
Nonlinear Dyn (2016) 86:1–15
DOI 10.1007/s11071-016-2868-0

ORIGINAL PAPER

Data-driven stabilization of unknown nonlinear dynamical
systems using a cognition-based framework

Xi Nowak · Dirk Söffker

Received: 4 June 2015 / Accepted: 22 May 2016 / Published online: 4 June 2016
© Springer Science+Business Media Dordrecht 2016

Abstract In this paper, a cognitive stabilizer concept
is introduced. The framework acts as an adaptive dis-
crete control approach. The aim of the cognitive stabi-
lizer is to stabilize a specific class of unknown nonlin-
ear MIMO systems. The cognitive stabilizer is able to
gain useful local knowledge of the system assumed as
unknown. The approach is able to define autonomously
suitable control inputs to stabilize the system. The sys-
tem class to be considered is described by the fol-
lowing assumptions: unknown input/output behavior,
fully controllable, stable zero dynamics, and measured
state vector. The cognitive stabilizer is realized by its
four main modules: (1) “perception and interpretation”
using system identifier for the system local dynamic
online identification and multi-step-ahead prediction;
(2) “expert knowledge” relating to the quadratic sta-
bility criterion to guarantee the stability of the consid-
ered motion of the controlled system; (3) “planning”
to generate a suitable control input sequence according
to a certain cost function; (4) “execution” to gener-
ate the optimal control input in a corresponding feed-
back form. Each module can be realized using differ-
ent methods. Two realizations will be stated in this
paper. Using the cognitive stabilizer, the control goal
can be achieved efficiently without an individual con-
trol design process for different kinds of unknown sys-

X. Nowak (B) · D. Söffker
Chair of Dynamics and Control, University of
Duisburg-Essen, Lotharstrasse 1-21, 47048 Duisburg,
Germany
e-mail: xi.nowak@uni-due.de

tems. Numerical examples (e.g., a chaotic nonlinear
MIMO system–Lorenz system) demonstrate the suc-
cessful application of the proposed methods.

Keywords Data-driven approach · Adaptive stabi-
lizer · Unknown nonlinear dynamical MIMO system ·
Cognitive · High autonomy

1 Introduction

The development of different kinds of adaptive con-
troller shows a clear tendency toward the research of
control methods with high autonomy. The pursuit for
highly autonomous control is to achieve the control
goal for unknown systems without the requirement of
the prior mathematical model of the system and fur-
ther preliminaries of the system dynamic behavior like
the exact description of the changing environment of
the system. If the autonomous control can be realized,
the whole control process will be robust, flexible, and
efficient, no manual design process is needed. As sta-
bilization is the basic task of the control problem, this
paper is focused ondesigning an autonomous stabilizer.

High autonomy is defined by the following four
requirements/key aspects (for control design in the con-
text of stabilization):

– The dynamic behavior of the unknown system to
be controlled has to be learned by the desired algo-
rithm only with the knowledge about the input and
output (I/O) measurements. It should be mentioned

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-016-2868-0&domain=pdf

2 X. Nowak, D. Söffker

that inmost practical cases the dynamic behavior of
the learned system describes only the local dynam-
ics of the system to be controlled accurately, which
means it cannot be globally accurate. Therefore the
desired controller should be able to learn the sys-
tem dynamic behavior online, in order to update
the actual dynamic behavior. With this capability,
the dynamics of time-variant systems can also be
learned online assuming a suitable relation between
the time variance and the adaption behavior of the
learning system.

– Using the learned system dynamic behavior, the
desired controller should be able to do multi-step
prediction of the systemoutputswith different input
valueswith acceptable accuracy. The predicted sys-
tem outputs are required for judging the stability of
the system future motion with desired inputs and
for determining the optimal input values for sev-
eral upcoming time steps.

– The stability of the concerned system should be
related to the upcoming motion predicted using
the learned local dynamic behavior. Furthermore,
the required stability criteria should be realized in
a data-driven manner. This results from the fact
that in this contribution it is assumed that the sys-
tem model is not known, so only the knowledge
about the I/O behavior can be used for the whole
approach.

– The desired control inputs for the upcoming time
steps should be directly and optimally determined.

Several data-based adaptive controller design meth-
ods have already been developed trying to achieve the
expectation as described above for nonlinear systems,
like virtual reference feedback tuning (VRFT) [5,21],
iterative learning control (ILC) [3,26–28], iterative
feedback tuning (IFT) [9,19] ,model-free adaptive con-
trol (MFAC) [10], real-time particle filter (RTPF) [13],
and adaptive dynamic programming (ADP) [11,14,16]
etc. Unfortunately, none of these methods can realize
the expectation without any shortage related to the high
autonomy. The approaches require different assump-
tions (about the system’s behavior) or will lead to dif-
ferent limitations with respect to their application. In
order to explain it more clearly, a brief introduction
of each method is given in the sequel. Finally, the dif-
ference of the novel approach to previously published
approaches of others will be briefly pointed out.

Establishing VRFT approach [5], an optimal con-
troller is determined among a special controller class
according to collected data of the considered nonlinear
unknown SISO system. The VRFT approach can be
extended for MIMO systems, but, according to [21],
is restricted to an equal number of inputs and out-
puts. The process to determine the controller is real-
izedwithout off-line identification of the systemmodel,
so the system is assumed as time-invariant. The given
data have to include enough information of the sys-
tems dynamic behavior to guarantee optimal controller
behavior. Additionally, it is assumed that the I/O behav-
ior of the nonlinear system is smooth and invertible.
Such requirements have to be achieved in practice,
which is difficult to realize due to the assumed com-
plexity of unknown systems. Moreover, the stability
of the controlled system is not discussed within this
approach.

The main idea of the ILC approach [26] is to
update the desired control input according to the out-
putmeasurements iteratively for each discrete time step
using always the same initial conditions of the system
dynamic behavior for each iteration, which is an imper-
ative fundamental assumption of ILC [27,28]. A priori
knowledge about the bounding functions of the uncer-
tainties of the system dynamic behavior is required
for the learning process [26], so ILC is not a com-
pletemodel-free approach. On the one hand, the perfect
tracking (as advantage) of the desired system outputs
can be realized using ILC without any identification
of the system model. On the other hand, ILC cannot
be used online because the outputs cannot always be
measured within the same initial conditions of the sys-
tem states and the same control environmentwithin one
discrete time step in practice. As a consequence, ILC-
based approaches have to be combined with identifica-
tion methods to achieve online applicability as shown
in [3]. The advantage of the perfect tracking is missing
because of not avoidable identification error.

The IFT approach [9,19] is also an adaptive control
method without included identification process. The
structure of the controller is predefined. The parameters
of the controller are optimized during each time step
based on three experimental tests done in parallel. This
approach is not applied and developed for nonlinear
MIMO systems as well as for time-variant systems.

Model-free adaptive control (MFAC) [10] approach
was developed as an extension of adaptive control to
realize tracking tasks for a class of discrete-timeMIMO

123

Data-driven stabilization of unknown nonlinear dynamical systems 3

nonlinear systems assuming an identical number of
inputs and outputs. Using MFAC, the known dynam-
ical structure of the nonlinear system model is not
required, even the identification of the system model is
not needed. A series of linearized local dynamic mod-
els of the closed-loop system along the dynamic opera-
tion points is establishedwith online I/Omeasurements
without training process. A suitable linearization struc-
ture is chosen directly among different possibilities of
dynamic linearization technique (DLT) with pseudo-
partial derivative (PPD). Each possibility uses different
PPDmatrices to describe the systemmodel.All kinds of
PPD matrices should be diagonally dominant. In order
to guarantee this condition, the given I/O data should
include suitable information about the system dynamic
behavior which needs additional afford to be guaran-
teed in practice. Eachpossibility ofDLT leads to its own
controller structure, whose parameters are determined
according to the linearized data model updated using
the online I/O measurement. Using MFAC algorithm,
BIBO stability of the closed-loop system is considered.

The RTPF approach [13] is usually applied for
system dynamic estimation including specially robot
localization problems. The dynamic behavior of the
unknown system can be represented and predicted
as the posterior probability densities of the measured
system samples, which is sampled according to the
inputs and sensor data collected by the dynamical sys-
tem/robot moving around a given set of possible out-
puts. If the sampling of the required samples of an
unknown nonlinear dynamical system can be achieved
successfully, suitable inputs for the desired outputs can
be determined from the predictive densities directly. A
given set for all possible outputs of dynamical system
is not always available. With such a given set a sam-
pling process which include enough information of the
system dynamic is also expensive for online process.
Furthermore, the stability of the controlled system is
not considered.

The ADP approach [14,16] consists of three neural
networks, which are used separately for model identifi-
cation, updating of the optimal cost function related to
the control law, and updating of the control law. Using
ADP the computational requirement is large because of
the use of three neural networks, of which the approx-
imating accuracy should be guaranteed. Additionally,
the stability of the closed-loop system is not considered
in the controller design. In order to solve this problem,
robust ADP was developed [11] for controlling non-

linear systems with dynamic uncertainties. The system
model is assumed to consist of two parts: unknown sys-
tem dynamics with measured states and unknown sys-
tem dynamics with unmeasured states.With the help of
an iterative technique called policy iteration and non-
linear small-gain theorem, both parts are considered
during the controller design to stabilize the closed-loop
system at the origin. However, this method can only be
used for SIMO systems.

In order to overcome the shortages or to develop an
alternative of the existing methods, a cognitive stabi-
lizer has been developed and proposed recently for a
class of nonlinear dynamical MIMO discrete system.
With the use of a cognitive framework, the require-
ments of high autonomy (includingmainly the assump-
tion that no model information is used) should be ful-
filled. The key idea for the cognitive aspect of the
framework is to match the definition of cognition,
which is a distinctive feature of cognitive systems [25]:
“being able to understand what is going on and what to
do to next. Cognition in the engineering context means
the capability of perceiving the environment, assimilat-
ing information by discovering and structuring knowl-
edge, and autonomously making rational decisions of
how to act” [1]. This definition is closely related to
similar one developed in information science, as given
from Strube [24]. The cognition-based framework is
developed in the context of stabilization in order to
achieve the expectation of the high autonomy stated
above. A controller based on such framework used for
stabilization taskwill be denoted as cognitive stabilizer.
Previous publications of the authors Nowak (née Shen)
and Söfkker are related to similar topics. In [22], the
cognitive stabilizer is developed firstly using a simple
but not optimal algorithm applied to a SIMOsimulation
example. In [18], the cognitive stabilizer is improved
with another algorithm and applied to a SIMO chaotic
nonlinear system numerically.

In this contribution, the approach is extended by the
authors in order to realize all the expectations for the
first time. Different realizations of eachmodule and the
whole framework are discussed and compared. They
are applied to a chaotic MIMO nonlinear system. The
similarities between former works and this publication
are small and result from focusing the same idea but
using different algorithms.

This paper is organized as follows: The concept
of the cognitive-based framework for stabilization is
explained in Sect. 2; the realizations for eachmodule of

123

4 X. Nowak, D. Söffker

the cognitive-based framework are presented in Sect. 3;
the cognitive stabilizer is applied to a Lorenz sys-
tem. The corresponding simulation results are shown in
Sect. 4. Summary and conclusion are given in Sect. 5.

2 Concept of a cognitive-based framework for
stabilization

Different definitions of stabilization in the control
research area are known. Due to the fact that from the
point of view of the cognitive control design besides
the measurements no information about the system to
be controlled is used, it is necessary to define the stabi-
lization problem which should be solved in the context
of cognitive stabilizer clearly.

2.1 Stabilization problem

The considered class of time-variant discrete nonlinear
dynamical MIMO systems is given by

x(k + 1) = f (x(k), u(k)), (1)

where f (·) denotes the nonlinear system discrete
dynamic, x(k) ∈ �n the state vector, k the current dis-
crete time step, and u(k) ∈ �m the control input. The
stabilization problem should be solved by designing a
suitable control input vector

u(k) = u(x(k), x(k − 1), . . . , x(k − l)) (2)

with l as an integer which is smaller than k such that
xa as an arbitrary state of the system to be controlled
becomes an asymptotically stable equilibrium point of
the controlled system.

It is assumed that the function f (·) is unknown, the
state vector x are measured and the system is fully
controllable.

2.2 Cognition-based framework for stabilization

In order to solve the stabilization problem above, the
cognition-based framework for stabilization is devel-
oped in [22] and shown repeatedly in Fig. 1. The details
of each module and their interconnections are illus-
trated in the sequel.

Unknown
system

External
environment

System
identifier

Perception
and interpretation

PlanningExecution

Stability
criterion

Expert
knowledge

Feedback

Evaluation
Sensors

Plant

Actuators

Cognitive stabilizer

‘Strategy’
generator

© SRS 2012

User

Goal

secnabrutsi
D

Fig. 1 Cognition-based framework for stabilization [22]

As shown in the figure, in the external environment,
the system to be controlled is an unknown system,
whichmeans that the relatedmathematical model is not
known neither to the stabilizer nor to the designer, and
therefore the system model is not used. The inputs and
outputs including the disturbances as well as the given
goal of the stabilization task are the only information
about the unknown system which are used for design
and are transmitted during operation to the cognitive
stabilizer.

The cognitive stabilizer consists of the four modules
(“perception and interpretation,” “expert knowledge,”
“planning” as well as “execution”) and their intercon-
nections. This modules/functionalities and their inter-
action are typical for cognitive frameworks as defined
in [4]. The I/O measurements are firstly gathered, ana-
lyzed, and stored as the system dynamic behavior infor-
mation by using dynamic identifier in the module “per-
ception and interpretation.” Such information (learned
using the I/Omeasurements) is able to present the previ-
ous system dynamic behavior with high accuracy and
to predict the dynamic behavior for a certain multi-
step prediction horizon. To guarantee the stability of
the controlled system, a suitable knowledge about state
stability is used in the module “expert knowledge” to
judge weather the former control inputs to be updated
can achieve the control goal: stabilize the system at the
desired equilibrium point of the controlled system. The
judging process does not need the model of the system
but only the stored information about the system in the
module “perception and interpretation.” In the mod-
ule “planning,” the strategy for choosing the optimal
control input which can satisfy the requirement in the
module “expert knowledge” is defined to reach the goal
dynamics of the controlled system efficiently. Finally,
the input signal is generated by the module “execu-

123

Data-driven stabilization of unknown nonlinear dynamical systems 5

tion” according to the defined strategy. Each module in
the framework can be realized separately by applying
different methods.

3 Realization of the modules of the cognitive-based
framework

The detailed possible realization methods for each
module of the framework above will be given in this
section.

3.1 Realization of the module “perception and
interpretation”

Various kinds of methods can identify the system
dynamics of unknown nonlinear systems with the I/O
measurements online, such as radial basis function
neural networks, dynamic recurrent neural networks,
nonlinear autoregressive exogenous model recurrent
neural networks (NARX-RNN),Gaussianprocess regres-
sion (GPR), support vector machine, real-time parti-
cle filter, and dynamic linearization technique. Each
of these methods is characterized by specific advan-
tages and disadvantages. In this paper, NARX-RNN
[8,23], GPR [7,12,20], and a combined identifier based
on NARX-RNN and GPR are combined to realize the
module perception and interpretation. Other methods
possibly to be combined will be discussed in the future
work.

3.1.1 Nonlinear autoregressive exogenous model
recurrent neural networks (NARX-RNN)

Using recurrent neural networks (RNN), the dynam-
ical system behavior can be trained without a high-
level memory also for high-dimensional nonlinear sys-
tems [8]. Nonlinear autoregressive exogenous models
as a kind of RNN can be applied not only for the sys-
tem dynamic behavior training but also for multi-step-
ahead prediction of the system states with high accu-
racy using new system inputs [23]. A brief introduction
of NARX-RNN is given in the sequel.

During a training process, the input vectors of the
NARX-RNN are defined as

x(k − 1) = [x(k − 1), . . . , x(k − l − 1)] and
u(k − 1) = [u(k − 1), . . . , u(k − l − 1)]. (3)

The output vector of the NARX-RNN is defined as

x(k) = [x(k), . . . , x(k − l)], (4)

where l denotes the size of the training horizon. The
measured states and inputs of the system of the past l
discrete time steps are considered for the trainingphase.
The active functions f1, f2 and the number of the neu-
rons η in the hidden layer of the neural network are
predefined.

The structure of the relation between the output vec-
tor and the input vectors is predefined by NARX-RNN
as

x(k) = f2(W3 · f1(W1 · u(k − 1) + W2 · x(k − 1)

+ b1) + b2), (5)

withW1,W2, andW3 as weighting matrices and b1 and
b2 as bias vectors.

In the training phase, the weighting matrices and
bias are adapted using back-propagation-through-time
algorithm. In the prediction phase, the new system state
vector for the next discrete time step x̂(k + 1) is pre-
dicted using the trained weighting matrices and bias
with a new system input vector ud(k). Iteratively, the
system states in themulti-step prediction horizon (hori-
zon size s) are predicted using the real system states
from the training horizon and the previous predicted
system states as
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂(k + s)
x̂(k + s − 1)

.

.

.

x̂(k + 1)
x(k)

.

.

.

x(k + s − l)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= f2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

W3 · f1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

W1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ud (k + s − 1)
ud (k + s − 2)

.

.

.

ud (k)
u(k − 1)

.

.

.

u(k + s − l − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+W2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂(k + s − 1)
x̂(k + s − 2)

.

.

.

x̂(k)
x(k − 1)

.

.

.

x(k + s − l − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ b1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ b2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(6)

Using the NARX-RNN algorithm, the system dynamic
behavior for every multi-step prediction horizon can
be trained. The states of the unknown nonlinear system
can be predicted online according to the new system
inputs.

123

6 X. Nowak, D. Söffker

This algorithm can also be applied to approximate
the inverse relation between the system inputs and out-
puts [18] as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ûd (k + s − 1)
ûd (k + s − 2)

.

.

.

ûd (k)
u(k − 1)

.

.

.

u(k + s − l)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= f2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

W3 · f1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

W1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xd (k + s)
xd (k + s − 1)

.

.

.

xd (k + 1)
x(k)

.

.

.

x(k + s − l + 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+W2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ûd (k + s − 2)
ûd (k + s − 1)

.

.

.

ûd (k)
u(k − 1)

.

.

.

u(k + s − l − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ b1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ b2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(7)

where ûd(p)|p=k, ..., k+s−1 denotes thepredicteddesired
system input and xd(p)|p=k+1, ..., k+s the desired sys-
tem state.

It should be mentioned that during the training
phase, the approximation results are validated to guar-
antee that the weighting matrices and bias are suit-
able enough to approximate the system dynamics with
high accuracy. In the prediction phase, no validation
process to check weather the predicted states are accu-
rate enough is given. Therefore, a simple but efficient
additional validation for the predicted states is defined
here. Assume �xmax,q = max

∣∣xq(i + s) − xq(i)
∣∣

with q = 1 . . . r and i = 1 . . . k, the predicted sys-
tem states are considered as not accurate enough (not
correct) if the condition

∣∣x̂q(k + s) − x̂q(k)
∣∣ > λ�xmax,q (8)

is fulfilled, where λ is a predefined tolerance parame-
ter. The idea of this kind of validation is explained from
a practical point of view. Each system shows its own
dynamics and energy limits in the output (here also
denoted as the state) side generated from the input side.
Therefore in a time period with a certain length the pre-
dicted change of the system outputs can normally not
be larger than any past change within any time period
of the same length.

3.1.2 Gaussian process regression (GPR)

Gaussian process is a statistic process, which is defined
by [20] as “a collection of random variables, any finite
number of which has a joint Gaussian distribution.”
According to [7,12,20], a brief introduction and the
application of GPR are given in the following.

Here two new matrices are defined additionally to
explain the use of GPR:

X̂(k + 1) = [x̂(k + 1), . . . , x̂(k + s)] and (9)

Ud(k) = [ud(k), . . . , ud(k + s − 1)]. (10)

Applying Gaussian process to learn and predict the
system dynamic behavior, the multi-step-ahead predic-
tion problem to define

X̂(k + 1) = f (k, X (k),Ud(k)) (11)

can be reformulated as a probabilistic problem to define
the distributions of each element of X̂(k+1) presented
by the marginal likelihood [20] defined as

marginal likelihood = likelihood × prior

posterior
(12)

with

p(f (Ud(k))|X (k),U (k − 1))

= p(X (k)| f (Ud(k),U (k − 1)))p(f (Ud(k)))

P(X (k)|U (k − 1))
[12].
(13)

The predicted distribution of X̂(k+1) can be rewrit-
ten with a joint Gaussian distribution like

X̂(k + 1)|Ud(k) ∼ N (EUd [μ(Ud)], (14)

EUd [σ 2(Ud)] + varUd [μ(Ud)]) (15)

with themeanμ and the varianceσ 2 for each prediction
step. According to [12], the mean and the variance can
be determined by

μ (Ud) = c (Ud)
T C−1X (k)

σ 2 (Ud) = c′ (Ud) − c (Ud)
T C−1c (Ud) + v0. (16)

The matrix C is a nonnegative definite covariance
matrix determined with a certain covariance function c
which is chosen as

c = v1 exp

[
−1

2

D∑
d=1

wd(u
p − uq)2

]
+ v0, (17)

123

Data-driven stabilization of unknown nonlinear dynamical systems 7

where u p and uq are different input vectors among
u(k−1), . . . , u(k−l−1) and ud(k), . . . , ud(k+s−1)
as well asw1 . . . wD , v0, and v1 the hyperparameters to
be trained by maximization of the marginal likelihood.
The detailed calculation derivation is given in [7].

With the determined mean EUd [μ(Ud)] and vari-
ance EUd [σ 2(Ud)] + varUd [μ(Ud)] for the multi-step-
prediction probability, the system dynamic behavior
can be trained and predicted without the use of a given
system structure model.

It should be mentioned that the prediction result by
using GPR is highly accurate only if the training input
data are standard normal distributed. Because the sys-
tem is described as Gaussian process describing the
data with Gaussian/normal distribution better thanwith
non-Gaussian distribution. Additionally, GPR can only
be applied directly to MISO systems and repeatedly to
MIMO systems (separate prediction process for each
output).

3.1.3 Combined identifier

Both NARX-RNN and GPR has to be combined suit-
ably for data-driven multi-step-ahead prediction tasks.
In order to apply for different systems the most suitable
one under different conditions automatically, a com-
bined identifier based on both NARX-RNN and GPR
is developed. The principle idea is explained as shown
in Fig. 2.

In the initial training process, GPR is considered
firstly to identify the system dynamic behavior with the
training data measured from the unknown system. In
order to guarantee the identification accuracy, the neg-
ative log marginal likelihood of the identified system
outputs is checked online. If it is not small enough, the
covariance function of the GP or its hyperparameters

Messured initial
training data

(random input data)

Training and
prediction
using GPR

Accuracy
acceptable?

No

Yes

Control inputs

Initial training process Online prediction process

Yes

No

Training and
prediction using

NARX-RNN

Accuracy
acceptable?

Yes

No

Prediction test
using GPR

Identification
using GPR

Copy of the
training data

Updated identified
system model

k ≤ kc?

k = k + s

Fig. 2 Flowchart of the combined identifier

should be changed until the log marginal likelihood is
small enough.

If the identification process is completed, the identi-
fied Gaussian process with its covariance function and
hyperparameters are used to predict the system dynam-
ics with certain test input data and the corresponding
test output data. Considering the whole cognitive sta-
bilizer, the type of the test input data could be defined
according to the required form of the control inputs
generated in themodules “planning and execution.” For
example, the control inputs are determined according to
the control goal for each step separately, which means
the value of the control input vectors may be stepwise
unique, and the test input data should be a standard uni-
form distributed random signals with the similar form
of the control inputs. Similarly, if the control inputs
with the same value are determined for each s steps,
the test input data should be random step signal serials.

The test prediction result is evaluated according to
the average absolute relative error (ARE). If the ARE
of the predicted system outputs is not small enough,
the training input and output data may not have enough
information about the system dynamics behavior. In
this case the whole training process will be repeated
until suitable training data are defined. Otherwise, the
training data should be saved and used for online pre-
diction.

Applied for the online prediction process, GPR is
used to predict the system outputs with the control
inputs for the first kc steps, which are predefined or
given experimentally. To guarantee the prediction accu-
racy, an additional validation process is used to verify
whether the GPR can predict the system outputs with
acceptable accuracy. Due to the fact that the real system
outputs for the future steps cannot be measured during
the online prediction process, Eq. (8) based only on the
predicted system outputs and the real system outputs
in the past is used as the condition for not acceptable
prediction result. If the prediction results are not accept-
able, NARX-RNNwill be used for the same prediction
task. If the new prediction result is better (evaluated
using Eq. 8) than the former one using GPR, the new
one will be treated as the suitable one. Otherwise, the
old one will be taken as the predicted result.

A step number kc is determined for the case that
the prediction result using GPR should always be
repeated using NARX-RNN. After kc steps, the pre-
diction process using both methods can be reduced by
only using NARX-RNN.

123

8 X. Nowak, D. Söffker

Using this strategy, the suitable method for the iden-
tification can be selected automatically in the online
process with guaranteed accuracy. The corresponding
simulation exampleswill be shown in Sect. 5 to demon-
strate the related performance.

3.2 Realization of stability criterion

As mentioned in the introduction, the considered sys-
tems to be stabilized are nonlinear discrete systems.
Quadratic stability related to nonlinear discrete systems
is considered in the module “expert knowledge” of the
cognition-based framework.

Quadratic stability is defined [2] as: “The system
described by x(k + 1) = f (x(k)) is called quadratic
stable if there exists a positive definite matrix P , such
that along the solution of the nonlinear discrete-time
system the vector function

v(x(k)) = x(k)T Px(k) (18)

satisfies

�v(x(k)) = v(x(k + 1)) − v(x(k)) ≤ 0.” (19)

The function v(x(k)) is the Lyapunov function for the
actual discrete system considered. Evidently, assuming
a positive definite matrix P ,

v(x(k)) = x(k)T Px(k) > 0, for x(k) �= x0, (20)

= 0, for x(k) = x0

will be considered to establish the Lyapunov function.
In order to realize this criterion in a data-drivenman-

ner, data-driven quadratic stability criterion [29] and a
certain Lyapunov function with coordinate transforma-
tion [18] are developed.

3.2.1 Data-driven quadratic stability criterion

The main idea of data-driven quadratic stability crite-
rion is to establish a relationship between the measured
system states and the quadratic stability of trajectories
of a nonlinear discrete-time systems directly by uti-
lizing a geometric method. According to [29], a brief
introduction is given in the sequel.

In order to present such a criterion in a data-driven
manner, a geometric method is used and the corre-
sponding necessary definitions is stated at first:

Definition 1 “A negative open half space h− [15] is
the half space of the n-dimensional Euclidean space
En containing the complete set of points below a non-
vertical hyperplane h in En . If a vectorw is located in a
negative open half space, its inner products with all the
vectors located in the space Rn+ are less than zero.”

Definition 2 “A subset Cs of a vector space V is a
convex cone if and only if p1x + p2y belongs to Cs,
for any positive scalars p1, p2, and any x , y in C .”

With these geometric definitions, the quadratic sta-
bility of the system states can be judged using a geo-
metric approach as given in the sequel.

It is assumed that the system states are fully mea-
surable and free of noise. The controlled system

x(k + 1) = f (x(k), u(x(k), x(k − 1), . . . , x(k − l)))

(21)

and an arbitrary physical possible state xa of the sys-
tem to be controlled are considered. The system to be
controlled should be stabilized at the state xa which
is also the equilibrium point of the controlled system.
According to the first definition, only the stability of
the original point x0 = 0 of the space h can be eval-
uated. Therefore, the state variables are transformed
firstly into a new coordinate as xnew = xold − xa. In
this case, xnew = x0 = 0 defines exactly xold = xa.

The criterion is defined with the definitions men-
tioned above: The origin x0 = 0 is an asymptotically
stable equilibrium point of the system related to the
motion observed, if and only if every vector w is con-
tained in a convex cone which is located in a negative
open half space h−. A similar proof regarding the con-
trolled system is given in [29]. The vectorw is obtained
by the transformation of all system states x , x �= 0 with

w = diag[ϕ f (x)]ϕx (22)

using ϕ as an orthogonal matrix.

3.2.2 A certain Lyapunov function with coordinate
transformation

Another possibility to realize the quadratic stability in
a data-driven manner is to design a Lyapunov function
which can satisfy the requirements given in Eqs. (19)

123

Data-driven stabilization of unknown nonlinear dynamical systems 9

and (20) only using the system measurements. A suit-
able Lyapunov function as illustrated in [18] is

v(e(k)) = eT(k) · e(k), (23)

using e(k) = w−x(k)withw as the reference vector of
the system outputs. A transformation of the state vari-
ables xnew = xold − xa into the new coordinates similar
to the data-driven quadratic stability criterion is also
necessary. With this transformation, the reference vec-
tor can always be defined as w=x0=[0, . . . , 0] which
means that e(t) can be defined as−x(t). The Lyapunov
function is redefined in the new coordinates as

v(e(k)) = xT(k) · x(k),
= ∥∥x(k)∥∥ > 0, for x(k) �= x0, (24)

= 0, for x(k) = x0,

which satisfies the conditions in (20) with all system
states.

The resulting problem is to define a suitable vector
x(k + 1) to satisfy the condition (19) as

∥∥x(k + 1)
∥∥ !

<
∥∥x(k)∥∥. (25)

From the control point of view, a suitable rangeof the
desired system states xd(k+1) can be determined using
the inequality (25), which can guarantee the quadratic
stability of themotion of the system.Therefore, the new
control input can be found with the help of the inverse
control technique within a suitable range of xd(k + 1).
This kind of realization can only be used together with
the inverse learning process as given in Sect. 3.1.

Both stability criteria are suitable for data-driven
stability evaluation. The data-driven quadratic stability
criterion is used to evaluate arbitrary predicted system
states at each time step. Using the second criterion, a
suitable exactitude range of the desired system outputs
can be calculated. However, the inverse model of the
system has to be generated first. Both criteria allow the
evaluation to define a suitable corresponding input. The
application of the two stability criteria of the cognitive
stabilizer will be explained in the following subsection.

3.3 Realization of “planning and execution”

The input variables of the system to be realized are
bounded from the physical point of view in a cer-
tain interval denoted by [a, b]. The task of the module
“planning and execution” is to determine those suitable

control input serieswithin [a, b]which enables the con-
trolled system to satisfy the chosen stability criterion
and themost suitable control input (as optimal solution)
among the suitable control input series. It is assumed
that the optimal solution is related to a quadratic cost
function as

J =
(
xTd (k + 1)Qxd(k + 1) + uTd (k)Rud(k)

)
, (26)

where Q and R are positive definite weighting matri-
ces. This cost function is one kind of representation of
the system energy consisting of the state energy xTd (k+
1)Qxd(k + 1) and the input energy uTd (k)Rud(k). The
optimal solution is therefore the one which is deter-
mined among the suitable input series related to the
stability criterion andminimizes the cost function (26).

Two different strategies (exhaustive grid search and
inverse dynamic optimal control method) are consid-
ered. Both are applied for the module “planning” and
the module “execution.”

3.3.1 Exhaustive grid search method

Considering the system input signals, the bounded
interval [a j , b j] with j = 1 . . .m distinguishing the
input signal u j separately. If all bounded intervals are
partitioned into several subintervals without intersec-
tions as

[a j , a j + �u j , . . . , b j] (27)

with a suitable interval�u j for each input (denote�U
for all inputs), the number of the possible input values is
finite. Themethod of exhaustive grid search can be used
to determine optimization target (26) as firstly detailed
in [22] and therefore briefly repeated in the sequel.

The endpoint of each subinterval will be considered
as a possible value of the corresponding input signal.
The cost function (26) and the stability of the predicted
motion are calculated and evaluated for all possible
values �u j of all inputs (u j) and the corresponding
predicted outputs. The possible input vectors able to
generate a stable behavior are stored in a set Us. The
input vector among Us minimizing the cost function
is denoted as the optimal solution of the control input
vector andwill be generated in themodule “execution.”

Using this kind of strategy, the optimal control input
can be found and the stability of the controlled system
can be guaranteed. In order to reduce the computational

123

10 X. Nowak, D. Söffker

Input training data

Initial learning

YesNo

Determination of
the possible inputs

Using current

Prediction of
the system states

and the corresponding
cost function values .

Ranking of the
possible inputs

corresponding to .

with index .

Stability evaluation

Stable?
No

Execution of the
optimal input

New identification

Yes

Using new

End

x(k) < δ?

[a, b] & ΔU[a, b] & ΔU

f

f

p

p = p + 1

Ud(k) = [ud(k + 1) . . . ud(k + s)]

k = k + s

Fig. 3 Flowchart of the cognitive stabilizer using exhaustive grid
search method

load of the algorithm, the use of the exhaustive grid
search method is simplified and illustrated as flowchart
in Fig. 3.

As the next step following the initial training process
using the system identifier, the norm of the current sys-
tem states x(k) has to be checked firstly for each pre-
diction horizon to improve the calculation efficiency.
Using the stability criterion, a coordinate transforma-
tionwith the desired equilibrium point of the controlled
system as the original point is required in the whole
process. It is larger than a predefined distance δ, which
means if the system states are not close to the equilib-
rium point of the controlled system (

∥∥x(k)∥∥ > δ) or
the absolute values of the system states are not small
enough, the realizable interval of the system inputs
[a, b] with a given sample interval �U is used as the
elements in set Us. As mentioned before, the system
identifier cannot predict the system without prediction
error. If the absolute values of the real system states are
larger than the difference of different possible system
input vector values, the prediction results can be simi-
lar. So the related suitable inputs are around all possible
input vector values for the case

∥∥x(k)∥∥ > δ. Using a
larger sample interval, the number of the elements inUs

can be reduced so a suitable input vector can be found.
If

∥∥x(k)∥∥ is smaller than δ, a relative small boundary
[a, b] and a small sample interval �U should be used.
In this case, the absolute values of the system states are
relative small. Therefore, the accuracy of the predicted
results with different system inputs with small�U can
be guaranteed and therefore used to find the most suit-
able input vector stabilizing the system at the desired

equilibrium point. Therefore, a small boundary interval
[a, b] is used in this case in order to improve the com-
putational efficiency. After the adjustment of [a, b] and
δ, the set Us for the possible inputs is determined.

With respect to the computational load, the calcu-
lation of the cost function is less intensive than that
of the stability check. The applied numerical calcula-
tion steps required are as follows: (1) The system states
related to the possible input vectors are predicted using
the learned dynamic system behavior; (2) ranking of
the cost function values according to the predicted sys-
tem states is determined as next step; (3) the stability of
the motion of the predicted system is checked accord-
ing to the generated ranking; (4) as long as the stability
criterion is fulfilled, the stability check is stopped; (5)
the corresponding input vector is determined and exe-
cuted as the optimal input vector for the next s steps.
Evidently, it is necessary to train the dynamic system
behavior again for each prediction horizon to detect
changes of the unknown system or its environment
online.

Using this strategy, the computational requirements
can be reduced and the relative optimal control input,
which can guarantee the stability of the motion, can be
planned.

3.3.2 Inverse dynamic optimal control method

If the inverse dynamics of the system can be predicted
with suitable accuracy, the stability criterion provid-
ing a range of the desired stable system states can be
used. Comparing to the exhaustive grid search method,
it is not required to check the stability of the predicted
motion of all possible control input separately. The con-
trol strategy firstly applied in [18] denoted as inverse
dynamic optimal control method is developed.

The inverse dynamics of the system are identifi-
able and predictable for the given desired system states
xd(k+1) = [xd(k+1), . . . , xd(k+s)] for each predic-
tion horizon, the desired system input matrix is deter-
mined as

ud(k) = f (k, [x(k)xd(k + 1)], u(k)]. (28)

Similar to the system input values, restrictions of
the system states may be also required using a certain
boundary range. Therefore, a newcondition for the pos-
sible range of any desired system states xd(k+ p)with
p ∈ [1 . . . s] as
∥∥xd(k + p)

∥∥ !≤ ∥∥x(k + p − 1)
∥∥ + ε(k + p) (29)

123

Data-driven stabilization of unknown nonlinear dynamical systems 11

is used. The boundary ε(k + p) can be determined
approximately according to the previous system behav-
ior as

ε(k + p) =
∥∥∥∥
[
‖x1‖∞ ‖x2‖∞ · · · ‖xn‖∞

]∥∥∥∥ (30)

with xn = [xn(1) xn(2) · · · xn(k + p)].
The optimal desired system inputs are determined

minimizing the cost function ud(k+ p−1) = argmin J
with the inequality constrains (29) in combination with
the stability criterion using the active set algorithm [6].
A flowchart of the algorithm introduced is illustrated
in Fig. 4.

After the initial training process using the chosen
system identifier for the inverse model of the system,
the norm of the current system states x(k) will also
be firstly checked for each prediction horizon similarly
like using the exhaustive grid search method. A coordi-
nate transformation with the desired equilibrium point

Determination of
stable interval

Initial conditions

Initial learning

Optimization

Prediction using
inverse system model

to determine

Execution of optimal input

I-controller

New training

YesNo

End

x(k) < δ?

xd(k + p) ∈ []

xd(k + p) = argmin J

u(k + p − 1)

Ud(k) = [ud(k) . . . ud(k + s − 1)]

u(k) = KI
k
k−ζ(x(m))dm

k = k + s p = p + 1

α β

Fig. 4 Flowchart of the cognitive stabilizer using direct input
optimization with inverse model

of the controlled system as original point is needed to
fulfill the stability criterion. If

∥∥x(k)∥∥ > δ, the stable
range [α β] of the desired system states is determined
using the stability criterion according to Eq. (29) for
the next step. The optimal desired system input vec-
tor according to the desired system state vector among
[α β] using the identified system model for the next
step is determined by minimizing the cost function.
Repeating iteratively this process p times, the optimal
desired system input matrix can be determined for the
next s steps. If

∥∥x(k)∥∥ < δ, additionally an integral
controller is applied. The difficulty to predict the sys-
tem dynamics with a high accuracy results from small
absolute values of the system transformed states and
the optimal desired input vector searched among the
whole physical possible range [a b]. Therefore, an inte-
gral controller (I-controller) with a certain gain vector
KI is applied due to its advantages of eliminating static
control error. Using this strategy, the optimal control
inputs Ud(k) for the prediction horizon can always be
executed. Evidently, a training process for each predic-
tion horizon is also required here.

4 Simulation results

The proposed cognitive stabilizer is applied to a bench-
mark nonlinear chaotic MIMO system—Lorenz sys-
tem, which has 3 states, 2 inputs and 3 different equi-
librium points and is described by

ẋ =
⎛
⎝

−σ x1 + σ x2 + u1
−x1x3 − x2 + r x1 + u2

x1x2 − bx3

⎞
⎠ , x(t = 0) = x0.

(31)

The parameters are given for the simulation as σ =
10, r = 28, and b = 8

3 . The three equilibrium
points of the uncontrolled system are P1 = (0, 0, 0),
P2 = (8.4853, 8.4853, 27), and P3 = (−8.4853,
−8.4853, 27). The desired control task is to stabilize
the Lorenz system at one arbitrary equilibrium point.

Assuming a sample time of Ts = 10−3s, a training
time Tt = 0.5s, η = 30, α = 0, sn = 0.05, the initial
condition of the outputs ini = [−10 10 25], s = 5, and
the covariance function

c = v1 exp

[
−1

2

m∑
d=1

wd(u
p − uq)2

]
+ v0, (32)

123

12 X. Nowak, D. Söffker

0 100 200 300 400 500 600 700 800 900 1000
−50

0

50

0 100 200 300 400 500 600 700 800 900 1000
−100

0
100
200

0 100 200 300 400 500 600 700 800 900 1000
0

50

0 100 200 300 400 500 600 700 800 900 1000
−2000

0

2000

0 100 200 300 400 500 600 700 800 900 1000
−2000

0

2000

x
1

x
2

x
3

u
1

u
2

k

Real data
Predicted outputs using GPR
Predicted outputs using NARX-RNN
Accepted predicted outputs

Fig. 5 Comparison of real and predicted outputs using combined
identifier. (Color figure online)

the cognitive identifier is applied first separately to the
Lorenz system with a standard normal distributed ran-
dom input training data and step control input test data.
The results obtained from the training and predictions
phases are shown in Fig. 5 to demonstrate the perfor-
mance of the combined identifier.

The input and real output data are denoted with
black lines. The predicted system outputs using GPR
(blue points) and using NARX-RNN (green points) are
shown. The accepted predicted outputs (red points)
indicate clearly that the combined identifier can be
used for predicting the outputs of nonlinear dynami-
cal MIMO system with acceptable accuracy.

Between k = 500 and k = 600, the system outputs
are predicted using GPR with high accuracy except by
k = 515, k = 520, k = 525, and k = 590, as denoted
by blue points. Therefore, NARX-RNN is used to guar-
antee the prediction accuracy. Only the not acceptable
predicted outputs by using GPR are replaced with the
predicted results by using NARX-RNN. For example,
for k = 515, only the first and second predicted outputs
using GPR are not suitable enough and are replaced by
the predicted results using NARX-RNN. There is no
need to take the predicted result using NARX-RNN
for the third output. For the remaining part k = 600
only NARX-RNN is used, the corresponding results
are acceptable. The result of this strategy in terms of
the absolute prediction error is shown in Fig. 6.

For comparison, the prediction error using GPR is
given (red lines) as well as the prediction error using
NARX-RNN (blue lines). It can be detected from the
figures that for the first 100 prediction steps, the not
acceptable predicted system outputs using GPR can

500 550 600 650 700 750 800 850 900 950 1000
−50

0

50

500 550 600 650 700 750 800 850 900 950 1000

0

100

200

500 550 600 650 700 750 800 850 900 950 1000
−10

−5

0

5

E
1

E
2

E
3

k

Absolute prediction error using GPR
Absolute prediction error using NARX-RNN

Fig. 6 Comparison of the absolute prediction error by using
GPR and NARX-RNN. (Color figure online)

be detected and corrected using NARX-RNN during
the online prediction process. The acceptable predicted
system outputs using GPR show higher accuracy than
those using NARX-RNN.

In this case, the ARE of the whole process is 0.3059
for x1, 0.3614 for x2, and 0.0187 for x3 using this kind
of combined identifier. It can be concluded that the
prediction accuracy can be guaranteed (by using vali-
dation processes) and optimized (by using GPR for the
possible cases).

As mentioned in Sect. 2, each module of the cogni-
tive framework can be realized using different methods
and combined by autonomous communication. In this
paper, 2 kinds of realization for the whole framework
are given:

– (I) Learning (by training) and predicting the system
dynamic behavior using cognitive identifier, judg-
ing the quadratic stability of the predicted system
motion using data-driven quadratic stability crite-
rion, and defining of the optimal control input vec-
tor using Exhaustive Grid Search Method

– (II) Learning the system inverse dynamic behavior
usingNARX-RNN, determining the desired system
output vector related to the quadratic stability of the
system motion using a certain Lyapunov function
with coordinate transformation and the learned sys-
tem inverse dynamic behavior, aswell as definingof
the optimal control input vector using direct input
optimization.

Using the realization (I), the stabilization of Lorenz
system at P1 will be simulated and the corresponding
simulation results will be illustrated in Fig. 7 at first.

In this simulation, the following parameter values
are taken: l = 500, T s = 10−3s, the initial system
states ini = [−30 30 35], s = 5, h = 100, Q and R as
unit matrices, and u ∈ [−2000 2000].

123

Data-driven stabilization of unknown nonlinear dynamical systems 13

0 500 1000 1500 2000 2500
−50

0

50

Real data in training process
Free motion
Controlled real data

0 500 1000 1500 2000 2500
−50

0

50

0 500 1000 1500 2000 2500
0

20
40
60

0 500 1000 1500 2000 2500
−2000

0

2000

0 500 1000 1500 2000 2500
−2000

0

2000

x
1

x
2

x
3

u
1

u
2

k

Fig. 7 Timehistory of theLorenz systembyusing the realization
(I) of the proposed cognitive stabilizer (desired equilibriumpoint:
P1). (Color figure online)

As shown in Fig. 7, the origin of the time history of
the outputs denotes the equilibrium point P1. The free
motion of the Lorenz system is indicated in green. It
becomes clear that the system behavior will not move
to any of its equilibrium point without control input.
During the training period (here denoted with black-
colored line), the standard normal distributed random
inputs are given to the combined identifier in order to
train the combined identifier. After the training period,
the actual closed-loop response of the system (blue
line) approaches the origin using the proposed con-
troller after about 0.2 s.

To check the performance of the proposed realiza-
tion of the cognitive stabilizer furthermore, the Lorenz
system will be stabilized from P1 to an other equilib-
rium point P2 as well as from P2 to P3 as shown in
Fig. 8.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−50

0

50

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−50

0

50

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

20
40
60

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−2000

0

2000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−2000

0

2000

Real data in training process
Free motion
Controlled real data

x
1

x
2

x
3

u
1

u
2

k

Fig. 8 Timehistory of theLorenz systembyusing the realization
(I) of the proposed cognitive stabilizer (desired equilibriumpoint:
P1 → P2 → P3). (Color figure online)

Similar to the stabilization process by P1, a standard
normal distributed random input value series will be
given for l steps starting at k = 2501 (black lines). The
system identifier uses only the knowledge about the
system states nearby the origin till k = 2500 and can
therefore not estimate the model of the system in the
new situation without training. After the short training
process, the Lorenz system can be stabilized from P1
to P2 as well as from P2 to P3 by repeating the process
once again. If P2 or P3 is considered as the initial value
of the free motion of the system, the Lorenz system
will stay at the equilibrium (green line).

Using the realization (II), the stabilization of Lorenz
system at P2 is simulated and the corresponding simu-
lation results are illustrated in Fig. 9.

In this simulation, the following parameter values
are taken: l = 500, T s = 10−4s, the initial system
states ini = [−30 30 40], s = 5, Q and R as unit
matrices, and u ∈ [−2000 2000].

During the training period denoted (black lines),
the combined identifier is trained to be able to esti-
mate the inverse model of the real system with high
accuracy. After the training period, the free motion of
the system is denoted (green lines). The actual closed-
loop response of the system (blue lines) approaches the
desired system state P2 using the proposed realization
after about 0.35 s.

Using combined identifier to train the inverse model
of the system for every prediction horizon, the closed-
loop response of the system states can follow the
desired system states with high accuracy. The perfor-
mance of the inverse model estimation is indicated

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−50

0

50

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−50

0

50

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
20

40

60

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−2000

0

2000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−2000

0

2000

Real data in training process
Free motion
Controlled real data

x
1

x
2

x
3

u
1

u
2

k

Fig. 9 Time history of the Lorenz system by using realiza-
tion (II) of the proposed cognitive stabilizer (desired equilibrium
point: P2). (Color figure online)

123

14 X. Nowak, D. Söffker

0 100 200 300 400 500 600 700 800
5

10

15

20

25

30

35

40

Real data in training process
Free motion
Controlled real data
Desired system states

x
2

k

Fig. 10 Phase portrait of the second state of the Lorenz system
by using the realization (II) of the proposed cognitive stabilizer.
(Color figure online)

more clearly in Fig. 10, where the time history of x2 of
the first 0.2s is shown. The error between the closed-
loop response of the system states (blue line) and the
desired system states (red points) is very small.

For this kind of realization, the Lorenz system also
will be stabilized from the equilibrium point P2 to P3
started at t = 2s. The corresponding simulation results
are shown in Fig. 11.After the required training process
and about 0.1 s control process, the Lorenz system is
stabilized during the transition from P2 to P3.

The proposed cognitive stabilizer was also applied
to a benchmark nonlinear system—inverted pendulum
system, and the corresponding successful simulation
results are given in [22] with the realization (I) and in
[18] with the realization (II).

In order to evaluate the performance of the proposed
cognitive stabilizer furthermore, some ideal nonlinear
switched systems can be considered for the simula-

Real data in training process
Free motion
Controlled real data

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

−40

−20

0

20

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

−20

0

20

40

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

20

40

60

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

−2000

0

2000

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 104

−2000

0

2000

Real data in training process
Free motion
Controlled real data

x
1

x
2

x
3

u
1

u
2

k

Fig. 11 Time history of the Lorenz system by using the realiza-
tion (II) of the proposed cognitive stabilizer (desired equilibrium
point: P2 → P3). (Color figure online)

tion in future work. The corresponding results can be
comparedwith other methods developed for the similar
control task such as the one given in [17].

5 Summary

The novel concept of cognitive stabilizer which is
developed to realize control design for stabilizing non-
linear dynamical MIMO systems with high autonomy
is introduced, developed, and evaluated. The advan-
tages and disadvantages of the existing data-based
adaptive controller design methods are discussed. Dif-
ferent kinds of methods for realization the modules of
the cognitive framework are introduced. Two kinds of
realization of the cognitive stabilizer are presented. The
proposed approach establishes a strong improvement
of stabilizing approaches with respect to the computa-
tional load and the robustness.

Examples are given, showing the performance of
the proposed controller. Using simulations, it is shown
that the Lorenz system can be stabilized online at its
arbitrary equilibrium point using both realizations. The
combined identifier can predict the system dynamic
behavior with acceptable accuracy during the online
control process. The suitable control inputs are deter-
minedwith respect to given cost functions. The stability
of the motion of the system is guaranteed.

The approach proposed in this contribution is suc-
cessfully developed and applied for stabilization tasks
by the authors to realize all the expectations of the high
autonomy. The approach can be used for unknown non-
linear dynamical MIMO discrete systems gaining only
the knowledge about the I/O measurements. It is suit-
able for online control process to guarantee the stability
of the closed-loop system in the whole control process.

References

1. Ahle, E., Söffker, D.: Interaction of intelligent and
autonomous systems part-ii realization of cognitive techni-
cal systems. Math. Comput. Model. Dyn. Syst. 14(1), 319–
339 (2008)

2. Barmish, B.: Necessary and sufficient conditions for
quadratic stability of an uncertain system. J. Optim. The-
ory Appl. 46(4), 399–408 (1985)

3. Bukkems, B., Kostic, D., de Jager, B., Steinbuch, M.:
Learning-based identification and iterative learning control
of direct-drive robots. IEEE Trans. Control Syst. Technol.
13, 537–549 (2005)

123

Data-driven stabilization of unknown nonlinear dynamical systems 15

4. Cacciabue, P.: Modelling and Simulation of Human Behav-
iour in System Control. Springer, London (1998)

5. Campi, M., Savaresi, S.: Direct nonlinear control design:
the virtual reference feedback tuning approach. IEEE Trans.
Autom. Control 51, 14–27 (2006)

6. Gill, P., Murray, W., Wright, M.: Practical Optimization.
Academic press, London (1981)

7. Girard, A., Rasmussenand, C., Murray-Smith, R.: Multiple-
step ahead prediction for nonlinear dynamic systems—a
gaussian process treatment with propagation of the uncer-
tainty. Adv. Neural Inf. Process. Syst. 15, 529–536 (2003)

8. Haykin, S.: Neural Networks. Prentice Hall international,
New Jersey (1999)

9. Hjalmarsson, H., Gevers, M., Gunnarsson, S., Lequin, O.:
Iterative feedback tuning: theory and applications. IEEE
Control Syst. 18(4), 26–41 (1998)

10. Hou, Z., Jin, S.: Data-driven model-free adaptive control
for a class of mimo nonlinear discrete-time systems. IEEE
Trans. Neural Netw. 22, 2173–2188 (2011)

11. Jiang, Y., Jiang, Z.: Robust adaptive dynamic programming
and feedback stabilization of nonlinear systems. IEEETrans.
Neural Netw. Learn. Syst. 25, 882–893 (2014)

12. Kocijan, J., Girard, A., Banko, B., Murray-Smith, R.:
Dynamic systems identification with gaussian processes.
Math. Comput. Model. Dyn. Syst. 11(4), 411–424 (2005)

13. Kwok, C., Fox, D., Meila, M.: Real-time particle filters.
Proc. IEEE 92, 469–484 (2004)

14. Liu, D., Wang, D., Zhao, D.: Adaptive dynamic program-
ming for optimal control of unknownnonlinear discrete-time
systems. In: 2011 IEEE Symposium on Adaptive Dynamic
Programming and Reinforcement Learning, pp. 242–249
(2011)

15. Meiser, S.: Points location in arrangements of hyperplanes.
Inf. Comput. 106, 286–303 (1993)

16. Murray, J., Cox, C., Lendaris, G., Saeks, R.: Adaptive
dynamic programming. IEEETrans. Syst.Man Cybern. Part
C Appl. Rev. 32, 140–153 (2002)

17. Niu, B., Zhao, J.: Barrier Lyapunov functions for the output
tracking control of constrained nonlinear switched systems.
Syst. Control Lett. 62(10), 963–971 (2013)

18. Nowak, X., Söffker, D.: A new model-free stability-based
cognitive control method. In: Proceedings of the ASME
2014 Dynamic Systems and Control (DSC) conference, vol.
3, p. V003T47A002 (2014)

19. Precup, R., Rădac, M., Tomescu, M., Petriu, E., Preitl, S.:
Stable and convergent iterative feedback tuning of fuzzy
controllers for discrete-time siso systems. Expert Syst. Appl.
40(1), 188–199 (2013)

20. Rasmussen, C., Williams, C.: Gaussian Processes for
Machine Learning. The MIT Press, Cambridge (2006)

21. Rojas, J., Flores-Alsina, X., Jeppsson, U., Vilanova, R.:
Application of multivariate virtual reference feedback tun-
ing for wastewater treatment plant control. Control Eng.
Pract. 20(5), 499–510 (2012)

22. Shen, X., Söffker, D.: A model-free stability-based adap-
tive control method for unknown nonlinear systems. In: Pro-
ceedings of the ASME 2012 Dynamic Systems and Control
(DSC) Conference, vol. 1, pp. 65–73 (2012)

23. Siegelmann, H., Horne, B., Giles, C.: Computational capa-
bilities of recurrent narx neural networks. IEEE Trans. Syst.
Man Cybern. Part B Cybern. 27(2), 208–215 (1997)

24. Strube, G., Habel, C., Hemforth, B., Konieczny, L., Becker,
B.: Kognition, in Einführung in die künstliche Intelligenz,
2nd edn. Addison-Wesley, Bonn, Germany (1995)

25. Vernon, D., Metta, G., Sandini, G.: A survey of artificial
cognitive systems: implications for the autonomous devel-
opment ofmental capabilities in computational agents. IEEE
Trans. Evolut. Comput. 11(2), 151–180 (2007)

26. Xu, J., Qu, Z.: Robust iterative learning control for a class
of nonlinear systems. Automatica 34(8), 983–988 (1998)

27. Xu, J., Tan, Y.: Linear andNonlinear Iterative LearningCon-
trol. Springer, London (2003)

28. Zhang, C., Li, J.: Adaptive iterative learning control of non-
uniform trajectory tracking for strict feedback nonlinear
time-varying systemswith unknown control direction.Appl.
Math. Model. 39(10–11), 2942–2950 (2015)

29. Zhang, F., Söffker, D.: A data-driven quadratic stability con-
dition and its application for stabilizing unknown nonlinear
systems. Nonlinear Dyn. 77(3), 877–889 (2014)

123

	Data-driven stabilization of unknown nonlinear dynamical systems using a cognition-based framework
	Abstract
	1 Introduction
	2 Concept of a cognitive-based framework for stabilization
	2.1 Stabilization problem
	2.2 Cognition-based framework for stabilization

	3 Realization of the modules of the cognitive-based framework
	3.1 Realization of the module ``perception and interpretation''
	3.1.1 Nonlinear autoregressive exogenous model recurrent neural networks (NARX-RNN)
	3.1.2 Gaussian process regression (GPR)
	3.1.3 Combined identifier

	3.2 Realization of stability criterion
	3.2.1 Data-driven quadratic stability criterion
	3.2.2 A certain Lyapunov function with coordinate transformation

	3.3 Realization of ``planning and execution''
	3.3.1 Exhaustive grid search method
	3.3.2 Inverse dynamic optimal control method

	4 Simulation results
	5 Summary
	References

