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Abstract This paper studies the hidden dynamics of
a class of two-dimensional maps inspired by the Hénon
map.A special consideration ismade to the existence of
fixed points and their stabilities in thesemaps. Our con-
cern focuses on three typical scenarios which may gen-
erate hidden dynamics, i.e., no fixed point, single fixed
point, and two fixed points. A computer search pro-
gram is employed to explore the strange hidden attrac-
tors in the map. Our findings show that the basins of
some hidden attractors are tiny, so the standard compu-
tational procedure for localization is unavailable. The
schematic exploring method proposed in this paper
could be generalized for investigating hidden dynamics
of high-dimensional maps.
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1 Introduction

This paper is devoted to the investigation of hidden
dynamics of a class of two-dimensional maps inspired
by the Hénon map [1]. From a computation point of
view, Leonov et al. proposed a new classification of
attractor in [2,3]. If the basin of attraction for an attrac-
tor does not intersectwith small neighborhoods of equi-
libria, this attractor is called a hidden attractor. Other-
wise, it is called a self-excited attractor. Self-excited
attractors can be localized numerically by the standard
computational procedure, i.e., choose a point from the
unstable manifold in a neighborhood of an unstable
equilibrium, and then trace the state of the attractor.
While there is no regular way to predict the existence
or coexistence of hidden attractors in a system since
their basins of attraction are not connected with unsta-
ble equilibria. So one cannot guarantee the localization
of a hidden attractor by following its trajectories with
random initial conditions as its basin of attraction could
be very small. Algorithms for finding hidden attractors
in nonlinear systems have been proposed by Bragin
et al. [4], and one of these algorithms has been used to
localize hidden attractors in the Chua’s system in [5,6].

In the last few years, there was a growing inter-
est in studying hidden chaotic attractors in continu-
ous systems. For example, Wei studied a simple three-
dimensional autonomous chaotic system with no equi-
libria in [7]. The particularity of this system is that
there exists a constant controller which can adjust the
type of chaotic attractors. Jafari et al. [8] performed a
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systematic search to find additional three-dimensional
chaotic systems with quadratic nonlinearities and no
equilibria. Wei et al. studied a new four-dimensional
hyperchaotic system by extending the generalized dif-
fusionless Lorenz equations in [9], and the new model
did not show any equilibria but two-scroll hyperchaos
with chaotic, quasiperiodic, and periodic dynamics. In
[10], Molaie et al. found that a stable equilibrium point
coexisted with 23 simple chaotic flows with quadratic
nonlinearities by using the Routh–Hurwitz stability
criterion and a systematic computer search. Wei and
Zhang [11] reported the finding of a four-dimensional
non-Sil’nikov autonomous systemwith three quadratic
nonlinearities andobservedhiddenhyperchaotic attrac-
tors with one stable equilibrium. In [12], Wei and Yang
studied a new three-dimensional autonomous chaotic
system which displayed double-scroll chaotic attrac-
tors in a very wide parameter domain with two sta-
ble equilibria. Moreover, a line equilibrium has been
found in the nine simple chaotic flows with quadratic
nonlinearities in [13], and Wang and Chen proposed
a method in [14] for constructing the chaotic system
with pre-assigned number of equilibria. In the mean-
time, the coexistence of hidden attractors has attracted
great attention by many researchers, e.g., [15–19]. In
[15,16], the rare and hidden attractors in the externally
excited van der Pol–Duffing oscillator have been inves-
tigated by using the concept of perpetual points in [17].
In [18], a coexisting stable limit cycle was found in a
chaotic system which has only one stable equilibrium.
Li and Sprott [19] studied a new four-dimensional sim-
plifiedLorenz systemandobtained that it had an attract-
ing torus in some regions of parameter space coex-
isting with either a symmetric pair of strange attrac-
tors or with a symmetric pair of limit cycles whose
basin boundaries had an intricate fractal structure. In
[20], hidden attractors which coexisted with a stable
equilibrium were observed in a drilling system indi-
cating that such hidden oscillations may cause costly
drilling failure. In addition, hidden attractors in multi-
stroll chaotic systems [21–23] have also been studied
in [24].

On the other hand, dynamics of discrete-time maps,
such as the logistic map and the Hénon map, have
been studied extensively in different disciplines fueled
by their broad applications in economics, biology,
and engineering (see [25–28] for examples). How-
ever, there are very few results on hidden attractors in
discrete-time maps. In [29], three second-order coun-

terexamples to the discrete-time Kalman conjecture
were constructed and hidden stable periodic solutions
were shown for these examples. Zhusubaliyev et al.
[30] studied the multistability and hidden attractors in
amultilevelDC/DCconverterwhichwas reduced to the
analysis of the two-dimensional piecewise-smoothmap
with multiple borders by integrating the equations of
motion for the continuous-time system from switching
event to switching event. In [31], some hidden attrac-
tors in one-dimensional map have been introduced by
extending the logisticmap. In this paper,wewill study a
class of two-dimensionalmaps and explore their hidden
attractors. Our main purpose is to devise a schematic
approach for investigating hidden attractors in discrete-
time systems. The findings would allow one to study
the mechanisms of hidden dynamics and the evolu-
tion of their basins of attraction in high-dimensional
discrete-time systems.

The rest of this paper is organized as follows. In
Sect. 2, the mathematical model of a class of two-
dimensional maps is given, and the existence and the
stability of its fixed points are studied. The strange hid-
den attractors with no fixed point and with a single
stable fixed point are investigated in Sects. 3 and 4,
respectively. Finally, some conclusions are drawn in
Sect. 5.

2 System model and fixed points

2.1 System model

Inspired by the Hénonmap, we consider a class of two-
dimensional map which is described by the following
difference equation

{
xk+1 = yk,
yk+1 = a1xk+a2yk+a3x2k + a4y2k + a5xk yk + a6,

(1)

where a1, a2, a3, a4, a5, a6 are real coefficients.
The Jacobian matrix of the map is given as

J =
[

0 1
a1 + 2a3xk + a5yk a2 + 2a4yk + a5xk

]
(2)

and the characteristic equation of the Jacobian matrix
can be calculated as
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det(λI − J ) = λ2 − tr(J )λ + det(J ) = 0, (3)

where det(J ) = −(a1 + 2a3xk + a5yk) is the determi-
nant of the Jacobian matrix and tr(J ) = a2 + 2a4yk +
a5xk is the trace of the Jacobian matrix. According to
the theory ofmatrix, the sumof the eigenvalues of Jaco-
bian matrix is equal to tr(J ) and the product of the
eigenvalues of Jacobian matrix is equal to det(J ).

2.2 Fixed points and stability analysis

The fixed point of the map (x, y) must satisfy the fol-
lowing conditions

{
x = y,
y = a1x + a2y + a3x2 + a4y2 + a5xy + a6.

(4)

Then, the problem of finding fixed point can be trans-
formed into solving the following equationwith respect
to y

(a3 + a4 + a5)y
2 + (a1 + a2 − 1)y + a6 = 0. (5)

Assume that there exists a fixed point (x, y) of the
map (1). The fixed point is stable if the roots λ1, λ2 of
the characteristic equation satisfy that |λ1,2| < 1. To
establish the stability conditions of the fixed points, the
following lemma is used.

Lemma 1 [26–28] The fixed point (x, y) of the map
(1) is stable if the following conditions are satisfied

⎧⎨
⎩
det(J ) − 1 < 0,
tr(J ) − det(J ) − 1 < 0,
tr(J ) + det(J ) + 1 > 0.

(6)

where det(J ) = −(a1+2a3x+a5y) is the determinant
of the Jacobian matrix and tr(J ) = a2 + 2a4y + a5x
is the trace of the Jacobian matrix.

Remark 1 If det(J ) = 1, λ1λ2 = 1. If tr(J )+det(J )+
1 = 0, there is a real root λ = −1. If tr(J ) − det(J ) −
1 = 0, there is a real root λ = −1.

If a3 + a4 + a5 �= 0, � = (a1 + a2 − 1)2 − 4(a3 +
a4 + a5)a6 is denoted as the discriminant of Eq. (5).

2.2.1 Case 1: no fixed point

(1) No fixed point I (NF I)
If a3+a4+a5 = 0, a1+a2−1 = 0 and a6 �= 0, Eq.

(5) has no solution, and the map (1) has no fixed point.
For any existence of attractors, they must be hidden as
the basins of attraction of these attractors do not contain
any fixed point.

(2) No fixed point II (NF II)
If a3 + a4 + a5 �= 0 and � < 0, Eq. (5) has no

solution, and the map (1) has no fixed point. Again,
if there exists an attractor, it must be hidden since the
basin of attraction of this attractor does not contain any
fixed point.

2.2.2 Case 2: single fixed point

(1) Single fixed point I (SF I)
If a3 +a4 +a5 = 0 and a1 +a2 −1 �= 0, Eq. (5) has

a single solution y = − a6
a1+a2−1 , and the map (1) has

a fixed point (x∗, y∗), where x∗ = y∗ = − a6
a1+a2−1 .

This fixed point is stable if the eigenvalues λ1, λ2 of
the Jacobian matrix J1 = J |x=x∗,y=y∗ lie in the unit
circle, i.e., |λi | < 1, where i = 1, 2. By Lemma 1, the
fixed point (x∗, y∗) is stable if the following conditions
are satisfied⎧⎨
⎩
det(J1) − 1 < 0,
tr(J1) − det(J1) − 1 < 0,
tr(J1) + det(J1) + 1 > 0,

which leads to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a1 − a1a2 + 2a3a6 + a5a6 − a21)/(a1 + a2 − 1)
−1 < 0, a2 − (a1 − a1a2 + 2a3a6 + a5a6 − a21)/

(a1+ a2− 1) − (2a4a6)/(a1 + a2 − 1) − (a5a6)/
(a1 + a2 − 1) − 1 < 0, a2 + (a1 − a1a2 + 2a3a6

+a5a6 − a21)/(a1 + a2 − 1)
−(2a4a6)/(a1 + a2 − 1) − (a5a6)/(a1 + a2 − 1)

+1 > 0.

Suppose that there exist some other attractors except
this single fixed point. Since the fixed point (x∗, y∗) is
stable and the basins of attraction cannot contain any
fixed point, these attractors of themap except this single
fixed point are hidden.

(2) Single fixed point II (SF II)
If a3+a4+a5 �= 0 and� = 0, Eq. (5) has two equal

real roots y1 = y2 = − a1+a2−1
2(a3+a4+a5)

, and themap (1) has

a fixed point (x∗, y∗), where x∗ = y∗ = − a1+a2−1
2(a3+a4+a5)

.
However, the Jacobian matrix at this fixed point J2 =
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J |x=x∗,y=y∗ satisfies tr(J2) = det(J2)+ 1 which gives
that one of the eigenvalues of the Jacobian matrix
equals to one. Thus, the fixed point (x∗, y∗) is not sta-
ble.

2.2.3 Case 3: two fixed points (TF)

If a3 + a4 + a5 �= 0 and � > 0, Eq. (5) has two dis-

tinct real roots y1,2 = −(a1+a2−1)±√
�

2(a3+a4+a5)
, and the map

(1) has two fixed points (x∗
1,2, y

∗
1,2), where x∗

1,2 =
y∗
1,2 = −(a1+a2−1)±√

�
2(a3+a4+a5)

. These two fixed points are sta-
ble if the eigenvalues λ1, λ2 of the Jacobian matrices
J3 = J |x=x∗

1 ,y=y∗
1
and J4 = J |x=x∗

2 ,y=y∗
2
all lie in the

unit circle, i.e., |λi | < 1, where i = 1, 2. Thus, both
fixed points are stable if the following conditions are
satisfied⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

det(J3) − 1 < 0,
tr(J3) − det(J3) − 1 < 0,
tr(J3) + det(J3) + 1 > 0,
det(J4) − 1 < 0,
tr(J4) − det(J4) − 1 < 0,
tr(J4) + det(J4) + 1 > 0.

However, by using the command “simplify” in the sci-
entific computing software MATLAB, the conditions
are “FALSE,” which implies that there is a contraction
in these inequalities. So it indicates that the map cannot
have two stable fixed points.

3 Strange attractors with no fixed point

A computer search program [32] was used to explore
the strange attractors with no fixed point. In this sec-
tion, we will show some typical examples, and the ele-
mental dynamics of the map will be studied. The Lya-
punov exponents of the chaotic attractors were com-
puted by using the same method given in [33–36]. If
the Lyapunov exponents of the point p0 = (x0, y0)
on the chaotic attractors are L1(p0) and L2(p0), i.e.,
L1(p0) > 0 and L2(p0) < 0, the local Lyapunov
(Kaplan–Yorke) dimension dimL p0 can be given as
dimL p0 = 1 − L1(p0)/L2(p0). In this paper, a
grid of points on chaotic attractors were used to find
the maximum of the local Lyapunov dimensions, i.e.,
dimL = maxp0∈B(dimL p0), where B is the set of
points on chaotic attractors with a grid step h = 0.1
of the phase space. In the reorthogonalization proce-
dure, the time step and the number of iterations were

chosen as 10 and 100000, respectively. For the details
of the computing procedure, readers could refer to [33–
36].

3.1 NF I

Nine typical examples for the case with NF I are pre-
sented in Table 1 in which the initial value (x0, y0), the
Lyapunov exponents (Les), and the maximum of the
local Lyapunov dimensions (dimL ) are given. It can
be verified that all the maps listed in Table 1 satisfy
a3 + a4 + a5 = 0, a1 + a2 − 1 = 0, and a6 �= 0, indi-
cating that they have no fixed point. Thus, the attractors
obtained in the map are hidden. As shown in [37,38],
positive Lyapunov exponents may not lead to chaos
since there are known examples with the so-called Per-
ron effects of sign reversal for the largest Lyapunov
exponent. However, because the considered map (1)
belongs to a class of autonomous discrete systems with
real coefficients, positive Lyapunov exponents are still
adopted as an indicator of chaos in this paper. It can
be seen from Table 1 that all the maximal Lyapunov
exponents are positive, so the maps with the given ini-
tial values are all chaotic.

The basins of attraction for the examples of the map
with NF I listed in Table 1 are presented in Fig. 1,
where the chaotic attractors, the period-two orbits, and
the period-ten orbits are marked by black, red, and
blue dots, respectively, and the basins of unbound, the
chaotic attractors, the period-two orbits, and the period-
ten orbits are shown in cyan, white, yellow, and orange,
respectively. As can be seen from Fig. 1a–e, there is
one chaotic attractor for each map and the basins of
the chaotic attractors in Fig. 1a–d are large. However,
the basin of the chaotic attractor in Fig. 1e is very
small such that it is difficult to be obtained by using
the standard computing method. In Fig. 1f, g, a period-
two attractor and a chaotic attractor coexist, and the
basins of the chaotic attractors are very small. In Fig.
1i, a period-two attractor, a period-ten attractor, and a
chaotic attractor coexist, and the basin of the chaotic
attractor is also very small.

3.2 NF II

Six typical examples for the map with NF II are pre-
sented in Table 2 where their initial values, the Lya-
punov exponents (Les), and the maximum of the local
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Table 1 Examples of the two-dimensional map with NF I

Case Maps (x0, y0) Les dimL

NFIa xk+1 = yk (0.93,−0.44) 0.0623 1.1947

yk+1 = xk + 0.2x2k + 0.71y2k − 0.91xk yk − 1.14 −0.3248

NFIb xk+1 = yk (−0.78, 0.45) 0.0827 1.3572

yk+1 = xk − 0.6x2k + 0.74y2k − 0.14xk yk − 0.33 −0.2349

NFIc xk+1 = yk (−0.81, 0.51) 0.0886 1.3649

yk+1 = xk + 0.51x2k + y2k − 1.51xk yk − 0.74 −0.2448

NFId xk+1 = yk (−0.26, 0.18) 0.1012 1.4932

yk+1 = xk + 0.6x2k + y2k − 1.6xk yk − 0.72 −0.2067

NFIe xk+1 = yk (3.02,−2.78) 0.0430 1.1229

yk+1 = xk − 0.3y2k + 0.3xk yk + 2.98 −0.3523

NFI f xk+1 = yk (−0.07, 0.71) 0.0535 1.2188

yk+1 = xk + 0.38y2k − 0.38xk yk − 1.6 −0.2455

NFIg xk+1 = yk (1.03, 2.68) 0.0303 1.1928

yk+1 = xk + 0.12y2k − 0.12xk yk − 3.62 −0.1589

NFIh xk+1 = yk (−0.6, 0.62) 0.0489 1.1415

yk+1 = xk + 0.57y2k − 0.57xk yk − 1.54 −0.3468

NFIi xk+1 = yk (1.33, 0.12) 0.0154 1.1430

yk+1 = xk − 0.3y2k + 0.3xk yk + 1.09 −0.1079

Lyapunov dimensions (dimL ) are given. It should be
noted that all these maps satisfy a3 + a4 + a5 �= 0
and � < 0 so that they do not have any fixed point
and the attractors of these maps are hidden. The basins
of attraction of these maps are shown in Fig. 2, where
the chaotic attractors are marked by black dots, and the
basins of unbound and the chaotic attractors are given
in cyan and white, respectively. It is worth noting that
the maximal Lyapunov exponents in Table 2 are pos-
itive, so the maps with the given initial values are all
chaotic.

4 Strange attractors with a single stable fixed point

Four typical examples for this case are presented in
Table 3 in which the fixed points, the absolute values
of the eigenvalues of the Jacobian matrix at the fixed
points, the initial values, the Lyapunov exponents (Les)
and the maximum of the local Lyapunov dimensions
(dimL ) are given. Since all the maps in Table 3 satisfy
a3 + a4 + a5 = 0 and a1 + a2 − 1 �= 0, they have
a single fixed point. Moreover, all the absolute values
of the eigenvalues of the Jacobian matrix at the fixed
points are less than 1, so these fixed points are stable.

The basins of attraction for the maps in Table 3 are
presented in Fig. 3, where the chaotic attractors and
the fixed points are shown by black and red dots, and
the basins of unbound, the chaotic attractors, and the
fixed points are depicted in cyan, white, and yellow,
respectively. It can be see fromTable 3 that themaximal
Lyapunov exponents are positive, and all the attractors
obtained by the given initial values are chaotic. As can
be seen from the figure, the basins of attraction of the
hidden chaotic attractors are relative smaller than the
ones of the fixed points in Fig. 3a–c, while the basin of
the hidden chaotic attractor in Fig. 3d is large and the
one for the fixed point is tiny.

5 Conclusion

The hidden dynamics of a class of two-dimensional
maps was studied in this paper. The existence of fixed
points and their stabilities of these two-dimensional
maps were considered firstly. Then, different types of
fixed points related to possible hidden dynamics were
considered in three cases, i.e., no fixed point (NF), sin-
gle fixed point (SF) and two fixed points (TF). Finally,
a computer search program was used to explore the
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Fig. 1 (Color online) Basins of attraction for the examples of
the map with NF I listed in Table 1. The chaotic attractors, the
period-two attractors, and the period-ten attractor are marked by
black, red, and blue dots, respectively. The basins of unbound, the

chaotic attractors, the period-two attractors, and the period-ten
attractor are shown in cyan, white, yellow, and orange, respec-
tively

strange hidden attractors, and some typical strange hid-
den attractors with no fixed point and with a single
stable fixed point were presented in the phase-basin
portrait. As can be observed from these phase-basin
portraits, the basins of hidden attractors are very small

in some cases, and therefore, it is vital to investigate
the hidden dynamics of these maps. In this paper, we
only studied a special class of two-dimensional maps,
but the proposed schematic method can be generalized
to other maps. The future work would be to investigate
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Table 2 Examples of the two-dimensional map with NF II

Case Maps (x0, y0) Les dimL

NFIIa xk+1 = yk (0.51,−5.04) 0.0467 1.0419

yk+1 = 2.16xk + 0.22x2k − 0.02y2k + 0.6xk yk + 0.76 −1.1251

NFIIb xk+1 = yk (−0.52,−1.17) 0.1927 1.4525

yk+1 = 1.77xk − 0.08yk + 0.23x2k + xk yk + 0.1 −0.4278

NFIIc xk+1 = yk (2.78,−0.75) 0.1805 1.2252

yk+1 = 0.9xk − 0.72yk − 0.3x2k − xk yk − 0.15 −0.8048

NFIId xk+1 = yk (−0.07,−1.5) 0.2069 1.2009

yk+1 = −0.16xk + 0.7y2k − xk yk − 1.67 −1.0328

NFIIe xk+1 = yk (−0.95, 0.13) 0.1219 1.1589

yk+1 = 0.6xk + 0.49y2k − xk yk − 1.46 −0.7715

NFII f xk+1 = yk (1.78,−0.79) 0.0901 1.1109

yk+1 = −0.73yk − 0.37y2k + 0.81xk yk + 1.79 −0.8162

Fig. 2 (Color online) Basins of attraction for the examples of the map with NF II listed in Table 2. The chaotic attractors are marked
by black dots, and the basins of unbound and the chaotic attractors are shown in cyan and white, respectively
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Table 3 Examples of the two-dimensional map with SF I

Case Maps Fixed point |λi | (x0, y0) Les dimL

SFIa xk+1 = yk −0.7759 0.4146 0.32 0.0107 1.3937

yk+1 = −0.33xk + 0.17yk − 0.48x2k + 0.47y2k + 0.01xk yk − 0.9 −0.7759 0.9817 −1.85 −0.0279

SFIb xk+1 = yk −3.1793 0.6026 4.61 0.0389 1.1112

yk+1 = −0.84xk + 0.15y2k − 0.15xk yk − 5.85 −3.1793 0.6026 −6.99 −0.3537

SFIc xk+1 = yk −2.1307 0.7071 3.15 0.1111 1.1913

yk+1 = −0.99xk + 0.23y2k − 0.23xk yk − 4.24 −2.1307 0.7071 −4.82 −0.5854

SFId xk+1 = yk 0.5862 0.9984 −1.44 0.0388 1.9505

yk+1 = −1.29xk + 2yk − 0.35x2k − 0.85y2k + 1.2xk yk + 0.17 0.5862 0.9984 −0.23 −0.0408

Fig. 3 (Color online)
Phase-basin portraits of the
maps listed in the Table 3.
The chaotic attractors and
fixed points are denoted in
black and red. The basin of
unbound, chaotic attractors,
and fixed points are
indicated in cyan, white, and
yellow, respectively

the mechanism of hidden dynamics and the evolution
of their basins of attraction in high-dimensional maps.

Acknowledgments The authors are grateful to the anony-
mous reviewers for their valuable comments and suggestions
that have helped to improve the presentation of the paper.
This work is partially supported by the National Natural Sci-
ence Foundation of China (Grant No. 11402224, 11202180,
61273106, 11171290, 11401543), the Natural Science Founda-

tion of Jiangsu Province of China (Grant No. BK20151295), the
Qin Lan Project of the Jiangsu Higher Education Institutions
of China, the Jiangsu Overseas Research and Training Program
for University Prominent Young and Middle-aged Teachers, the
Fundamental Research Funds for the Central Universities, China
University of Geosciences (Wuhan) (No. CUGL150419) and
Presidents and the Top-notch Academic Programs Project of
Jiangsu Higher Education Institutions.

123



Hidden chaotic attractors in two-dimensional maps 2727

References

1. Hénon, M.: A two-dimensional mapping with a strange
attractor. Commun. Math. Phys. 50, 69–77 (1976)

2. Leonov,G.A.,Kuznetsov,N.V.,Kuznetsova,O.A., Seledzhi,
S.M., Vagaitsev, V.I.: Hidden oscillations in dynamical sys-
tems. Trans. Syst. Control 6, 54–67 (2011)

3. Leonov, G.A., Kuznetsov, N.V.: Hidden attractors in
dynamical systems: from hidden oscillation in Hilbert–
Kolmogorov, Aizerman and Kalman problems to hidden
chaotic attractor in Chua circuits. Int. J. Bifurcat. Chaos 23,
1330002 (2013)

4. Bragin, V.O., Vagaitsev, V.I., Kuznetsov, N.V., Leonov,
G.A.:Algorithms for findinghiddenoscillations in nonlinear
systems. The Aizerman and Kalman conjectures and Chuas
circuits. J. Comput. Syst. Sci. Int. 50, 511–543 (2011)

5. Leonov,G.A., Kuznetsov,N.V., Vagaitsev,V.I.: Localization
of hidden Chuas attractors. Phys. Lett. A 375, 2230–2233
(2011)

6. Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Hidden
attractor in smooth Chua systems. Phys. D 241, 1482–1486
(2012)

7. Wei, Z.: Dynamical behaviors of chaotic systems with no
equilibria. Phys. Lett. A 376, 102–108 (2011)

8. Jafari, S., Sprott, J.C., Golpayegani, S.: Elementary chaotic
flows with no equilibria. Phys. Lett. A 377, 699–702 (2013)

9. Wei, Z., Wang, R., Liu, A.: A new finding of the existence
of hyperchaotic attractors with no equilibria.Math. Comput.
Simul. 100, 13–23 (2014)

10. Molate, M., Jafari, S., Sprott, J.C., Golpayegani, S.: Simple
chaotic flows with one stable equilibrium. Int. J. Bifurcat.
Chaos 23, 1350188 (2013)

11. Wei, Z., Zhang,W.:Hidden hyperchaotic attractors in amod-
ified Lorenz–Stenflo system with only one stable equilib-
rium. Int. J. Bifurcat. Chaos 24, 1450127 (2014)

12. Wei, Z., Yang, Q.: Dynamical analysis of a new autonomous
3-D systemonlywith stable equilibria. NonlinearAnal. Real
World Appl. 12, 106–118 (2011)

13. Jafari, S., Sprott, J.C.: Simple chaotic flows with a line equi-
librium. Chaos Solitons Fractals 57, 79–84 (2013)

14. Wang, X., Chen, G.R.: Constructing a chaotic system with
any number of equilibria. Nonlinear Dyn. 71, 429–436
(2013)

15. Chudzik, A., Perlikowski, P., Stefanski, A., Kapitaniak, T.:
Multistability and rare attractors in van der Pol–Duffing
oscillator. Int. J. Bifurcat. Chaos 21, 1907–1912 (2011)

16. Dudkowski, D., Prasad, A., Kapitaniak, T.: Perpetual points
and hidden attractors in dynamical systems. Phys. Lett. A
379, 2591–2596 (2015)

17. Prasad, A.: Existence of perpetual points in nonlinear
dynamical systems and its applications. Int. J. Bifurcat.
Chaos 25, 1530005 (2015)

18. Sprott, J.C., Wang, X., Chen, G.R.: Coexistence of point,
periodic and strange attractors. Int. J. Bifurcat. Chaos 23,
1350093 (2013)

19. Li,C., Sprott, J.C.:Coexisting hidden attractors in a 4-D sim-
plified Lorenz system. Int. J. Bifurcat. Chaos 24, 1450034
(2014)

20. Leonov, G.A., Kuznetsov, N.V., Kiseleva, M.A., Solovyeva,
E.P., Zaretskiy, A.M.: Hidden oscillations in mathematical

model of drilling system actuated by induction motor with
a wound rotor. Nonlinear Dyn. 77, 277–288 (2014)

21. Lü, J.H., Chen, G.R.: Generating multiscroll chaotic attrac-
tors: theories, methods and applications. Int. J. Bifurcat.
Chaos 16, 775–858 (2006)

22. Liu, C.X., Yi, J., Xi, X.C., et al.: Research on the multi-
scroll chaos generation based on Jerk Mode. Procedia Eng.
29, 957–961 (2012)

23. Ma, J., Wu, X.J., Chu, R.T., Zhang, L.P.: Selection of multi-
scroll attractors in Jerk circuits and their verification using
Pspice. Nonlinear Dyn. 76, 1951–1962 (2014)

24. Jafari, S., Pham, V.T., Kapitaniak, T.: Multi-scroll chaotic
sea obtained from a simple 3D system without equilibrium.
Int. J. Bifurcat. Chaos 26, 1650031 (2016)

25. Sprott, J.C.: Strange Attractors: Creating Patterns in Chaos.
M&T Books, New York (2000)

26. Elhadj, Z., Sprott, J.C.: 2-D Quadratic Maps and 3-D ODE
Systems:ARigorousApproach.WorldScientific, Singapore
(2010)

27. Luo, A.C.J.: Discrete and Switching Dynamical Systems.
Higher Education Press, Beijing (2012)

28. Medio, A., Lines, M.: Nonlinear Dynamics a Primer. Cam-
bridge University Press, Cambridge (2002)

29. Heatha, W.P., Carrasco, J., Senb, M.: Second-order coun-
terexamples to the discrete-time Kalman conjecture. Auto-
matica 60, 140–144 (2015)

30. Zhusubaliyev, Z.T.,Mosekilde, E.:Multistability and hidden
attractors in a multilevel DC/DC converter. Math. Comput.
Simulat. 109, 32–45 (2015)

31. Jafari, S., Pham, T., Moghtadaei, M., Kingni, S.T.: The
relationship between chaotic maps and some chaotic sys-
tems with hidden attractors. Int. J. Bifurcat. Chaos (2016)
(accepted)

32. Sprott, J.C.: Elegant Chaos: Algebraically Simple Chaotic
Flows. World Scientific, Singapore (2010)

33. Kuznetsov, N.V., Leonov, G.A.: A Short Survey on Lya-
punov Dimension for Finite Dimensional Dynamical Sys-
tems in Euclidean Space. http://arxiv.org/pdf/1510.03835v2
(2015)

34. Leonov, G.A., Kuznetsov, N.V., Mokaev, T.N.: Homoclinic
orbits, and self-excited and hidden attractors in a Lorenz-
like system describing convective fluid motion. Eur. Phys.
J. Special Topics 224, 1421–1458 (2015)

35. Kuznetsov, N.V., Mokaev, T.N., Vasilev, P.A.: Numerical
justification of Leonov conjecture on Lyapunov dimension
of Rossler attractor. Commun. Nonlinear Sci. Numer. Sim-
ulat. 19, 1027–1034 (2014)

36. Kuznetsov, N.V., Alexeeva, T.A., Leonov, G.A.: Invariance
of Lyapunov exponents and Lyapunov dimension for regular
and irregular linearizations. Nonlinear Dyn. (2016). doi:10.
1007/s11071-016-2678-4

37. Leonov, G.A., Kuznetsov, N.V.: Time-varying linearization
and the Perron effects. Int. J. Bifurcat. Chaos 17, 1079–1107
(2007)

38. Kuznetsov, N.V., Leonov, G.A.: On stability by the first
approximation for discrete systems. In: 2005 International
Conference on Physics and Control (PhysCon 2005). Pro-
ceedings Volume 2005, IEEE, art. num. 1514053, pp. 596–
599 (2015)

123

http://arxiv.org/pdf/1510.03835v2
http://dx.doi.org/10.1007/s11071-016-2678-4
http://dx.doi.org/10.1007/s11071-016-2678-4

	Hidden chaotic attractors in a class of two-dimensional maps
	Abstract
	1 Introduction
	2 System model and fixed points
	2.1 System model
	2.2 Fixed points and stability analysis
	2.2.1 Case 1: no fixed point
	2.2.2 Case 2: single fixed point
	2.2.3 Case 3: two fixed points (TF)


	3 Strange attractors with no fixed point
	3.1 NF I
	3.2 NF II

	4 Strange attractors with a single stable fixed point
	5 Conclusion
	Acknowledgments
	References




