (−0.05 0 0 0) Figure 10b

Chaotic attractors with limit cycles (0.5 0 0 0) and (0.05 0 0 0) Figure 10c

Point attractor with limit cycles (1 0 0 0) and (0.75 0 0 0) Figure 10d

in chaotic region is presented burr shape as shown in
Fig. 9b. Finally, the dynamics of the system settle down
to periodic behaviors via reverse period-doubling bifur-
cations in the regions of [−1, 0], whereas the system
has a reverse evolutionary process in the regions of
[0, 1].

Dynamical behaviors of the symmetrical bifurcation
also result from coexisting attractors and mainly occur
in the regions of i1(0) ∈ [−1, 1]. The whole evolution-
ary process of the system with respect to i1(0) is pre-
sented in Fig. 10, and the corresponding attractor types
and their initial conditions are described in Table 5.
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Table 6 Circuit parameters for symmetrical bifurcations

Parameters Significations Values

L1 Inductance 1/7.33H

L2 Inductance 1/7.25H

R Resistance 1.79 k�

G Conductance 1.78mS

a Variable 7.5

b Variable 7.28

3.3 Multistability with coexisting attractors

As mentioned above, the oscillator (10) has different
kinds of coexisting attractors. For the circuit parame-
ters listed as Table 6, there are also other examples of
multistability with coexisting attractor. Under different
parameters, one system existing several kinds of coex-
isting attractors is not peculiar. However, it is novel for
this proposed memcapacitive circuit that there exists
twelve variant types of coexisting attractors in one para-
meter combination. All kinds of coexisting attractors
are shown in Fig. 11, and the corresponding initial con-
ditions are described in Table 7.

For more details, the main coexisting regimes are
symmetric pairs of chaotic attractors, limit cycles and
point attractors coexisting with each other. There are
four forms of chaotic attractors, which are shown in
Fig. 11b–d, and five types of limit cycle attractors are
described in Fig. 11f–j. Besides, the point attractor and
a symmetric pair of period-doubling cycles are also
presented in Fig. 11a, k, l, respectively.

The basins of attraction for different coexisting
attractors are indicated diverse colors which are shown
in Fig. 12, where we can get the conclusion that the
coexisting attractors transform from one to another
roughly following the linear principles. Moreover, the
complete transformation track is Fig. 11a→ k→ i→ c
→d→ f→h→g→ e→b→ j→ l→ a,whichmeans
that the orbit of the system starts from point attractors
and turns into limit cycles, then goes to chaotic status
and settles down periodic behaviors via reverse period-
doubling bifurcations. The transforming process is split
in Fig. 11h into separate ports. The conversions from
Fig. 11g to a are just the reverse process.

4 Experimental verification

In this section, an experimental circuit is designed to
realize the chaotic oscillator (10) based on a memca-
pacitor model. If we make timescale and amplitude
scale transformations to Eq. (10) by setting time scal-
ing factor as τ = 100t and amplitude scaling factor as
B = 800b and then fixing circuit parameters in Table 1,
Eq. (10) can be shown as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

di1
dτ = 733(3.58 + 3120σ 2)q − 1312.07i1
di2
dτ = 1290.5i2 − 725(3.58 + 3120σ 2)q

dq
dτ = 100i2 − 100i1
dσ
dτ = 100q

(17)

The designed circuit of the experimental circuit is
shown as Fig. 13, which can be described as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

di1
dt = 1

R1C4

(
R4
R3

+ R4
R2

σ 2
)
q − 1

R7C4
i1

di2
dt = 1

R13C2
i2 − 1

R14C2

(
R4
R3

+ R4
R2

σ 2
)
q

dq
dt = 1

R15C3
i2 − 1

R16C3
i1

dσ
dt = 1

R12C1
q

(18)

In Fig. 13, the operational amplifiers are chosen as
LF347N type and themultipliers are selected asAD633
type. Comparing Eq. (17) with Eq. (18), and let the cor-
responding coefficients be equal, then we can obtain

⎧⎪⎪⎨
⎪⎪⎩

1
R1C4

= 733 R4
R3

= 3.58 R4
R2

= 3120

1
R7C4

= 1312.07 1
R13C2

= 1290.5 1
R14C2

= 725

1
R15C3

= 100 1
R16C3

= 100 1
R12C3

= 100

(19)

When we set C1 = C2 = C3 = C4 = 10 nF, the resis-
tance parameters can be obtained as: R1 ≈ 137 k�,
R2 ≈ 0.032 k�, R3 ≈ 27.93 k�, R4 ≈ 100 k�,
R7 ≈ 76 k�, R12 ≈ 1000 k�, R13 ≈ 77.5 k�,
R14 ≈ 138 k�, R15 = 1000 k�, R16 = 1000 k�.

The experimental results according to Fig. 13 are
plotted in Fig. 14. Compared Fig. 5 with Fig. 14, it is
obvious that the dynamical behaviors obtained in the
experimental circuit match well with those presented
by numerical simulations.
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Fig. 11 Phase portrait of coexisting attractors in the i1–i2 plane:
a point attractor, b, c a symmetric pair of strange attractors, d, e
a symmetric pair of strange attractors, f, g a symmetric pair of

limit cycles, h limit cycles, i, j a symmetric pair of limit cycles,
k, l a symmetric pair of period-doubling cycles
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Table 7 Coexisting attractors for various parameters and condition

Regimes Initial conditions Diagram

Point attractor (−1, −1, 0, 0) Figure 12a

A symmetric pair of strange attractors (−0.76, 1, 0, 0) and (−1, 0.7, 0, 0) Figure 12b, c

A symmetric pair of strange attractors (−0.96, 0.86, 0, 0) and (0.09, 0, 0, 0) Figure 12d, e

A symmetric pair of limit cycles (−0.94, 0.9, 0, 0) and (−0.96, 0.97, 0, 0) Figure 12f, g

Limit cycles (−1, 0.984, 0, 0) Figure 12h

A symmetric pair of limit cycles (−1, 0.64, 0, 0) and (−0.67, 1, 0, 0) Figure 12i, j

A symmetric pair of period-doubling cycles (−1, 0.61, 0, 0) and (−0.534, 0.90, 0, 0) Figure 12k, l

i1(0)

i 2(0
)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Fig. 12 Basins of attraction of coexisting attractors in the i1–i2
plane

5 Conclusions

In this paper, a memcapacitor model and its equiva-
lent circuit are presented. Besides, a chaotic oscillation
based on this memcapacitor model is designed. The
dynamical characteristics of this oscillation are inves-
tigated both theoretically and numerically. The results
indicate that this oscillation possesses novel dynami-
cal characteristics: coexisting and symmetrical bifur-
cations. Compared with other chaotic oscillations, this
circuit has various kinds of coexisting attractors. The
basin of attraction with respect to initial conditions
is used to expound the coexisting attractors. Finally,
an experimental circuit is designed to realize the pro-
posed chaotic oscillator. The typical chaotic attractors
and some coexisting attractors are captured experimen-

Fig. 13 The circuit schematic of Eq. (10)
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Fig. 14 Chaotic attractors
and chaotic hysteresis q–u
loops observed by analog
oscilloscope for
memcapacitor-based
oscillator from the
experimental device: a, b, c,
d, e chaotic attractors; f
chaotic hysteresis loops

tally. The obtained experimental results consistwith the
numerical simulations.
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