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Abstract A resonance between long and short waves
will occur if the phase velocity of the long wave
matches the group velocity of the short wave. In this
paper, a system with two distinct packets of short
waves in resonance with a common long wave is stud-
ied. Breather solutions are calculated by the Hirota
bilinear method, and rogue wave modes (unexpect-
edly large displacements from an otherwise calm back-
ground state) are obtained from the breathers through
a long wave limit. The location and magnitude of the
maximum displacement are determined quantitatively.
Remarkably this coupling enables a rogue wave to
attain a larger magnitude than that in a configuration
with just one single short wave component. Further-
more, as the wavenumber varies, a transition from an
elevation roguewave to a depression roguewave is pos-
sible. This transformation of the wave profile is eluci-
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dated in terms of the properties of the carrier envelope.
The connection with the modulation instability of the
background plane wave is investigated. Some numeri-
cal simulations are performed to demonstrate both the
robust nature and unstable behavior for these rogue
waves, depending on the parameters of the system.
Dynamics and properties of rogue waves with three
or more short wave components are also considered.

Keywords Rogue waves · Long–short resonance ·
Modulation instability

1 Introduction

Three-wave resonance is important in many areas of
physics such as fluid dynamics [1] and optics [2].
From a general perspective, in any nonlinear wave sys-
tem with a linear dispersion relation ω = ω(k) (ω =
angular frequency, k = wavenumber), if three wave
components satisfy the resonance conditions:

ω3 = ω1 + ω2, k3 = k1 + k2,

then onemember of such a triad can be generated spon-
taneously if two other members are present. The ‘long
wave–short wave’ (or just ‘long–short’) resonance is a
special limiting case of the triad resonance when one
member ismuch longer than the other two [1,3]. Specif-
ically, if k1 = k, k2 = �k, k3 = k +�k, then the reso-
nance condition becomesω(k+�k) = ω(k)+ω(�k),
which to leading order reduces to
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ω (�k)

�k
≈ dω(k)

dk

when |�k| << k, i.e. the phase velocity of the long
wave must match the group velocity of the short wave.
Under such circumstances, a standard multiple scale
asymptotic expansionwill give the governing equations
of a slowly varying, complex-valued short wave packet
envelope (S) and a real-valued induced long wave (L)

as [3,4],

i St − Sxx = LS, Lt = −σ
(
|S|2

)
x
. (1)

The real parameter σ will depend on the specific phys-
ical application. The resonance between a long internal
wave and a short surface wave in a stratified fluid is one
important application, but the model Eq. (1) applies to
many other physical systems.

Exact solutions of Eq. (1) with interpretation as
bright and dark solitons have been given; see [5] for
instance. The objective of the present work is to take
these studies further. More specifically, we shall inves-
tigate rogue waves for waveguides consisting of such a
coupled long–short system with multiple short waves.

Rogue waves (or freak waves) are unexpectedly
large displacements from the background state. Typ-
ically these modes are localized in both space and
time. Although such large amplitude motions have
been known to the maritime community for several
decades, scientific interest has exploded in the past ten
years with the availability of new ocean and labora-
tory data, all leading to the realization that the nonlin-
ear Schrödinger equation could play a central role in
modeling these events. The analytical and experimental
identification of the counterparts in optical waveguides
have only strengthened these topical appeals [6]. In fact
rogue waves have been invoked in many scientific dis-
ciplines, ranging from crowd dynamics [7] to tunneling
in waveguides with graded index [8].

The most widely used model is the Peregrine
breather/rogue wave [9] solution of the focusing non-
linear Schrödinger equation, for which plane waves are
modulationally unstable. This rogue wave is localized
in both space and time (i.e., it breathes only once), and
decays algebraically to the background state. Recently
studies of rogue waves have been extended to sys-
temswith two ormorewaveguides, i.e., those governed
by coupled systems, such as Bose–Einstein conden-
sates [10,11], optical fibers [12] and even modeling in
finance [13]. Rational solutions are still obtained [14].

The Darboux transformation has been commonly
used in the theoretical search for rogue waves, but the
classical Hirota method has also recently been shown
to be applicable [15]. The merit of the Hirota method
is that it has been successfully employed in the the-
ory of nonlinear waves to search for soliton modes
for over forty years [16]. Given this, we note that the
Darboux transformation has been applied to the single-
component long–short system Eq. (1) to obtain a ‘dark’
roguewave, an unexpected ‘depression’ from the back-
ground state [17]. Thus it would be instructive to study
the combination ofmodes in a coupled systemwith two
(or more) components, i.e. elevation rogue wave in one
waveguide but a depression rogue wave in the other.
The Hirota method will be an effective tool in such
investigations. Nevertheless, in anticipation for future
studies, the Lax pairs for such coupled systems will be
formulated as well.

Modulation instability (MI) refers to the general
process whereby sidebands of the central wavenum-
ber in the wave packet grow in a nonlinear system.
As the system evolves, nonlinear effects play a central
role, and this relationship connectingMI, breathers and
rogue waves has been studied in the literature; see, e.g.
[18]. The structural stability of a rogue wave mode can
also be investigated from the perspective of MI.

The structure of the paper is now described. The
Hirota bilinear transform and the Lax pair of a coupled
long–short system will be formulated, and the breather
modewill be computed by the bilinearmethod (Sect. 2).
A long wave limit is then taken and the rogue wave
is obtained (Sect. 3). The transformation of the wave
profile, from an elevation to a depression rogue wave
mode, will be traced analytically (Sect. 4). Many vari-
eties in the combination of modes will be investigated
further in Sect. 5. MI and numerical simulations will
be discussed (Sect. 6). Extension to a general multi-
component system will be discussed in Sect. 7, fol-
lowed by the conclusions (Sect. 8).

2 Formulation

A system consisting of two short wave components,
each in resonance with a common longwave, is consid-
ered in a general theoretical setting. In terms of appli-
cations in a fluid dynamics context, two wave packets
in a stratified fluid are coupled to the induced mean
flow (long wave) of the system. The constraint is that
the group velocities of the two short wave packets must
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be identical, and in this group velocity frame the gov-
erning equations become

i At − Axx = L A, i Bt − Bxx = LB,

Lt = −σ
(
|A|2 + |B|2

)
x
, (2)

where A, B, L are the short waves and long wave,
respectively [1,19]. The real parameter σ depends on
the precise physical properties of the system, e.g. the
density stratification profile in a fluid. Although it can
be normalized to unity by a change of variables, we
retain it here as a usefulmeasure of the long–short wave
interaction. The scattering and eigenvalue problems of
Eq. (2) have been studied, and localized solitons have
been derived [19]. The system is conservative, and one
representation of the intensity or energy of each mode,
namely∫

|A|2 dx,
∫

|B|2 dx,
∫

Ldx, (3)

remains constant. The focus of this paper is to study
the breather and rogue wave modes of Eq. (2). Both
the Hirota bilinear transform and Lax pair formula-
tions will be developed, and the breather mode will be
computed from the former.

2.1 The Hirota bilinear formulation

The well-established Hirota bilinear transformation is
given by:

Dm
x Dn

t g · f =
(

∂

∂x
− ∂

∂x ′

)m (
∂

∂t
− ∂

∂t ′

)n

g(x, t) f (x ′, t ′)
∣∣
x=x ′,t=t ′ . (4)

The appropriate dependent variable transformation is
(G, H complex, f real)

A = G

f
, B = H

f
, L = (2 log f )xx , (5)

which converts Eq. (2) to
(
i Dt − D2

x

)
G · f = 0,

(
i Dt − D2

x

)
H · f = 0,

(Dx Dt − C) f · f = −σ
(
|G|2 + |H |2

)
. (6)

The breather (pulsating) solutions are now derived,
using complex conjugate wavenumbers. The two pos-
sible types of breathers, namely, those periodic in space
and those periodic in time, can be attained through

a suitable choice of wavenumbers. Rogue waves are
then obtained by taking the long wave limit of these
breathers.

Weavoid the trivial case of identical shortwave com-
ponents by insisting on distinct carrier wave envelopes,

G = ρ exp [i (kx − ωt)] g,

H = ρh, ω = −k2, k �= 0, (7)

where k, ω, ρ stand for (real-valued) wavenumber,
angular frequency and wave amplitude, respectively.
For simplicity, attention is restricted to the case of equal
background amplitude for both short waves. The case
of unequal amplitudes will be left for future studies.
The appropriate expansion is then (* = complex conju-
gate)

f = 1 + exp
(
px − �t + ζ (1)

)

+ exp
(
p∗x − �∗t + ζ (2)

)

+ M exp
[(
p + p∗) x−(� + �∗) t + ζ (1) + ζ (2)

]
,

g = 1 + a1 exp
(
px − �t + ζ (1)

)

+ a2 exp
(
p∗x − �∗t + ζ (2)

)

+ Ma1a2 exp
[(
p + p∗) x − (� + �∗) t

+ ζ (1) + ζ (2)
]
,

h = 1 + b1 exp
(
px − �t + ζ (1)

)

+ b2 exp
(
p∗x − �∗t + ζ (2)

)

+ Mb1b2 exp
[(
p + p∗) x − (� + �∗) t

+ ζ (1) + ζ (2)
]
. (8)

Substituting into the bilinear forms [Eq. (6)] will yield

a1 = i (�+2kp)− p2

i (�+2kp)+ p2
, a2 = i (�∗+2kp∗)−(p∗)2

i (�∗+2kp∗)+(p∗)2
,

b1 = i� − p2

i� + p2
, b2 = i�∗ − (p∗)2

i�∗ + (p∗)2
,

M = (p∗� − p�∗)2 + [pp∗ (p − p∗)
]2

(p∗� − p�∗)2 + [pp∗ (p + p∗)]2
. (9)

In contrast to the single-mode case, the dispersion rela-
tion is now a polynomial of degree five (rather than
degree three),

− σρ2 = �
(
�2 + p4

) {
(� + 2kp)2 + p4

}

4p3
(
�2 + 2kp� + 2k2 p2 + p4

) . (10)

For k = 0, we have A = B and this whole analysis
then degenerates to a scenario equivalent to the single-
component case. Equation (2) simplifies to
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i At − Axx = L A, Lt = −2σ
(
|A|2

)
x
, (11)

which is equivalent to Eq. (1) except the parameter is
now2σ . The dispersion relationEq. (10) also reduces to
a cubic polynomial similar to results published earlier
[15].

2.2 The Lax pair formulation

It is widely believed that the integrability of nonlinear
evolution equations, the existence of an infinite num-
ber of conservation laws and the Lax pair are closely
related. It is thus highly valuable to find a Lax pair rep-
resentation of the system Eq. (2). This involves search-
ing for matricesU and V such that the partial differen-
tial equations

Rx = U · R, Rt = V · R
reduce to the original nonlinear system under the com-
patibility condition Rxt = Rtx or the associated zero-
curvature equation Ut − Vx + [U, V ] = 0, where the
commutator is defined as [U, V ] = UV − VU .

More precisely, the matrices

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

iλ
√

σ2 fi
2 f 2d

B
√

σ1 fi
2 f 2d

A −i fi
fd
L

0 0 0 −
√

σ2 fi
2 f 2d

B∗

0 0 0 −
√

σ1 fi
2 f 2d

A∗

−i 0 0 −iλ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V =

⎡
⎢⎢⎢⎢⎢⎢⎣

− i
2 fdλ2

√
σ2 fi
2 (i Bx − λB)

√
σ1 fi
2 (i Ax − λA) −i fi

2 fd

(
σ1 |A|2 + σ2 |B|2)

−
√

σ2 fi
2 B∗ i

2 fdλ2 0
√

σ2 fi
2

(
i B∗

x − λB∗)

−
√

σ1 fi
2 A∗ 0 i

2 fdλ2
√

σ1 fi
2

(
i A∗

x − λA∗)

0
√

σ2 fi
2 B

√
σ1 fi
2 A − i

2 fdλ2

⎤
⎥⎥⎥⎥⎥⎥⎦

are the appropriate choices to give the generalized sys-
tem

i At + fd Axx + fi L A = 0,

i Bt + fd Bxx + fi L B = 0,

Lt = (σ1AA∗ + σ2BB
∗)

x ,

where the constant fd determines the strength of dis-
persion, the constant fi determines the strength of the
nonlinear long wave–short wave interaction and the
constants σ1 and σ2 measure the relative weight of

this interaction between the short wave components.
As before, changes of variables can be made to nor-
malize both σ1 and σ2 .

While arbitrary coupling schemes do not guarantee
integrability, it is noteworthy that this generalized sys-
tem can be extended to any number of components,
essentially by replacing the scalar short wave function
in the single-component Lax pair [15] with a vector
field. Lax pairs are generally very important entities,
as they form the basis of many ingenious methods
for constructing solutions explicitly [20]. A particu-
lar selection of parameters, namely, fd = fi = −1,
σ1 = σ2 = −σ , will give the resonance equations
[Eq. (2)]. Although the Hirota formulation is sufficient
for the present work, the Lax pair mechanismwill form
the foundation for further theoretical development in
the future.

3 Rogue waves of the coupled long–short system

Althoughone should in principle analyze the dispersion
relation [Eq. (10)] for arbitrary complex wavenumber

p, it will be instructive to obtain the breather solution
for a purely imaginary value, namely

p = i p0, where p0 is a real number, (12)

since such a solution corresponds to a breather strictly
periodic in the x direction, commonly known as the
Akhmediev breather in the literature [21]. The asymp-
totic expansion for � in that case is
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� = p0
[
�0 + O

(
p20

)]
, where �0 satisfies

�5
0 + 4ki�4

0 − 4k2�3
0 − 4σρ2i�2

0

+ 8σρ2k�0 + 8σρ2k2i = 0. (13)

Performing now a long wave expansion (p0 → 0),
with the phase factors exp

(
ζ (n)

) = −1, n = 1, 2, will
yield rational expressions for f , g and h,

f = p20

{[
x + �0 − �∗

0

2
i t

]2
+
(

�0 + �∗
0

2

)2

t2 +
(

2

�0 + �∗
0

)2
}

+ O
(
p30

)
,

g = p20

⎧⎨
⎩

[
x + �0−�∗

0
2 i t

]2 +
(

�0+�∗
0

2

)2
t2 +

(
2

�0+�∗
0

)2

+ 2
|�0+2ki |2

[(
�0 − �∗

0 + 4ki
)
x +

((
�2

0 + (�∗
0

)2)
i − 2k

(
�0 − �∗

0

))
t − 2

]
⎫⎬
⎭

+ O
(
p30

)
,

h = p20

⎧⎨
⎩

[
x + �0−�∗

0
2 i t

]2 +
(

�0+�∗
0

2

)2
t2 +

(
2

�0+�∗
0

)2

+ 2
|�0|2

[(
�0 − �∗

0

)
x +

(
�2

0 + (�∗
0

)2)
i t − 2

]
⎫⎬
⎭

+ O
(
p30

)
. (14)

Consequently rational solutions are obtained as

A = ρ exp [i (kx − ωt)]⎧
⎪⎨
⎪⎩
1+

4
a2+(b+2k)2

[
(b+2k) i x+

(
a2−b2−2bk

)
i t−1

]

(x−bt)2+a2t2+ 1
a2

⎫
⎪⎬
⎪⎭

,

(15)

B = ρ

⎧
⎪⎨
⎪⎩
1 +

4
(a2+b2)

[
bix +

(
a2 − b2

)
i t − 1

]

(x − bt)2 + a2t2 + 1
a2

⎫
⎪⎬
⎪⎭

, (16)

L = 4

⎧
⎪⎨
⎪⎩

1

(x−bt)2+a2t2+ 1
a2

− 2 (x−bt)2[
(x−bt)2+a2t2+ 1

a2

]2

⎫
⎪⎬
⎪⎭

,

(17)

where a and b are the real and imaginary parts of the
complex angular frequency �0:

�0 = a + ib. (18)

Simple contour plots of such rogue waves for typical
values of the parameters exhibit displacements local-
ized in space (x) and time (t) (Fig. 1).

4 Amplitude of the rogue wave

4.1 Rogue waves of elevation and depression

The maximum amplitude of a rogue wave in an oth-
erwise relatively calm sea state is obviously a fac-
tor of interest in the maritime community, and also

in other physical contexts. Analytically this is also a
crucial issue as the knowledge gathered reveals valu-
able structural information concerning these localized
entities.

We focus on the exact solution [Eqs. (13, 15–18)] of
Eq. (2). The short wave components are studied first,
and one considers the turning points of the function
K (x, t),

K = |A|2
ρ2 where A is given by Eq. (15). (19)

At the point (x, t) = (0, 0), one has

∂K

∂x

∣∣∣∣
(0,0)

=0,
∂K

∂t

∣∣∣∣
(0,0)

=0 with K (0, 0)=
[
1− 4

1+( b+2k
a

)2
]2

.

The second-order derivatives at (0, 0) are

∂2K

∂x2

∣∣∣∣
(0,0)

=
48a6

[
−1 + ( b+2k

a

)2]

[
a2 + (b + 2k)2

]2 ,

[
∂2K

∂x2
∂2K

∂t2
−
(

∂2K

∂x∂t

)2
]∣∣∣∣∣

(0,0)
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= 768a14
[
a2+(b+2k)2

]4

⎧⎨
⎩

[(
b+2k

a

)2

− 5

3

]2
− 16

9

⎫⎬
⎭ .

There are thus three possible scenarios:

(i) For 0 ≤ ( b+2k
a

)2
< 1

3 , (0, 0) is a local max-
imum point with |A| ranging from 3ρ to 2ρ,
where again ρ is the amplitude of the background
wave;

(ii) For 1
3 <

( b+2k
a

)2
< 3, (0, 0) is a saddle point with

|A| ranging from 2ρ to 0;

(iii) For 3 <
( b+2k

a

)2
, (0, 0) is a local minimum point

with |A| ranging from 0 to ρ.

By setting k = 0 in the above analysis, we can arrive
at similar results for |B|.

As the integral
∫
Ldx over the entire domain must

be conserved for localized initial conditions, there
must be ‘elevations’ above and ‘depressions’ below
the (zero) mean level. This is verified for the case of
a stationary plane wave background. The long rogue
wave L , Eq. (17), attains a maximum value of 4a2

at (0,0), and a minimum at the points
(
±

√
3
a , 0

)
with

L
(
±

√
3
a , 0

)
= − a2

2 , substantiating the fact that L goes

both above and below the (zero) mean level (Fig. 1c).
These analytic formulations can help to explain the
transformation of the wave profiles in the next sec-
tion [17].

4.2 Comparison with the case of a single short wave

It is instructive to compare the present results with that
of a single shortwave on a stationary backgroundwhich
is studied earlier in the literature. The system Eq. (1)
has rogue wave mode [15]:

S = ρ0

⎧
⎪⎪⎨
⎪⎪⎩
1 +

−4 + 2x
(
�00 − �∗

00

)+ 2i t
[
�2

00 + (�∗
00

)2]

|�00|2
[(

x + i t
�00−�∗

00
2

)2 +
(

�00+�∗
00

2

)2
t2 +

(
2

�00+�∗
00

)2]

⎫
⎪⎪⎬
⎪⎪⎭

(20)

where �3
00 = 2iσρ2

0 , i.e., �00 =
∣∣∣

3
√
2σρ2

0

2

(
±√

3 + i
)

or − 3
√
2σρ2

0 i . The latter is rejected as �00 cannot be
purely imaginary for a purely imaginary wavenum-
ber, otherwise the solution is singular. Putting �00 =
μ
2

(
±√

3 + i
)
where μ = 3

√
2σρ2

0 into S, the intensity

of the wave will be given by

K0 = |S|2
ρ2
0

=

(
9μ8t4 − 18μ7xt3 + 27μ6t2x2 − 18μ5t x3 − 12μ4t2

+9μ4x4 + 120μ3t x − 12μ2x2 + 64

)

(
3μ4t2 − 3μ3t x + 3μ2x2 + 4

)2 .

(21)

By elementary algebra, as the expression(
9μ8t4 − 18μ7xt3 + 27μ6t2x2 − 18μ5t x3

− 12μ4t2 + 9μ4x4 + 120μ3t x − 12μ2x2 + 64
)

− 4
(
3μ4t2 − 3μ3t x + 3μ2x2 + 4

)2

= −27μ2
[(

μ3t2 − μ2t x
)2

+
(
μ2t x − μx2

)2 + (2μt − 2x)2 + μ4t2x2
]

is negative, the upper bound of K0 is thus 4, which is
attained at (x, t) = (0, 0).

Hence, the amplitude of the short wave S will be just
two times that of the background plane wave (upper
bound of K0 of Eq. (21) being 4).

4.3 Comparison with the nonlinear Schrödinger
equation

The Peregrine breather of the nonlinear Schrödinger
equation has been widely used as a simple model of a
rogue wave, and the maximum amplitude is three times
that of the background plane wave [21]. For a long–
short system with one single short wave, this amplifi-
cation ratio is two. For a long–short system with two
short waves, the amplification ratio can be larger than

two but will be shown here to be strictly less than three.
To establish this fact analytically, it is sufficient to prove
that, for Eqs. (15–18), b �= 0 and b �= −2k. Hence, we
can deduce that both |A| and |B| cannot attain 3ρ at
(x, t) = (0, 0).

• b is nonzero: Assume the contrary holds, i.e.,
�0 = a (real), the dispersion relation then becomes
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Fig. 1 Contour plots of a
the norm of the short wave
component A, b the norm of
the short wave component
B and c the long wave
component L , of the exact
solutions Eqs. (15–17) on
the x − t plane; d a
three-dimensional plot of
the short wave component
|B|; values for the
parameters:
ρ = 1, σ = 1, k = 1, �0 =
1.15 + 0.569i . A is a dark
rogue wave and B is a
bright rogue wave with a
maximum value greater
than 2ρ. L is a bright rogue
wave with two minimum
points with negative values

(a) (b)                

(c) (d)                

a5 − 4k2a3 + 8σρ2ka = 0 and 4ka4 − 4σρ2a2 +
8σρ2k2 = 0. Eliminating σ will give a contra-
diction

(
a2 + k2

)2 + 7k4 = 0, and hence, b is
nonzero.

• b �= −2k: Assume the contrary holds, i.e.,
b = −2k, the dispersion relation then becomes
a5 − 12k2a3 − 8σρ2ka = 0 and −6ka4 +(
8k3 − 4σρ2

)
a2 + 8σρ2k2 = 0. Straightforward

algebra will give

a2 = 40k2σρ2

−64k3 − 4σρ2 ,

and thus σk must be negative. Back substitution
yields

(
σρ2 + 4k3

)2 − 7

2
σρ2k3 = 0,

which is not possible if σk < 0, and hence b �=
−2k.

4.4 Nonlinear coupling enhances the amplitude of the
rogue wave

A surprising feature of the nonlinear dynamics of this
system is the enhancement of the maximum displace-
ment through coupling. More precisely, the amplitude
of the rogue wave of Eq. (2), the system with multi-
ple short waves, can be larger than the corresponding
mode in the configuration with just one short wave. As
a concrete example, consider ρ = 1, σ = 1, k = 1,
�0 = 1.15+0.569i (Fig. 1b). From the analysis above,( b
a

)2 = 0.245 < 1
3 , and hence, (0, 0) is a maximum

point with |B (0, 0)| = 2.22 > 2ρ = 2. This is greater
than the maximum value that the single-component
model can achieve.

5 Wave profile of the rogue wave mode

Borrowing terminology fromoptical solitons [2], eleva-
tion/depression rogue waves will be labeled as ‘bright’
and ‘dark’, respectively, in the discussion below.
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5.1 Profile changes on varying the envelope
wavenumber k

For a long–short system with one short wave [Eq. (1)],
the rogue wave is always an elevation with a peak
value of 2ρ if the background is of zero frequency and
of magnitude ρ. For a background with a finite fre-
quency, a depression or ‘dark’ rogue wave can occur.
In terms of varying this frequency parameter, a regime
first occurs where the peak is split into two smaller
units. The two valleys migrate closer to the original
location of single maximum. Eventually the two val-
leys merge and form the depression/dark rogue wave
[17].

The goals of this section are (a) to provide a theo-
retical description of this splitting and merging process
in the coupled system Eq. (2) quantitatively and (b)
to show that the dynamics of multiple waveguides is
even richer. For point (a), from the analysis of Sect. 4,
the point (0, 0) is a local maximum of |A| for suffi-
ciently small k, implying the occurrence of an ordinary
rogue wave mode (Fig. 2a). For larger values of k, for
example k = 0.25 and �0 = 1.34 + 0.652i , one then

has 1
3 <

( b+2k
a

)2 = 0.738 < 3 and this maximum
splits into two small units which move away from the
origin. At the same time, the ‘valleys’ start to migrate
toward the origin, creating a saddle point effect. For
still larger values of k (k = 0.4), a four-petal type

rogue wave is created with
( b+2k

a

)2 = 1.16 (Fig. 2b).
Two maxima and two minima are observed. When k
reaches about 0.5 (more precisely

( b+2k
a

)2 = 1.56 < 3
with �0 = 1.26 + 0.575i), the two depression petals
join together to form a double-depression rogue wave.
Finally, the two valleys actually merge and become a
single depression/dark rogue wave mode, turning (0,
0) into a minimum point. This is illustrated by Fig. 1a,
when k reaches 1 with �0 = 1.15 + 0.569i and thus( b+2k

a

)2 = 4.98 > 3. The analysis of Sect. 4 shows
that the short wave A has become a dark rogue wave
with the minimum point at (0, 0).

In all of the above cases, B and L remain essentially
as bright rogue waves. The solution for k = 1 is illus-
trated in Fig. 1. A similar trend can be observed when
ρ = 1, σ = −1, with B changing from a bright rogue
wave to a dark rogue wave while A stays essentially as
a bright rogue wave.

(a)

(b)

Fig. 2 Contour plots of the norm of the short wave compo-
nent A for ρ = 1, σ = 1, and a k = 0, �0 = 1.37 + 0.794i ;
b k = 0.4, �0 = 1.30 + 0.597i . The peak at (0,0) splits as k
increases

5.2 Exotic combination of modes

Rogue wave modes of the short wave components A
and B can have various exotic combinations: bright–
bright [Fig. 2a and the corresponding diagram for
B (not shown)], dark–dark (Fig. 3a, b), bright–dark
(Fig. 3c, d) and dark–bright (Fig. 1a, b).

Obviously, the form of the rogue wave mode
depends on the parameters ρ, σ, k and the value of �0

from the dispersion relation. With given values of ρ, σ

and k, different roots of �0 from the quintic dispersion
relation can give different types of solutions. In Fig. 1a,
b, A is a dark rogue wave and B is a bright rogue wave;
whereas in Fig. 3a, b, both A and B are dark rogue
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Fig. 3 Contour plots of a
the norm of the short wave
component A and b the
norm of the short wave
component B for
ρ = 1, σ = 1, k = 1, �0 =
0.637 − 1.13i , which is a
dark-dark combination.
Contour plots of c the norm
of the short wave
component A and d the
norm of the short wave
component B for
ρ = 1, σ = −1, k =
1, �0 = 0.894 − 2.12i ,
which is a bright–dark
combination

(a) (b)

(c) (d)

waves. The values of ρ, σ and k are the same in these
two cases but different choices of�0 have been applied.

6 Modulation instability, rogue waves
and numerical simulations

Finally it is valuable to investigate the relationship
between modulation instability (MI) and the evolution
of rogue wave modes with perturbed initial conditions.
For MI, one starts with the plane (or continuous) wave
solution of Eq. (2) (L0 = a real constant):

A = ρ exp
[
ikx − i

(
L0 − k2

)
t
]
,

B = ρ exp (−i L0t) , L = L0.

Imposing sinusoidal perturbations and isolating modal
dependence of

exp [ir x − ist]

will give a dispersion relation

s5 + 4krs4 +
(
−2r4 + 4k2r2

)
s3

+
(
−4kr5 + 4σρ2r3

)
s2

+
(
8σρ2kr4 − 4k2r6 + r8

)
s

− 4σρ2r7 + 8σρ2k2r5 = 0. (22)

For a realwavenumber r , complex roots for angular fre-
quency s will imply instability. In principle this analy-
sis needs to be performed for all r , assuming that σ, ρ

and k are given. However, from past experience, a dis-
turbance of long wavelength (0 < r << 1) tends
to constitute an unstable regime. With that assump-
tion, the speed c = s

r for small r will satisfy the
equation

0 = 
 (c) = c5 + 4kc4 + 4k2c3 + 4σρ2c2

+ 8σρ2kc + 8σρ2k2. (23)

Remarkably, this is identical to Eq. (13) if one makes
the transformation

�0 = ic. (24)
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Fig. 4 An example of
robust occurrence of rogue
waves: initial noise
disturbances do not
essentially affect the
‘growth phase’ of the rogue
wave: ρ = 0.25, σ = 1, k =
1, �0 = 0.436 + 0.243i

In hindsight, these equations provide a quantitative
correlation between modulation instability and the
occurrence of rogue waves. In fact, the formulations
of Eq. (8) and Eq. (12) show that the speed of a
breather should be given by p0�0

i p0
which is equal

to c by Eq. (24). The condition for the existence
of a rogue wave is thus identical to the criterion
for modulation instability for disturbances of long
wavelength.

To substantiate these ideas, numerical simulations
have been performed to test whether the occurrence
of rogue wave is a robust process. As there are sev-
eral parameters present and the MI analysis has only
been implemented for long wavelength disturbance,
we shall only present a few representative cases. The
exact solution perturbed by a localized noise with a
maximum of 0.1, in a background of magnitude one
(ρ = 1), was used as the initial condition. Numerical
simulations were carried out with spectral discretiza-
tion in the spatial domain and a fourth-order Runge–
Kutta scheme in the temporal domain. The size of
the spatial domain was chosen to be from −400 to
+400 in both cases presented here. For certain favor-
able parameter regimes, inherently occurring noise in
the surrounding does not essentially affect the ‘growth
phase’ of the rogue wave (Fig. 4). However, in other
unfavorable parameter regimes, this ‘growth phase’ is
significantly distorted by the perturbations in the ini-
tial conditions (Fig. 5), and other instabilities of the
system overwhelm the occurrence of the rogue wave
mode.

7 Multi-component system

The analysis of the previous sections can be generalized
to a multi-component long wave–short wave model
with three or more short wave components. The short
wave envelopes S j , j = 1, 2, . . . n and the generalized
long wave Q will then satisfy

i
(
S j
)
t − (S j

)
xx = QSj , for j = 1, . . . , n,

Qt = −
⎛
⎝

n∑
j=1

σ j
∣∣S j
∣∣2
⎞
⎠

x

, (25)

where σ j measures the nonlinearity and can be nor-
malized numerically to positive or negative unity by
scaling the short wave envelopes. An intriguing exer-
cise in nonlinear dynamics then is to consider the case
where the signs of the intensity terms take up vari-
ous combinations of +1 and −1. However, for sim-
plicity, similar to what we have accomplished in the
case discussed earlier for n = 2, we restrict attention
to σ j = σ, j = 1 . . . n, and will study other combina-
tions in the future.

An elegant feature of Eq. (25) is that the intensity of
each component summed over the entire spatial domain
is conserved [22]:∫ ∞

−∞

∣∣∣S j

∣∣∣
2
dx = constant.

Dynamics and properties of solitons in such longwave–
shortwave systems in two spatial dimensions have been
studied in the literature [22,23], where the Hirota bilin-
ear transform is also employed. Painlevé analysis has
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Fig. 5 An example of the
unstable nature of rogue
waves: initial noise
disturbances can
significantly distort the
‘growth phase’ of the rogue
wave: ρ = 1, σ = 1, k =
1.25, �0 = 0.552 − 1.430i

been performed to confirm the ‘integrability’ of the sys-
tem [22]. Head-on and overtaking collisions, as well as
energy distribution properties, are investigated [22,23].
Mixed (bright–dark) families of solitons are derived
theoretically, including cases where the coefficients of
nonlinearity are not of a uniform sign [24]. In terms of
rogue waves, rational solutions of Eq. (25) have been
derived [22,25], and the geometry of the wavefront
in two spatial dimensions has been elucidated. Here
we shall further enhance the theoretical understanding
by performing the modulation instability analysis. To
highlight the nonlinear dynamics with minimal alge-
braic complexity, the special case with n = 3 will be
discussed:

i
(
S j
)
t − (S j

)
xx = QSj , for j = 1, 2, 3,

Qt = −σ

⎛
⎝

3∑
j=1

∣∣∣S j

∣∣∣
2

⎞
⎠

x

. (26)

The formulation and methodology are similar to
those described in Sects. 2 and 3. Two arbitrary
wavenumbers for the background plane waves can be
allowed in general but the symmetrical case is sufficient
to illustrate the features of coupling. Along this line of
reasoning, the rogue waves for n = 3 are given by

S1 = ρ exp
[
i
(
kx + k2t

)]
⎧
⎨
⎩1 +

4

(a′)2+(b′+2k)2

[
(b′+2k)i x+((a′)2−(b′)2−2b′k

)
i t−1

]
[
(x−b′t)2+(a′)2t2+ 1

(a′)2
]

⎫
⎬
⎭ ,

(27)

S2 = ρ

⎧
⎨
⎩1 +

4
(a′)2+(b′)2

[
b′i x + ((a′)2 − (b′)2

)
i t − 1

]
[
(x − b′t)2 + (a′)2 t2 + 1

(a′)2
]

⎫
⎬
⎭ ,

(28)
S3 = ρ exp

[
i
(−kx + k2t

)]

×
⎧
⎨
⎩1 +

4

(a′)2+(b′−2k)2

[
(b′−2k)i x+((a′)2−(b′)2+2b′k

)
i t−1

]
[
(x−b′t)2+(a′)2t2+ 1

(a′)2
]

⎫
⎬
⎭ ,

(29)

Q = 4[
(x − b′t)2 + (a′)2 t2 + 1

(a′)2
]

− 8
(
x − b′t

)2
[
(x − b′t)2 + (a′)2 t2 + 1

(a′)2
]2 , (30)

where �′
0 = a′ + ib′ and �′

0 satisfies the dispersion
relation,(
�′

0

)7 + 8k2
(
�′

0

)5 − 6σρ2i
(
�′

0

)4

+16k4
(
�′

0

)3 − 32σρ2k4i = 0. (31)

For a system with n short wave envelopes, this dis-
persion relation will be a polynomial of degree 2n+ 1.
Properties similar to those discussed in Sects. 4 through
6 can be observed:

• Coupling can enhance the amplitude of the rogue
waves
As discussed in Sect. 4, the peak of any bright
rogue wave for system (2) must be less than 3ρ for
the short wave components (ρ = background plane
wave). In the presence of a third short wave com-
ponent, the maximum amplitude can be three times
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Fig. 6 Contour plots of the
norm of the short wave
component a S1 (dark), b S2
(dark), c S3 (bright) and d
contour plot of the long
wave component Q (bright),
of the exact solutions
Eqs. (27–30) on the x − t
plane; values for the
parameters:
ρ = 1, σ = 1, k = 1, �′

0 =
−0.883 + 2.1i

(a) (b)

(c) (d)

the background amplitude ρ for one of the short
wave components. As an illustrative example, for
σ = 0.1, ρ = 1, k = 10, the maximum displace-
ment of |S3| is 3, whereas the other components
have insignificant variations in amplitude.

• Multiple rogue wave modes
The degree of the dispersion relation Eq. (31) is
higher than that of the dispersion relation Eq. (13)
for system (2) by two. In certain parameter regimes,
three distinct sets of rogue wave solutions will be
possible. A typical case is illustrated in Figs. 6, 7
and 8: S3 can be a bright, four-petal type or dark
rogue wave depending on the value of the root �′

0.
• Connection with modulation instability
The connection between existence of rogue waves
and the onset of modulation instability can be
drawn. Consider the plane wave solution of system
(26):

S1 = ρ exp
[
i
(
kx + k2t

)]
, S2 = ρ,

S3 = ρ exp
[
i
(
−kx + k2t

)]
, Q = 0.

Imposing sinusoidal perturbations of the form
exp[i(Kx − Wt)] to the plane wave solution, the
angular frequency of these disturbances is given by

W 7 − (3K 4 + 8k2K 2)W 5 + 6σρ2K 3W 4

+ (
3K 8 + 16k4K 4)W 3

− 12σρ2K 7W 2+(−K 12+8k2K 10−16k4K 8)W
+ σρ2 (6K 11 − 32k2K 9 + 32k4K 7) = 0.

With c′ = W
K , this governing equation for the angu-

lar frequency becomes
(
c′)7 − 8k2

(
c′)5 + 6σρ2 (c′)4 + 16k4

(
c′)3

+ 32σρ2k4 = 0 (32)

in the limit for vanishingly small K . This kind
of instability for complex roots of Eq. (32), with
special restriction to disturbances with vanishingly
small wavenumbers, has been termed baseband
modulation instability. This instability was demon-
strated to be related to the occurrence of rogue
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Fig. 7 Contour plots of the
norm of the short wave
component a S1 (dark), b S2
(bright), c S3 (four-petal)
and d contour plot of the
long wave component Q
(bright), of the exact
solutions Eqs. (27–30) on
the x − t plane; values for
the parameters:
ρ = 1, σ = 1, k = 1, �′

0 =
−0.973 + 0.504i

(a) (b)

(c) (d)

waves [26]. By the transformation �′
0 = ic′,

Eq. (31) is mapped to Eq. (32). In other words, the
existence condition of rogue waves [Eqs. (27–30)]
is equivalent to the condition for long wavelength
instability. Physically, baseband modulation insta-
bility is necessary for rogue waves to occur in this
coupled system.

We have thus utilized the cases with two and three
shortwave envelopes to illustrate a very rich and elegant
dynamical system of long wave–short wave resonance
with n components.

8 Conclusions

Rogue waves are unexpectedly large displacements
fromanotherwise calmbackground andhavegenerated
intense scientific interest as such modes occur in many
physical contexts [6]. Roguewaves for a nonlinear cou-
pled system Eq. (2) of long wave–short wave inter-
actions are obtained analytically as algebraic modes

localized in both space and time. Besides document-
ing an analytical solution to a nonlinear evolution sys-
tem, the results and techniques of the present work
are potentially applicable in fields beyond the prob-
lem of long wave–short wave resonance through these
perspectives:

• Instead of the widely used Darboux transforma-
tion, rogue waves here are obtained as a long
wave limit of a breather/multi-soliton expression
obtained from the Hirota bilinear transformation
[15]. As the Hirota bilinear forms for most inte-
grable equations are known [22–25], this opens an
alternative and fruitful path for calculating rogue
wave modes.

• A remarkable property of nonlinear dynamics in
multiple waveguides is demonstrated, by show-
ing that the maximum displacements of the rogue
waves in a system with multiple short waves can
be larger than that of the rogue wave mode in a
configuration with just one short wave. Multiple
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Fig. 8 Contour plots of the
norm of the short wave
component a S1
(four-petal), b S2 (dark),
c S3 (dark) and d contour
plot of the long wave
component Q(bright), of the
exact solutions Eqs. (27–30)
on the x − t plane; values
for the parameters:
ρ = 1, σ = 1, k = 1, �′

0 =
−0.661 − 1.16i

(a) (b)

(c) (d)

configurations of rogue wave modes for a fixed set
of input parameters are also possible [27].

• Rogue waves of a nonlinear evolution system can
occur as an elevation (above the mean level) or a
depression (below the mean level), depending on
the values of the relevant parameters. An analytical
description of this transition is offered here, start-
ing from the splitting of a peak, through the migra-
tion of the adjacent valleys, and finally the merger
of these valleys to form a depression rogue wave
[27,28].

• The connection between the existence criterion of
rogue waves and the onset of baseband modulation
instability is confirmed [26].

• Exotic combinations of modes, e.g., bright–dark
or dark–dark rogue waves are calculated in closed
form.

However, there are still other challenges ahead. The-
oretically, the Lax pair of the coupled system has been
formulated, but investigations of the full analytical

structures have not been completed. Physically, stud-
ies of higher-order rogue wave modes have been ini-
tiated [25], but computational studies of their stability
have not been undertaken [29]. A comprehensive study
on the structural stability of these modes will yield
further information on this dynamical system. Fur-
thermore, the interactions between solitons and rogue
waveswill constitute an intriguing nonlinear dynamical
system [22,30,31]. These and other issues await future
efforts.
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