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Abstract In most of the existing literature, distur-
bance observer theory has been developed only for con-
stant disturbance,while in the presentwork, by defining
the disturbance as a state observer, we are able to track
and reject disturbances varyingwith time. This is possi-
blewith only joint position variables unlike otherworks
where derivative of position variables is also needed.
In the novel technique proposed by us, the standard
disturbance observer output is treated as a part of the
state variable of a nonlinear system. The disturbance
estimation error is treated as a white Gaussian noise
(WGN) independent of the WGN in the dynamics of
the robot. The extended Kalman filter (EKF) is then
applied based on noisy measurements of the position
to obtain estimates of the angular coordinate and the
disturbance. Superior estimates of the disturbance are
possible because we are first using the nonlinear distur-
bance observer to produce a new state and then we are
applying the EKF to remove the residual noise in the
disturbance estimate. Stability and convergence analy-
sis of the EKF is established using linearization of the
state equations around the estimated state. Using the
Lyapunov method, we also establish convergence of
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the disturbance estimation error to zero. Finally, robust-
ness of the EKF to uncertainty is established by lin-
earizing the dynamical equation w.r.t the parametric
uncertainty and the dynamics w.r.t the state estimation
error, thereby yielding an upper bound for the error
variance in terms of the norm square of the parametric
uncertainty. The proposed technique is applied to an
Omni®Robot Manipulator. The results are encourag-
ing and demonstrate better disturbance rejection abil-
ity of the proposed scheme as compared to other tech-
niques available in the literature.

Keywords Extended Kalman filter (EKF) · Dis-
turbance observer with EKF (DEKF) · Robotic
manipulator · White Gaussian noise (WGN)

1 Introduction

Positional accuracy and trajectory control of the sur-
gical tools at the end effector of the manipulator are
crucial for medical robot applications [1,2]. However,
this highly nonlinear system is always affected by dif-
ferent types of internal and external disturbances like
environmental forces [3,4]. Such disturbances, when
unaccounted for, result in the instability and perfor-
mance degradation of the closed loop system. There-
fore, several methods have been developed for stability
analysis and robust control design of systems with dis-
turbances over the past several years. Various effective
techniques and their applications have been proposed,
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and their properties such as stability have been rigor-
ously established. An exhaustive survey is available in
[5].

In [6], a disturbance observer has been proposed
which dynamically estimates the disturbances based
on instantaneous angular measurement of the posi-
tion and velocity [q(t), q̇(t)]. However, if the measure-
ments are corrupted by noise, this procedure will fail.
Also most of the industrial robots are equipped with
position encoders only. So the available feedback sig-
nals are only the angular positions. In this case, the
EKF proposed in [7] has to be used. Further in [7], the
authors model the environment force (disturbance) as
a constant direct current (dc) signal and treating it as a
parameter, estimate it along with the state [q(t), q̇(t)]
using the EKF. This method may not perform well if
the disturbance is rapidly time-varying because it takes
a finite settling time for the EKF estimate to converge
close to the true state. Further in both [6] and [7], it is
assumed that the rate of change of disturbance is neg-
ligible while we are proposing a technique applicable
to situations in which the disturbance may be rapidly
varying with time.

Hence, in the present work the shortcomings of both
the works are addressed by assuming the disturbance
estimate d̂(t) to be a state variable like q(t), q̇(t) and
the disturbance itself to be such that di (t) − ̂di (t) can
be modeled as a WGN of known variance.

In this work, the EKF is applied to the enlarged sys-
tem consisting of the robot dynamics and disturbance
observer and thereforeweproduce superior disturbance
estimates when both process noise and measurement
noise are accounted for.

If the disturbance consists of a nonrandom compo-
nent (di (t)) plus a small random component (w̃(t)),
then the disturbance observer will be able to estimate
the nonrandomcomponentwell andwe denote this esti-
mate by ̂di (t). Then, ε = di (t) − ̂di (t) will be pure
noise and it may be assumed to be WGN.

Thus, in this work the EKF estimate of ̂di (t) is sub-
tracted from di (t) + w̃(t), where ̂di (t) satisfies a state
variable equation involving the other states q(t), q̇(t)
and is driven by WGN.

Wehave assumed an appropriate power spectral den-
sity for WGN and developed an EKF with disturbance
observer as part of the state [q(t), q̇(t), ̂di (t)].

On the other hand, in [7] the model used is ḋi (t) =
WGN or di (t) = Brownian motion which is unre-
alistic since the variance of Brownian motion keeps

increasing with time. In [7], the external disturbance
has been modeled as a constant force or equivalently
as an unknown parameter vector whose differential
is therefore zero+ a differential of Brownian motion.
We have considered a more general model for the dis-
turbance with unknown amplitudes, frequencies and
phases (AFP). The case of dc disturbance is a special
case of our model.

Finally, coming to the convergence aspect of the
algorithm [7], a generalized active state observer is
suggested which is based on replacing the Kalman gain
matrix by an arbitrarymatrix and then computing, using
the state equation and the state observer equations, a
stochastic differential equation for the state estima-
tion error and proving boundedness of this error energy
asymptotically.

We have on the other hand considered the full non-
linear state variable equations and state observer using
EKF and have derived an approximate stochastic dif-
ferential equation for the state estimation error by lin-
earizing the nonlinear state driving force as well as the
measurement function about the state estimate.We then
derive anupper bound for the stochasticLyapunovaver-
age energy and using some techniques of linear algebra,
obtain a Gronwall inequality for the mean square error.
As t → ∞, this gives an upper bound for this error
energy in terms of the state and measurement noise
energy and an assumed lower bound on the Lyapunov
matrix.

The proposed method works well even for nonlinear
state measurement in contrast to [7].

Adaptive controllers like [1–6,8–10] are subopti-
mal. The error does not converge to zero, but rather
fluctuates about zero in the limit. EKF is a direct
approximation to the optimal Kushner equation which
is the minimum mean square error (MMSE) filter. So
EKF will produce better results than adaptive methods
although computational cost will be higher. A discrete
time Lyapunov energy difference is derived between
successive error samples in [11]. The conditional
expectations of the Lyapunov energy at a given time
sample given the previous error sample is evaluated and
is shown apart from multiplicative and additive con-
stants to be smaller than the energy at the previous time
instant, thus settling the stability issue. Our analysis of
the stability of the continuous time EKF is directed
toward linearizing the dynamics of the state evolution
and using that to establish conditions under which the
expected value of the Lyapunov energy will decrease
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with time. We make use of Ito’s formulation for this
purpose unlike [11]. Since we directly work with the
continuous time dynamical system rather than its dis-
cretized version, the proposed method is less crude.

In [12], analysis of robustness is applied to the spe-
cific motor model chosen. Our stability analysis is
based on the most general EKF for the most general
nonlinear stochastic differential equation (SDE).

In [13], three new methods are discussed for lin-
earization of EKF.

In summary, the proposed approach offers the fol-
lowing contributions compared to the previous work in
the literature:

1. A new disturbance observer is proposed which
needs only measurable joint signals unlike [6]
which also needs measurable velocity signals.

2. A new disturbance observer is proposed where dis-
turbance estimation error is equal to WGN and this
error can be minimized by treating the disturbance
observer as extra state variables and applying the
EKF to these extra state variables without any com-
putational cost.

3. If joint positions are measured with noise, direct
implementation of disturbance observer would not
work because measurement noise is not differen-
tiable so a new technique “DO with EKF” (DEKF)
is proposedwith estimated disturbance as state vari-
able.

4. d(t) − d̂i (t) is treated as WGN in the state model
for [q(t), q̇(t), ̂di (t)], and this enables us to con-
struct the estimate of the disturbance observer using
EKF. This works even for time-varying distur-
bance (di (t)). The analysis for the extended active
observer (EAOB) in [7] assumes a dc disturbance,
but can also be applied for time-varying disturbance
like random walks, but our method may work bet-
ter because a two-stage filter is used: first a DO and
then an EKF.

5. We choose a Lyapunov matrix V and obtain an
inequality for d

dt E[e(t)T V e(t)], where e(t) is the
disturbance estimation error. Using this, we derive
a Gronwall inequality for E[‖e(t)‖2] which con-
verges to an upper bound.

6. This justifies the construction of the disturbance
observer with disturbance estimate as a separate
state variable, and it must be estimated using EKF.

7. Robust performance for uncertainty θ(t) is also
analyzed for the proposed technique, and it is

proved that the proposed technique is robust for
any type of uncertainty.

The remaining part of the paper is organized as fol-
lows: The dynamic model of a robotic manipulator
is proposed with disturbances in Sect. 2. In Sect. 3,
a new disturbance observer is proposed based on the
dynamic model. This will be followed by presenting
the proposed extended Kalman filter with disturbance
observer (DEKF) in Sect. 4. In Sect. 5, the stability and
convergence analysis is discussed. In Sect. 6, robust-
ness for uncertainty is analyzed. Section 7 details the
experimental setup, procedure and results. Section 8
provides observations and conclusions.

2 Problem formulation

The dynamic model of a robotic manipulator without
disturbance can be represented by

M(q)q̈ + N(q, q̇) = τ (t) (1)

The dynamic model of a robotic manipulator with dis-
turbance can be represented by

M(q)q̈ + N(q, q̇) = τ (t) + di (t) + w̃(t) (2)

as shown in Fig. 1. Here di (t) is the nonrandom com-
ponent of the disturbance and w̃(t) is random compo-
nent of the disturbance present in the plant. τ (t) is the
control signal torque. M(q) is the inertia matrix, and
N(q, q̇) is the vector of Coriolis, centrifugal forces and
the gravity vector.

Here τ (t)is generated fromadesired trajectoryqd(t)
using inverse dynamics, state error feedback and dis-
turbance component, i.e.,

τ(t) = M(qd)
(
q̈d + Kp(qd − q̂

)+ Kd

(
q̇d − ˆ̇q

)

+N (qd , q̇) − η̂t

Here q(t), q̇(t), q̈(t) is joint’s position, velocity and
acceleration, respectively.

Here η̂(t) is an estimate of the disturbance di (t). Fig-
ure 1 takes into account the EKF and DO in the torque
generation. The DEKF disturbance estimate has been
subtracted from the dynamics. However, we shall, to
startwith, assume τ(t) to be just the torquegenerated by
inverse dynamics, i.e., τ(t) = M(qd)q̈d + N (qd , q̇d)
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Fig. 1 Block diagram Inverse dynamics (computation), plant
(forward dynamics) and DEKF

because we are yet to design the EKF and so (q̂, ˆ̇q, η̂)

are as yet not available to us.
If ε(t) = di (t) − ̂di (t)= WGN, then the extended

state model is

M(q)q̈ + N(q, q̇) = τ (t) + ̂di (t) + ε(t) + w̃(t)
(3)

Herew(t) = ε(t)+w̃(t) isWGNwith spectral density
σ 2

w = σ 2
ε + σ 2

w̃. Thus, if B(t) is Brownian motion

w(t) = σw

dB(t)

dt
(4)

So from (3)

M(q)q̈ + N(q, q̇) = τ (t) + ̂di (t) + w(t) (5)

If ̂di (t) is projection of di (t) on its past, then di (t)−
̂di (t) is WGN by innovation process theory [14–16] .
Thus, we can model

ε(t) = di (t) − ̂di (t) = w(t) − w̃(t) = WGN . (6)

Specifically, if

̂di (t + δt) = E[di (t + δt)|dτ, τ ≤ t]

then as per orthogonality property of conditional expec-
tation [16]:

E[(di (t + δt) − ̂di (t + δt)) f (di (τ ), τ ≤ t)] = 0

which means that (di (t + δt)− ̂di (t + δt)) is uncorre-
lated with any Borel function [17] of the past [dτ, τ ≤
t]. So the performance of the controller τ (t) depends
on the accurate estimation of di (t). In the majority of
current research [6], ̂di (t) is estimated as observer with
measurable q and q̇.

3 Nonlinear disturbance observer (NDO)

The basic idea is the design of a new observer assuming
only joint position (q(t)) measurements are available
instead of q(t) and q̇(t) as reported in [1–3,6]. Since
(2) can be written as

di (t) = M(q)q̈ + N(q, q̇) − τ (t) − w̃(t) (7)

so that ̂di (t) increases when ̂di (t) < di (t) and di (t)
decreases when ̂di (t) > di (t), a NDO is proposed as:

˙̂di (t) = −L(q)(̂di (t) − di (t) − w̃(t)) (8)

From (7)

˙̂di (t) = − L(q)(̂di (t)) + L(q)(M(q)q̈)

+ L(q)((N(q, q̇) − τ (t)) (9)

Here L(q) is the observer gainmatrix and q̈ signal is not
available. Sowehave to propose amodifieddisturbance
observer. For this purpose, the auxiliary variable dz(t)
is proposed as the solution to the following differential
equation:

˙̂dz(t) ≡ −L(q)(̂di (t)) + 0 + L(q)(N(q, q̇) − τ(t))
(10)

= −L(q)(̂dz(t) + p(q̇)) + L(q)(N(q, q̇) − τ(t))
(11)

Here

p ≡ M(q)q̈ (12)

From (10) and (11),
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Disturbance estimator as a state observer 2813

̂di (t) = ̂dz(t) + p(q̇) (13)

⇒ ˙̂di (t) = ˙̂dz(t) + p′(q̇)q̈ (14)

Here the construction of DO depends only on measure-
ment of q(t) and q̇(t) and not on q̈(t).

Eqs. (9)–(10)

˙̂di (t) − ˙̂dz(t) = L(q)M(q)q̈ (15)

From (14) and (15),

L(q)M(q)q̈ = ( p′(q̇))q̈ (16)

⇒ L(q) = p′(q̇)M−1(q) (17)

⇒ p′(q̇) = L(q)M(q) (18)

where the function p(q̇) in the observer (11) and (13)
is chosen as

p(q̇) = c ∗ q̇ (19)

Here c is a constant matrix and then

p′(q̇) = c and L(q) = cM(q)−1 (20)

Also from (8) and (6),

˙̂di (t) = L(q(t)) × w(t) (21)

Expression (21) is a new finding not reported in the

literature so far. Also we are able to calculate ˙̂di (t) in
measurable signal q(t) only.

Remark 1 The common method of constructing the
disturbance observer is:-

ḋz(t) = L(t)(−τ (t) + N(q, q̇) − ̂di (t)) (22)

̂di (t) = dz(t) + p(q̇(t)) (23)

(see (20)) where p′(q̇(t)) = C is a constant matrix so
that L(t) = C(M(q))−1. It follows that

d

dt
̂di (t) = ḋz(t) + p′ q̇(t)q̈(t) (24)

= L(t)(−τ (t) + N(q, q̇) − ̂di (t)) + Cq̈(t)
(25)

= L(t)(−τ (t) + N(q, q̇) − ̂di (t) + M(q)q̈)

(26)

and since

Mq̈ + N(q, q̇) = τ(t) + di (t) + w̃(t) (27)

(according to 2), we see ˙̂di (t) = L(d(t) − ̂di (t) + w̃).

The extra term w̃ appears in our work because we
have decomposed the whole disturbance into a purely
random component w̃ and a predictable component
di (t).

The fundamental assumption of this work is that
the disturbance prediction error d(t) − ̂di (t) = ε(t)
behaves like white noise that is independent of w̃(t)
the purely random component of the disturbance.

Althoughwe cannot directly prove that ε(t) is white,
we can heuristically make this postulate based on the
well-known fact that if [dn]∞n=1 is a random sequence,

then with ̂dn = E[dn, |dn−1, dn−2, . . . . . .], it follows
that E[(dn − d̂n) f (dn−1, dn−2, . . .)] = 0 for any Borel
function f. Hence, dn − d̂n is uncorrelated with any
function of {dk − d̂k, |k ≤ n − 1}. Thus, {dn − d̂n} is
white noise. Our heuristic assumption is based on this
fact, and this is confirmed by our simulation success.

Remark 2 The disturbance observer differential equa-

tion ˙̂di (t) = L(t)(di (t) − ̂di (t) + w̃(t)) defines a
time-varying system, and hence, it is difficult to talk
of a frequency domain analysis. However, we can give
an argument as follows, which justifies somewhat that
di (t) − d̂i (t) behaves like white noise in the sense that
it contains almost all the frequencies in its spectrum.

Since σ̃w
2 is very small, we have approximately

˙̂di (t) = L(t)(di (t) − ̂di (t))

and with ε(t) = di (t) − d̂i (t), we get ε̇(t) = ḋi (t) −
L(t)ε(t).
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The solution to this differential equation is the infi-
nite series (Dyson series)

εt =dt +
∞∑

n=1

(−1)n

×
∫

0<tn<···t1<t
L(q(t1)) . . . L(q(tn))di (t1)

. . . di (tn)dt1 . . . dtn (28)

If L(t) consists of a discrete set of frequencies (or
is periodic with a Fourier series), ω1, . . . , ωk and
di (t) also consist of a discrete set of frequencies, say
ω′
1 . . . ω′

m, then the integral

∫

0<tn<···t1<t
L(q(t1))

. . . L(q(tn))di (t1) . . . di (tn)dt1 . . . dtn (29)

will contain the frequencies θ1 + θ2 +· · · · · · θ2n where
each θiε{±ω1, . . . . . . ,±ωk,±ω′

1, . . . ,±ω′
n}; hence,

the Dyson series (28) shows that ε(t) will contain
almost all the frequencies obtained as infinite inte-
ger linear combination of ω1, . . . , ωk, ω

′
1, . . . , ωn and

hence ε(t) can be justified as being white noise.

Remark 3 If

q(t) = q(0) + q(1)(t) + q(2)(t)

where q(0) is a dc vector (constant), q(1)(t) is a linear
time-varying vector, and q(2)(t) consists of sinusoidal
oscillating term.

Then by Taylor’s series,

L(t) = L(q(0) + q(1)(t) + q(2)(t) + q̇(1)(t) + q̇(2)(t))

= L0 + L1(t)

where L0 = L(q(0), q(1)) is a constant matrix, and
L1(t) comes from Taylor expansion of L around
(q(0), q(1)).

L1(t) consists of harmonic terms. Then

ε̇(t) = ḋi (t) − (L0 + L1(t))(ε(t) + w̃(t)) � ḋi (t)

−(L0 + L1(t))ε(t) − L0w̃(t)

If we further neglect w̃(t), we get ε̇(t) = ḋi (t)−(L0+
L1(t))(ε(t)).

Which has the Dyson series solution

ε = di (t) +
∞∑
n=1

(−1)n
∫
(L0 + L1(t1)) . . . . . .

(L0 + L1(tn))d(t1) . . . d(tn)(dt1 . . . . . . dtn)

This expression contains terms

di (t) +
∞∑

n=1

Ln
0(−1)n

∫
d(t1) . . . d(tn)0 < tn

< · · · < dt1 . . . dtn

which contains not only the frequency of di (t), but
also linear combination of the frequencies of di (t).
The frequencies of di (t) appear in ε(t) however, with
a suppressed amplitude. This can be seen by tak-
ing the Fourier transform of the approximate equation
ε̇(t) = ḋi (t) − L0ε(t) which gives

(Fε)(ω) = ( jωI + L0)
−1 jωF(di)(ω)

where F denotes the Fourier transform operator.
Thus, if L0 is chosen so that forω falling in the band

of

di (t)(i.e., (Fds(ω)))

|ω| << ||L0||, then |(F(.)(ω))will be small and hence
then frequencies of di (t) will be suppressed in ε(t).

w̃(t) is white processes noise independent of d(t).
Suppose we include its effects in this linear analy-
sis. Then we get ε̇(t) = ḋi (t) − L0(ε(t) + w̃(t))
which gives on taking Fourier transforms (Fε)(ω) =
[ jωF(di )(ω)−L0F{w̃}(ω)]

( jωI+L0)
so if ω falls in a range of F{d}

such that |ω| << ||L0||, then in this range, (Fε)(ω) �

−F{w̃}(ω) which means that again ε(t) will behave
like white noise.

4 The proposed disturbance extended Kalman
filter (DEKF)

We begin by defining the state vector:

X = [q(t) ω(t) η(t)]T

Here η(t) = ̂di (t), η̇(t) = ˙̂di (t) as shown in (21), and
ω(t) = q̇(t).

The robot system model in (5) will be extended as
follows:

q̇ = ω (30)

ω̇ = F(q, ω, t) + G(q)(η + w) (31)

η̇ = L(q)w (32)
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Here

F(q, ω, t) = G(q)(τ − N(q, q̇)) (33)

G(q) = M(q)−1 (34)

Introduction of disturbance observer as a state variable
is the one of the major contributions of this work.

So

Ẋ = d

dt

⎡

⎣
q
ω

η

⎤

⎦

=
⎡

⎣
ω

F(q, ω, t) + G(q)η

0

⎤

⎦+
⎡

⎣
0
G(q)

L(q)

⎤

⎦w (35)

⇒ Ẋ = f (t, X) + g(q)w (36)

For nonlinear system,

ż = h(t, X) + ηX (37)

Here ηX = σv
dv(t)
dt is Gaussian measurement noise.

From Kushner filter theory [18], extended nonlinear
disturbance observer is constructed along with plant
dynamics as below:

˙̂X = f (t, ̂X) + P̂h
′T

σ−2
v ( ż − ̂h) (38)

and

Ṗ = ̂f
′
P + P ̂f

′T + σw ĝ ĝT − P̂h
′T

σ−1
v

̂h′P (39)

So for a linear measurement system:

˙̂X = f (t, ̂X) + PHT σ−2
v ( ż − ĤX) (40)

= f (t, ̂X) + PHT σ−2
v ( ż − q̂) (41)

Ṗ = ̂f
′
P + P ̂f

′T

+ σw ĝ ĝT − PHT σ−1
v HP (42)

h(t, X) = HX (43)


⇒ ż = HX + ηX (44)

Here ż is the measurable output of the plant. H is
the state observation matrix. For a robot with optical
encoder:

H = [I : 0] so that HX = q . (45)

σ v = covariance(ηx) (46)

σw =
⎡

⎣
0 0 0
0 cov.(w) 0
0 0 cov.(w)

⎤

⎦ (47)

P = ̂h,Tβ Pα,β =
⎡

⎣
Pq Pq,ω Pq,η

Pω,q Pω Pω,η

Pη,q Pη,ω Pη

⎤

⎦ (48)

g(̂X) = g(q̂) =
⎡

⎣
0
G(q̂)

L(q̂)

⎤

⎦ (49)

5 Stability and convergence analysis of DEKF

In the previous section, we have written down the non-
linear state equation in SDE form and the nonlinear
noisy measurement equations with additional WGN.
We then write down the EKF for the state estimate
and its error covariance matrix with driving force pro-
vided by the difference between the actual measure-
ments and the estimated measurements. The EKF can
in some sense be looked upon as a nonlinear version
of the active observer with gain dependent on the error
covariance and the measurement Jacobian evaluated at
the current state estimates. In this section,we shall form
using the difference of the state and EKF equation an
approximate linear SDE for the state estimation error
and calculate its mean square error w.r.t a Lyapunov
matrix. Conditions on the noise coefficients (both state
andmeasurements) for thismean square error to remain
bounded with time are then derived. Here we derive a
generalized form of sensitivity analysis which may be
applied using Gronwall’s inequality [19] not addressed
so far in the literature.

State model In what follows, we consider the gen-
eral model for the state vector defined by a general
multivariate stochastic differential equation driven by
a multivariate standard Brownian motion with time-
dependent drift and diffusion coefficients and we have
also considered the measurement model as general
as possible, i.e., given by a nonlinear time-dependent
function of the state plus white Gaussian noise. We
then develop a theory for calculating the EKF-based
estimation error and upper bounds for this. The state
model is:

dX t = f (t, X t )dt + g(t, X t )dBt (50)
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and the measurement model is:

d zt = h(t, X t )dt + σV dV t (51)

EKF

d X̂ t = f (t, X̂ t )dt + σ−2
V P th′(t, X̂ t )

T

(d zt − h(t, X̂ t )dt) (52)

d P t

dt
= f ′(t, X̂ t )P t + P t f ′(t, X̂ t )

T

− P th′(t, X̂ t )
T h′(t, X̂ t )Pt + (ggT )(t, X̂ t ) (53)

Let

ggT (t, x) = a(t, x) (54)

et = X t − X̂ t (55)

det = dXt − d X̂ t (56)

After linearization around X̂ t ,

det = f ′(t, X̂ t )etdt + g(t, X̂ t )dBt

− σ−2
V P th′(t, X̂ t )

T (h′(t, X̂ t )et dt + σV dV t ) (57)

= [ f ′(t, X̂ t ) − σ−2
V P th′(t, X̂ t )

T h′(t, X t )]et dt
+ g(t, X̂ t )dBt − σ−1

V P th′(t, X̂ t )
T dV t (58)

Let

Ft = f ′(t, X̂ t ) − P th′(t, X̂ t )
T h′(t, X̂ t ) (59)

and

Gt = g(t, X̂ t ), (60)

H t = −σ−1
V P th′(t, X̂ t )

T (61)

Then (58) can be expressed as:,

det = Ft et dt + Gt dBt + H t dV t (62)

with solution

et =
∫ T

0
φF (t, τ )(GτdBτ + HτdV τ ) (63)

where φF (t, τ ) is the state transition matrix satisfying:

∂ΦF (t, τ )

∂t
= FtΦF (t, τ ), t ≥ τ, (64)

with the initial condition:

ΦF (τ, τ ) = I (65)

Theorem 1 Assuming that

max
t≥0

E[Tr(GtGT
t ) + Tr(H tHT

t )] = K ′ < ∞

We have that E||et ||2 is a bounded function of time.

Proof We have from (63)

E[‖et‖2] = E

∫ T

0
Tr(ΦF (t, τ )Gτ GT

τ ΦF (t, τ ))dτ

+ E

∫ T

0
Tr(ΦF (t, τ )Hτ HT

τ ΦT
F (t, τ ))dτ (66)

More generally, let theLyapunov energymatrixV >

0. Then

d (E[eTt V et ]) = E(d(eTt Vet )) = E(eTt V det )

+ Tr [V E(det deTt )] (67)

= E[eTt (FT
t V + V FT

t )et ]dt
+ E[Tr(GtGT

t ) + Tr(H tHT
t )]dt (68)

�

The rate of change of the mean square state esti-

mation error energy is obtained for the EKF using the
stochasticLyapunovmethod, andusing this expression,
we derive an inequality for themean square error which
resembles the Gronwall inequality. This inequality is
used to show that as t → ∞ under sufficiently gen-
eral conditions on the noise coefficients Gt and H t ,
the mean square error remains bounded.

If rate of change of error energy:

FT
t V + V FT

t ≤ −Γ < 0∀t (69)

Then

d

dt
E[eTt Vet ] ≤ E[eTt Γ et ] + ηt (70)
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where

ηt = E

[
Tr(GtGT

t ) + Tr(H tHT
t )
]

(71)

So,

E

[
eTt VeTt

]
≤ −

∫ t

0
E

[
e′T
t Γ e′

t

]
dt ′ +

∫ t

0
η′
tdt

′ (72)

Suppose V ≥ K I . Then

E

[
‖et‖2

]
≤ −K−1

∫ t

0
E

[
eTs Γ es

]
ds + K−1

∫ t

0
ηsds

(73)

Let Γ ≥ K0 I .
Then we get

E[‖et‖2] ≤ −K0

K

∫ t

0
‖es‖2ds + K−1

∫ t

0
ηsds (74)

Put

∫ t

0
‖es‖2ds = ξt (75)

and then Gronwall’s inequality can be applied to (74),
which is then same as

dξt
dt

≤ −αξt + βt (76)

where α = K0/K and βt = K−1
∫ t
0 ηsds.

Thus,

ξt ≤ e−αtξ0 +
∫ t

0
e−α(t−s)βsds (77)

Hence, if

e−αt
∫ t

0
eαsβsds → 0, t → ∞, (78)

then

E‖et‖2 → 0; t → ∞, (79)

Since it is assumed that

max
t≥0

E[Tr(GtGT
t ) + Tr(H tHT

t )] = K ′ < ∞, (80)

i.e., max
t≥0

(ηt ) = K ′ < ∞ (81)

It follows that

∫ t

0
e−α(t−s)βsds = K−1

∫

0<u<s<t
e−α(t−s)ηudsdu

(82)

= K−1
∫ t

0

1 − e−α(t−u)

α
ηudu

≤ K ′

Kα

[
t − 1 − eαt

α

]
(83)

= K ′t
Kα

= K ′t
K0

(84)

This implies that E‖et‖2 ≈ K ′
K0

for t → ∞.
That is, the mean square error remains bounded as t

→ ∞.
So the bound is decided by the parameters K0 and

K . K ′ is a measure of the state noise plus measurement
noise energy, while K0 is a lower bound for the Lya-
punov matrix. The upper bound for the limiting mean
square error estimation error is ∝ K

K0
.

Higher K ′ 
⇒ higher noise power 
⇒ larger
mean square error. Higher K0 
⇒ larger Lyapunov
matrix V 
⇒ lower mean square error energy.

6 Robustness of DEKF to uncertainty

We further elaborate on the same theme but with an
unknown parameter vector θ0 like parameter uncer-
tainty entering into the state equation and designing
the DEKF based on a guess parameter vector θ . The
true state vector is Xt (̂θ0). We derive using the Ito’s
calculus an upper bound for E‖Xt (θ0) − X̂t (θ)‖2 in
terms of ‖θ − θ0‖2 assuming that δθ = θ − θ0 and the
uncertainty is small and thereby establish conditions
for robustness of the DEKF.

Actual model

dX t = f (t, X t , θ0) + g(t, X t , θ0)dBt (85)

dY t = h(t, X t )dt + σdV t (86)
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Assumed model

d X̃t = f (t, X̃ t , θ) + g(t, X̃ t , θ)dBt (87)

dỸt = h(t, X̃ t )dt + σdV t (88)

EKF is based on assumed state model and original out-
put mass moments.

d X̂ t = f (t, X̂ t , θ)dt

+ Pt H
T (t, X̂ t )(dYt − h(t, X̂ t )dt) (89)

d P t

dt
= F(t, X̂ t , θ)P t + P t FT (t, X̂ t , θ)

+ a(t, X̂ t , θ) − P tHT (t, X̂ t )H(t, X̂ t )Pt (90)

et = Xt − X̂t ≡ Xt (θ0) − X̂t (θ) (91)

det = ( f (t, X t , θ0) − f (t, X̂ t , θ))dt

+ g(t, X t , θ0)dBt − Pt H
T (t, X̂ t )

((h(t, Xt ) − h(t, X̂t ))dt + σdVt ) (92)

Let Lt = Pt HT (t, X̂ t ). Then

det ≈ F(t, X̂t , θ0)(Xt − X̂t )dt − ∂ f

∂θ
(t, X̂t )δθdt

+ g(t, X̂t , θ0)dBt − Lt H(t, ̂Xt)(Xt − ̂Xt)dt

− σ LtdV t (93)

or

det ≈ (Ft )et dt + Gt dBt − Lt Ht et dt

− σ LtdV t − Fθ tδθdt = (Ft − Lt Ht )et dt

+ Gt dBt − σ LtdV t − Fθ tδθdt (94)

where H(t, X̂t ) = Ht = h′(t, ˆX (t)). Let

∂Φ(t, τ )

∂t
= (Ft − Lt Ht )Φ(t, τ ), t ≥ τ (95)

Φ(τ, τ ) = I (96)

Then, et ≈
∫ t

0
Φ(t, τ )(GτdBτ − σ LτdV τ )

−
∫ t

0
Φ(t, τ )Fθτ δθdτ (97)

E[‖et‖2] = E[‖Xt (θ0) − X̂t (θ)‖2] (98)

≈ E

∫ t

0
Tr{Φ(t, τ )(GτGT τ + σ 2Lτ Ltτ)φT (t, τ )}dτ

+ δθTE

{(∫ t

0
Φ(t, τ )Fθτdτ

)(∫ t

0
Φ(t, τ )Fθτ dτ

)T
}

δθ

(99)

Let

E[‖et‖2]δθ=0 = ξ0(t), (100)

E[‖et‖2] = ξ0(t) + δξ(t) (101)

Then

δξ(t) = δθTE

{(∫ t

0
Φ(t, τ )Fθτ dτ

)(∫ t

0
Φ(t, τ )Fθτ dτ

)T
}

δθ

(102)

where

Fθτ = ∂ f

∂θ
(t, X̂t , θ0).

|∂ξ(t)| ≤ Kt‖δθ‖2 (103)

where

Kt =
∥
∥∥∥∥
E

{(∫ t

0
Φ(t, τ )Fθτdτ

)(∫ t

0
Φ(t, τ )Fθτ dτ

)T
}∥∥∥∥∥

S
(104)

‖ · ‖S denoting spectral norm, such that largest eigen-
value.

This discussion is summarized in the form of
Theorem 2.

Theorem 2 If the actual systemmodel is given by (85),
(86) and the assumed model by (87),(88), then with X̂t

obtained from the EKF applied to the assumed model,
and the estimated state error et = Xt (θ0)− X̂t (θ0), we
have |E[||et ||2] − E||et ||2|δθ=0| ≤ δθT Ktδθ where Kt

is given by (104).

Typically, the eigenvalue of the “forcing function
with estimation error feedback (Ft − Lt Ht )” for the
state estimation error with parametric uncertainty will
have negative real part which means that Φ(t, τ ) will
asymptotically behave as sum of terms of the form
e−λ(t−τ), where Real(λ) > 0. Thus, if sensitivity of
forcing drift function Fθτ with respect to parameter is
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boundedwith time, the error response
∫ t
0 Φ(t, τ )Fθτdτ

to the sensitivity of the drift function will converge as
t → ∞ and Kt will be bounded as t → ∞.

7 Application of proposed DEKF to a Phantom
Omni Robot™

In this section, the performance of the proposed algo-
rithm is illustrated by applying it to a Phantom Omni
Robot™available in the laboratory and the perfor-
mance of DEKF is also compared against the method
proposed in [6] (Table 1).

7.1 Dynamics of Phantom Omni Robot™

The dynamic model of the robot defined as in (2) and
physical parameters as per [6] is given as below: The
inertia matrix of the Phantom robot, assuming q2 = 0,
is

M(q) =
[

α1 + α2C2,3 + α3S2,3 + α4C3 + α5S3 0
0 α6

]

(105)

and

N(q, q̇) = [V1, V3]T (106)

where

V1 = − 2α2q̇1q̇3 sin(2q3) + 2α3q̇1q̇3 cos(2q3)

+ α4q̇1q̇3 cos(q3) − α5q̇1q̇3 sin(q3), (107)

V3 =2α2q̇
2
1 cos(q3) sin(q3) − α3q̇

2
1 cos(2q3)

− 1

2
α4q̇

2
1 cos(q3) + 1

2
α5q̇

2
1 sin(q3)

+ α7 sin(q3) + α8 cos(q3) (108)

Note that

Ci = cos(qi ), Si = sin(qi ),C2,i

= cos(2qi ), S2,i = sin(2qi ) (109)

As per [6], c = 0.02I .

Table 1 [6]

Parameter Value

α1= 6.11 × 10−3 ± 0.9 × 10−3

α2= −2.89 × 10−3 ± 0.43 × 10−3

α3= −4.24 × 10−3 ± 1.01 × 10−3

α4= 3.01 × 10−3 ± 0.52 × 10−3

α5= 2.05 × 10−3 ± 0.15 × 10−3

α6= 1.92 × 10−3 ± 0.23 × 10−3

α7= 1.60 × 10−1 ± 0.05 × 10−1

α8= −8.32 × 10−3 ± 2.78 × 10−3

Jacobian of the robot when q2 = 0 is as below: :

J =
{
l2 + l3S(q)3 0
0 l2S(q)3

}
; (110)

Here l2 and l3 are the lengths of 2ndand3rd link, respec-
tively.

As there is no force sensor attached with the Phan-
tom robot available in the laboratory, a reference dis-
turbance signal di (t) is generated. The equivalent joint
disturbance torque on joint 1 and joint 3 if the supposed
external task force F = 1N on end effector is as below:

di1(t) = J T × [F 0] = l2 + l3 × sin(q2)

= 0.135 + 0.135 × sin(q2) (111)

di3(t) = J T × [0 F] = l2 × sin(q3)

= 0.135 × sin(q3) (112)

Here di3 may be considered as the disturbance due to
the external payload ((1/g)kg) or uncertainty in the
mass (θ = (1/g)kg).

Here the system state vector X is as below:

X = [q1, q3, ω1, ω3, η1, η3]T (113)

Thus, the systemmodel in state space form can be writ-
ten as:

Ẋ = [ω1, ω3, ω̇1, ω̇3, η̇1, η̇3]T (114)

= f (t, X) + g(q)w (115)
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=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ω1

ω3

[M(q)]−1
(

−N

[
ω1

ω3

]
+
[

τ1
τ3

]
+
[
di1
di3

])

0
0

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

+

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎣

0
0[
M (q1)−1]
[
M (q3)

−1
]

L (q1)
L (q3)

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

w (116)

7.2 DEKF

According to Sect. 4, by defining

̂X = [̂q1, q̂3, ω̂1, ω̂3, η̂1, η̂3]T (117)

the extended active observe is given by (41) and (42)
as below:

˙̂X = f (t, ̂X) + PHT σ−1
v ( ż − q̂) (118)

Ṗ = ̂f
′
P + P ̂f

′T + σw ĝ ĝT − PHT σ−1
v HP

(119)

σ v , σw, P and ĝ are defined as (46), (47), (48) and (49),
respectively, and for the present measurement linear
system

ż = HX + ηX = [q1, q3]T + [η1, η3]T (120)

Here

H =
[
1 0 0 0 0 0
0 1 0 0 0 0

]
(121)

̂f
′ = ∂ f

∂ ̂X
=

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

∂ f1
∂q̂1

∂ f1
∂q̂3

∂ f1
∂ω̂1

∂ f1
∂ω̂3

∂ f1
∂η̂1

∂ f1
∂η̂3

∂ f2
∂q̂1

∂ f2
∂q̂3

∂ f2
∂ω̂1

∂ f2
∂ω̂3

∂ f2
∂η̂1

∂ f2
∂η̂3

∂ f3
∂q̂1

∂ f3
∂q̂3

∂ f3
∂ω̂1

∂ f3
∂ω̂3

∂ f3
∂η̂1

∂ f3
∂η̂3

∂ f4
∂q̂1

∂ f4
∂q̂3

∂ f4
∂ω̂1

∂ f4
∂ω̂3

∂ f4
∂η̂1

∂ f4
∂η̂3

∂ f5
∂q̂1

∂ f5
∂q̂3

∂ f5
∂ω̂1

∂ f5
∂ω̂3

∂ f5
∂η̂1

∂ f5
∂η̂3

∂ f6
∂q̂1

∂ f6
∂q̂3

∂ f6
∂ω̂1

∂ f6
∂ω̂3

∂ f6
∂η̂1

∂ f6
∂η̂3

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

(122)

Fig. 2 Omni bundle robot

=
⎡

⎢
⎣

02×2 I 2×2 02×2

∂ F̂
∂q̂ + ∂Ĝ(q)

∂q̂

(
I 2×2 ⊗ η̂

)
∂ F̂
∂ω̂

Ĝ(q)

02×2 02×2 02×2

⎤

⎥
⎦ (123)

7.3 Controller

An acceleration controller as shown in Fig. 1 is
designed by computed torque method where the dis-
turbances are not taken into account. It means that con-
troller is designed for nominal model of manipulator
without considering payload and friction (Fig. 2). The
controller is designed as

̂fc = M(q̂)(q̈d + Kd(q̇d − ˙̂q) + K p(qd − q̂))

+ N(q̂, ˙̂q) (124)

Here K p and K d are positive definite gain matrices.

7.3.1 Initial conditions

The measurement of forces requires additional sensors
as the PhantomOmniTM is not equippedwith the ability
to measure applied loads. Instead of affixing a sensor to
measure the input on the robot, an artificial input force
was generated. All the initial positions and velocities
of the joints are set to zero. The sample period Ts is
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set equal to 0.01. The controller gain K p and K d for
both approaches are chosen as K p = 100I or K d =
20I . The specific observe gain and initial conditions
for DEKF are chosen as follows:

cov.(w) = cov.(w̃) = 10−7 (125)

P0 = diag
[
10−5, 10−5, 10−5, 10−5, 10−1, 10−1

]

(126)

σ v =
[
10−7 0
0 10−7

]
(127)

7.3.2 Experimental results

The following tests have been performed to investigate
the performance of the proposed method.

Test signal I: Signal with white Gaussianmeasurement
noise of standard deviation 10−7.
Test signal II: Signal with white Gaussian measure-
ment noise of standard deviation 10−5.

The results of desired, estimated and actual trajec-
tory tracking and disturbance tracking for proposed
DEKF under different noise conditions are shown in
Figs. 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12.

Figures 3 and 4 show the experimental results for
desired trajectory (qd ), actual trajectorywith noise (q+
noise) and estimated trajectory (̂q) for joint 1 and joint
3, respectively, and demonstrate the good performance
of the proposed technique.

Figure 5 shows that the actual tracking errors (q −
(qa +noise)) and estimated tracking errors (q− q̂) are
converging after 1 s in the presence of noises.

Table 2 demonstrates that the performance of the
proposed DEKF is better as compared to [6] and [20] in
the presence ofmeasurement noises (covariance 10−7).

Figures 6 and7 show the experimental results for ref-
erence disturbance trajectory (di (t)) and estimated dis-
turbance trajectory (d̂i (t)) for both joints and demon-
strate the good performance of the proposed technique
in the presence of measurement noises (covariance
10−7).

Figure 8 shows that the disturbance tracking errors
are converging. Corresponding Table 3 demonstrates
that the performance of the proposed DEKF is better
compared to [6] and [20] in the presence of measure-
ment noises (covariance 10−7).

Fig. 3 Tool tracking with cov. of measurement noise 10−7

Fig. 4 Tool tracking with cov. of measurement noise 10−7

Experiments were repeated with increasedmeasure-
ment noise (covariance 10−5), and the results are shown
in Figs. 9, 10, 11 and 12.

Results are mentioned in the last column of Tables 2
and 3. It is demonstrated that now error is more due to
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Fig. 5 Tracking error with cov. of measurement noise 10−7

Fig. 6 Disturbance tracking with cov. of measurement noise
10−7

an increase in noise, but even then it is better compared
to [6] and [20]. The reason is that the conventional
disturbance does not filter out all the noise. Moreover,
it does not give an accurate estimate of the disturbance
unless ḋi (t) → 0.

Fig. 7 Disturbance tracking with cov. of measurement noise
10−7

Fig. 8 Disturbance tracking error with cov. of measurement
noise 10−7

This is because the equation ˙̂di (t) = L(q)×(di (t)−
̂di (t)) 
⇒ (di (t) − ̂di (t)) → 0, if and only if
˙̂di (t) → 0, assuming L(q) is bounded and with posi-
tive real part for all its eigenvalues and
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Fig. 9 Tracking error with cov. of measurement noise 10−5

Fig. 10 Disturbance tracking with cov. of measurement noise
10−5

ḋi (t) − ˙̂di (t) → 0, ˙̂di (t) → 0 
⇒ ˙̂di (t) → 0.

It is also noted that if the eigenvalues of L(q) all have
(positive) real part, then boundedness of (di (t)−̂di (t))
implies boundedness of ̂di (t) and hence boundedness
of di (t).

Fig. 11 Disturbance tracking with cov. of measurement noise
10−5

Fig. 12 Disturbance tracking error with cov. of measurement
noise 10−5

For ḋi (t) → 0, we require zero noise in di (t), i.e.,
di (t) be asymptotically differentiable with zero deriv-
ative. However, Brownian motion is not differentiable.
Hence, its distributional derivative which is white noise
is not differentiable. So in order to get rid of extra noise
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Table 2 Experimental study: position tracking RMS
error (×10−3)

[20] [6] [Proposed] [Proposed]

Noise= 0 0 cov.(10−7) cov.(10−5)

Joint1 11.9 9.98 2.54 2.906

Joint3 76.9 33.1 2.54 4.722

Table 3 Experimental study: disturbance tracking RMS
error (×10−3)

[20] [6] [Proposed] [Proposed]

Noise= 0 0 cov.(10−7) cov.(10−5)

Joint1 14.4 5.52 0.0935 2.055

Joint3 20.2 10.0 0.004 0.022

in the disturbance estimate, we once again pass ̂di (t)
through the EKF, thereby removing the extra noise in
it.

Remark 4 Comparison with [7]

In [7], Eq. (9a) shows that the rate of change of the
external force/disturbance f e equals zero plus a small
noisy term G.ξ f e having known covariance. The EKF
has then been applied to estimate this external force
whose rate of change is white Gaussian noise. On the
other hand, in the present work, we have not assumed
such a specificmodel for the disturbance. In the present
work , it is assumed that the disturbance consists of a
nonrandom component plus a purely random compo-
nent and applied the disturbance observer plus an EKF
to obtain estimates of the nonrandom component. If
we try to apply the method of [7] to our disturbance
model, then we would require to know exactly what
the nonrandom component is. The DO gets rid of this
need. Further, the graph (1c) of [7] shows that when-
ever there is a sudden change even though slow change
in the actual disturbance, the EKF is not instantly able
to track this change. It takes a certain settling time for
the disturbance estimate to converge to the actual dis-
turbance. On the other hand, the presented work in
graph Fig. 6 shows that good disturbance tracking is
achieved even for quiet rapidly varying disturbances.
The settling time appears in our graph to be smaller.
We should, however, acknowledge that the complexity
of our algorithm is much more than that of [7] since
both EKF and disturbance observer are used.

8 Conclusion

The conventional disturbance observer dynamics has
been included in the dynamical state model of the robot
by introducing an additional white noise term as the
difference between the true disturbance and its first
estimate provided by the disturbance observer. Thus,
the entire set of state variables is passed through an
EKF, resulting in real-time state-cum-disturbance esti-
mate based on noisy measurements. Results are supe-
rior as shown in our experimental studies. Using Ito’s
formula forBrownianmotion, andGronwall inequality,
we have derived an upper bound for the mean square
state estimation error. This upper bound depends on the
strength of the Lyapunov matrix as well as on the state
andmeasurement noise mean square strength. The pro-
posed technique is applicable to any type of nonlinear
dynamical system and for different types of disturbance
rejection algorithms.
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