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Abstract In this article, a nonlinear fractional Cable
equation is solved by a two-grid algorithm combined
with finite element (FE) method. A temporal second-
order fully discrete two-grid FE scheme, in which
the spatial direction is approximated by two-grid FE
method and the integer and fractional derivatives in
time are discretized by second-order two-step back-
ward difference method and second-order weighted
and shifted Grünwald difference (WSGD) scheme, is
presented to solve nonlinear fractional Cable equation.
The studied algorithm in this paper mainly covers two
steps: First, the numerical solution of nonlinear FE
scheme on the coarse grid is solved; second, based
on the solution of initial iteration on the coarse grid,
the linearized FE system on the fine grid is solved by
using Newton iteration. Here, the stability based on
fully discrete two-grid method is derived. Moreover,
the a priori estimates with second-order convergence
rate in time are proved in detail, which is higher than
the L1 approximation result with O(τ 2−α + τ 2−β).
Finally, the numerical results by using the two-grid
method and FE method are calculated, respectively,
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and the CPU time is compared to verify our theoretical
results.

Keywords Two-grid method · WSGD operator ·
Nonlinear time-fractional Cable equation · Finite
element method · Error results

1 Introduction

Fractional partial differential equations (FPDEs),
which have a lot of applications in the realm of science,
mainly include space FPDEs [1–7], time FPDEs [8–
18] and space–time FPDEs [19–21]. The construction
of numerical methods for FPDEs has attracted great
attention of many scholars. For example, finite element
(FE) methods have been successfully applied to solv-
ing many FPDEs in the current literatures. In [7], Roop
gave FE method for fractional advection–dispersion
equations on bounded domains in two dimensions.
Feng et al. [20] studied FE method for diffusion equa-
tion with space–time-fractional derivatives. Ma et al.
[22] usedmoving FEmethods to solve space-fractional
differential equations. Li et al. [23] gave some numer-
ical theories on FE methods for Maxwell’s equations.
Liu et al. [24] proposed amixed FEmethod for a fourth-
order time FPDE with first-order convergence rate in
time. Liu et al. [25] solved a time-fractional reaction–
diffusion problem with fourth-order space derivative
term by using FE method and L1 approximation. Jin
et al. [26] used a FE method to solve the space-
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fractional parabolic equation and gave the error analy-
sis. Zeng et al. [27] used FE approaches combined
with finite difference method for solving the time-
fractional subdiffusion equation. Ford et al. [28] stud-
ied a FE method for time FPDEs and obtained optimal
convergence error estimates. Bu et al. [29] discussed
Galerkin FE method for Riesz space-fractional diffu-
sion equations in two-dimensional case. Li et al. [30]
applied FE method to solving nonlinear fractional sub-
diffusion and superdiffusion equations. In [31], Deng
solved fractional Fokker–Planck equation with space
and time derivatives by using FE method. Zhang et
al. [32] implemented FE method for solving a modi-
fied fractional diffusion equation in two-dimensional
case.

In this article, we will consider a two-grid FE algo-
rithm for solving a nonlinear time-fractional Cable
equation

∂u

∂t
= −R

0 ∂α
t u +R

0 ∂
β
t Δu − F(u)

+ g(x, t), (x, t) ∈ Ω × J, (1)

which covers boundary condition

u(x, t) = 0, (x, t) ∈ ∂Ω × J̄ , (2)

and initial condition

u(x, 0) = u0(x), x ∈ Ω, (3)

where Ω is a bounded convex polygonal sub-domain
of Rd(d ≤ 2), whose boundary ∂Ω is Lipschit z
continuous. J = (0, T ] is the time interval with the
upper bound T . The source item g(x, t) and the ini-
tial function u0(x) are given known functions. For the
nonlinear term F(u), there exists a constant C > 0
such that |F(u)| ≤ C |u| and |F ′(u)| ≤ C . And
R
0 ∂

γ
t w(x, t) is Riemann–Liouville fractional derivative

with γ ∈ (0, 1) given in Definition 1.
The fractional Cable equation [33–36], which

reflects the anomalous electro-diffusion in nerve cells,
is an important mathematical model. For the fractional
Cable equation, we can find some numerical methods,
such as finite difference methods [37–41], orthogonal
spline collocation method [42], spectral approxima-
tions [43,44], finite element methods [45,46]. Chen
et al. [37], Hu and Zhang [38], Yu and Jiang [39],
Quintana-Murillo and Yuste [40] presented and ana-

lyzed some finite difference schemes to numerically
solve the fractional Cable equation from different per-
spectives. Liu et al. [41], solved numerically the frac-
tional Cable equation by using two implicit numeri-
cal schemes. Zhang et al. [42] proposed and analyzed
the discrete-time orthogonal spline collocation method
for the two-dimensional case of fractional Cable equa-
tion. Bhrawy and Zaky [43] presented a Jacobi spec-
tral collocation approximation for numerically solv-
ing nonlinear two-dimensional fractional Cable equa-
tion covering Caputo fractional derivative. Lin et al.
[44] developed spectral approximations combinedwith
finite difference method for looking for the numeri-
cal solution of the fractional Cable equation. Recently,
Zhuang et al. [45], Liu et al. [46] studied and ana-
lyzed Galerkin finite element methods for the frac-
tional Cable equation with Riemann–Liouville deriva-
tive, respectively, and did some different analysis based
on different approximate formula for fractional deriv-
ative. Here, we will consider a two-grid FE algorithm
combined with a higher-order time approximation to
seek the numerical solutions of nonlinear fractional
Cable equation.

Two-grid FE algorithm was presented and devel-
oped byXu [47,48]. Owing to holding the advantage of
saving computation time,many computational scholars
have usedwell themethod to numerically solve integer-
order partial differential equations(such asDawson and
Wheeler[49] for nonlinear parabolic equations; Zhong
et al. [50] for time-harmonic Maxwell equations; Mu
and Xu [51] for mixed Stokes–Darcy model; Chen and
Chen [52] for nonlinear reaction–diffusion equations;
Bajpai and Nataraj [53] for Kelvin–Voigt model; Wang
[54] for semilinear evolution equations with positive
memory) and developed some new numerical tech-
niques based on the idea of two-grid algorithm (two-
grid expanded mixed FE methods in Chen et al. [55],
Wu and Allen [56], Liu et al. [57]; two-grid finite
volume element method in Chen and Liu [58]). Until
recently, in [59], the two-grid FEmethodwas presented
to solve the nonlinear fourth-order fractional differen-
tial equations with Caputo fractional derivative. How-
ever, the Caputo time-fractional derivative was approx-
imated by L1 formula and the only (2 − α)-order con-
vergence rate in time was arrived at in [59].

In this article, our main task is to look for the numer-
ical solution of nonlinear fractional Cable equation (1)
with initial and boundary condition by using two-grid
FEmethodwith higher-order time approximate scheme
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[60,61] and to discuss the numerical theories on sta-
bility and a priori estimate analysis for this method.
Tian et al. [60] approximated the Riemann–Liouville
fractional derivative by proposing a new higher-order
WSGD operator and then discussed some finite differ-
ence scheme based on this operator. Considering this
idea ofWSGDoperator,Wang andVong [61] presented
the compact difference scheme for the modified anom-
alous subdiffusion equation with α-order Caputo frac-
tional derivative, in which the Caputo fractional deriv-
ative covering order α ∈ (0, 1) is approximated by
applying the idea of WSGD operator, and an extension
for this idea was also made to discuss a compact dif-
ference scheme for the fractional diffusion-wave equa-
tion. However, the theories of the FE methods based
on the idea of WSGD operator have not been stud-
ied and discussed. In particular, the two-grid FE algo-
rithm combined with the idea of the WSGD operator
has not been reported in the current literatures. Here,
we will study the two-grid FE scheme with WSGD
operator for solving nonlinear fractional Cable equa-
tion, derive the stability of the studied method and
prove a priori estimate results with second-order con-
vergence rate, which is higher than time convergence
rate O(τ 2−α + τ 2−β) obtained by usual L1 approxi-
mation. Finally, we do some numerical computations
by using the current method and standard nonlinear
FE method, respectively, and find that our method in
CPU time is more efficient than standard nonlinear FE
method.

Throughout this article, we will denote C > 0 as a
constant, which is free of the spatial coarse grid size H ,
fine step length h, and time mesh size τ . Further, we
define the natural inner product in L2(Ω) or (L2(Ω))2

by (·, ·) equipped with norm ‖ · ‖.
The remaining outline of the article is as fol-

lows. In Sect. 2, some definitions of fractional deriv-
atives, lemmas on time approximations and two-grid
algorithm combined with second-order scheme in
time are given. In Sect. 3, the analysis of stability
of two-grid FE method is made. In Sect. 4, a pri-
ori errors of two-grid FE algorithm are proved. In
Sect. 5, some numerical results by using two-grid FE
method and standard nonlinear FE method are com-
puted and some comparisons of computing time are
done. Finally, some remarking conclusions on two-
grid FE algorithm proposed in this paper are shown
in Sect. 6.

2 Fractional derivatives and two-grid FE method

2.1 Fractional derivatives and approximate formula

Inmany literatures,we can get the following definitions
on fractional derivatives of Caputo type and Riemann–
Liouville type. At the same time, we need to give some
useful lemmas in the subsequent theoretical analysis.

Definition 1 The γ -order (0 < γ < 1) fractional
derivative of Riemann–Liouville type for the function
w(t) is defined as

R
0 ∂α

t w(t) = 1

Γ (1 − γ )

d

dt

∫ t

0

w(τ)

(t − τ)γ
dτ. (4)

Definition 2 The γ -order (0 < γ < 1) fractional
derivative of Caputo type for the function w(t) is
defined by

C
0 ∂

γ
t w(t) = 1

Γ (1 − γ )

∫ t

0

w′(τ )

(t − τ)γ
dτ, (5)

where Γ (·) is Gamma function.

Lemma 1 [62] The relationship between Caputo frac-
tional derivative and Riemann–Liouville fractional
derivative can be given by

R
0 ∂

γ
t w(t) = C

0 ∂
γ
t w(t) + w(0)t−γ

Γ (1 − γ )
. (6)

Lemma 2 For 0 < γ < 1, the following approximate
formula [60,61] with second-order accuracy at time
t = tn+1 holds

R
0 ∂

γ
t w(x, tn+1) =

n+1∑
i=0

pγ (i)

τ γ
w(x, tn+1−i ) + O(τ 2),

(7)

where

pγ (i) =
{

γ+2
2 gγ

0 , if i = 0,
γ+2
2 gγ

i + −γ
2 gγ

i−1, if i > 0,
(8)

gγ
0 = 1, gγ

i = Γ (i − γ )

Γ (−γ )Γ (i + 1)
,

gγ

i =
(
1 − γ + 1

i

)
gγ

i−1, i ≥ 1. (9)
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Lemma 3 For series {gγ

i }defined in Lemma2, we have

gγ
0 = 1 > 0, gγ

i < 0, (i = 1, 2 . . .),

∞∑
i=1

gγ

i = −1,

(10)

Lemma 4 For series {pγ (i)} given by (8), the follow-
ing inequality holds for any integer n

n+1∑
i=0

|pγ (i)| ≤ C. (11)

Proof Noting that the notation (8), we have

n+1∑
i=0

|pγ (i)| = γ + 2

2
gγ
0 +

n+1∑
i=1

∣∣∣γ + 2

2
gγ

i + −γ

2
gγ

i−1

∣∣∣.
(12)

Applying triangle inequality and lemma 3, we arrive at

n+1∑
i=0

|pγ (i)|

≤
(γ + 2

2
gγ
0 +

n+1∑
i=1

∣∣∣ − γ + 2

2
gγ

i

∣∣∣ +
n+1∑
i=1

∣∣∣−γ

2
gγ

i−1

∣∣∣
)

≤
(
(γ + 1)gγ

0 + γ + 2

2

n+1∑
i=1

−gγ

i + γ

2

n∑
i=1

−gγ

i

)

≤ 2γ + 2. (13)

So, we get the conclusion of lemma. �	
Lemma 5 [60,61] Let {pγ (i)} be defined as in (8).
Then for any positive integer L and real vector
(w0, w1, . . . , wL) ∈ RL+1, it holds that

L∑
n=0

( n∑
i=0

pγ (i)wn−i
)
wn ≥ 0. (14)

Remark 1 Based on the relationship (6) between
Caputo fractional derivative and Riemann–Liouville
fractional derivative, we easily find that the equality
R
0 ∂

γ
t w(t) =C

0 ∂
γ
t w(t) with w(0) = 0 holds. Further, it

is not hard to know that the second-order discrete for-
mula (7) in lemma 2 can also approximate the Caputo
fractional derivative (5) with zero initial value.

2.2 Two-grid algorithm based on FE scheme

To give the fully discrete analysis, we should approx-
imate both integer and fractional derivatives. The grid
points in the time interval [0, T ] are labeled as ti = iτ ,
i = 0, 1, 2, . . . , M , where τ = T/M is the time step
length. We define wn = w(tn) for a smooth function
on [0, T ] and δn

t wn = wn−wn−1

τ
.

Using the approximate formula (7) and two-step
backward Euler approximation and then applying
Green’s formula, we find un+1 : [0, T ] 
→ H1

0 to arrive
at the weak formulation of (1)–(3) for any v ∈ H1

0 as
Case n = 0:

(
δ1t u1, v

)
+

1∑
i=0

pα(i)

τα
(u1−i , v)

+
1∑

i=0

pβ(i)

τβ
(∇u1−i ,∇v) + (F(u1), v) = (g1, v)

+ (ē11, v) + (ē12, v) + (Δē13, v), (15)

Case n ≥ 1:

(3
2
δn+1

t un+1 − 1

2
δn

t un, v
)

+
n+1∑
i=0

pα(i)

τα
(un+1−i , v)

+
n+1∑
i=0

pβ(i)

τβ
(∇un+1−i ,∇v)

+ (F(un+1), v) = (gn+1, v) + (ēn+1
1 , v)

+ (ēn+1
2 , v) + (Δēn+1

3 , v), (16)

where

ēn+1
1 =

⎧⎨
⎩

δ1t u1 − u(t1) = O(τ ), n = 0,

3

2
δn+1

t un+1 − 1

2
δn

t un − ut (tn+1) = O(τ2), n ≥ 1,

(17)
ēn+1
2 = O(τ2), n ≥ 0, (18)

ēn+1
3 = O(τ2), n ≥ 0. (19)

For formulating finite element algorithm, we choose
finite element space Vh ⊂ H1

0 as

Vh = {vh ∈ H1
0 (Ω) ∩ C0(Ω) | vh |e ∈ Qm(e),

∀e ∈ Kh}, (20)

where Kh is the quasiuniform rectangular partition for
the spatial domain Ω .

Then, we find un+1
h ∈ Vh(n = 0, 1, . . . , Nτ − 1) to

formulate a standard nonlinear finite element system
for any vh ∈ Vh as
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Case n = 0:

(
δ1t u1

h, vh

)
+

1∑
i=0

pα(i)

τα
(u1−i

h , vh)

+
1∑

i=0

pβ(i)

τβ
(∇u1−i

h ,∇vh)

+ (F(u1
h), vh) = (g1, vh), (21)

Case n ≥ 1:

(3
2
δn+1

t un+1
h − 1

2
δn

t un
h, vh

)
+

n+1∑
i=0

pα(i)

τα
(un+1−i

h , vh)

+
n+1∑
i=0

pβ(i)

τβ
(∇un+1−i

h ,∇vh)

+ (F(un+1
h ), vh) = (gn+1, vh). (22)

For improving the finite element discrete system (21)–
(22), we consider the following two-grid FE system
based on the coarse grid TH and the fine grid Th .

Step I: First, the following nonlinear system based on
the coarse grid TH is solved by finding the solution
un+1

H : [0, T ] 
→ VH ⊂ Vh such that
Case n = 0:

(
δ1t u1

H , vH

)
+

1∑
i=0

pα(i)

τα
(u1−i

H , vH )

+
1∑

i=0

pβ(i)

τβ
(∇u1−i

H ,∇vH )

+ (F(u1
H ), vH ) = (g1, vH ), (23)

Case n ≥ 1:

(3
2
δn+1

t un+1
H − 1

2
δn

t un
H , vH

)
+

n+1∑
i=0

pα(i)

τα
(un+1−i

H , vH )

+
n+1∑
i=0

pβ(i)

τβ
(∇un+1−i

H ,∇vH )

+ (F(un+1
H ), vH ) = (gn+1, vH ). (24)

Step II: Second, based on the solution un+1
H ∈ VH on

the coarse grid TH , the following linear system on
the fine grid Th is considered by looking for U n+1

h :
[0, T ] 
→ Vh such that

Case n = 0:

(
δ1t U 1

h , vh

)
+

1∑
i=0

pα(i)

τα
(U 1−i

h , vh)

+
1∑

i=0

pβ(i)

τβ
(∇U 1−i

h ,∇vh)

+ (F(u1
H ) + F ′(u1

H )(U 1
h − u1

H ), vh) = (g1, vh),

(25)

Case n ≥ 1:

(3
2
δn+1

t U n+1
h − 1

2
δn

t U n
h , vh

)

+
n+1∑
i=0

pα(i)

τα
(U n+1−i

h , vh)

+
n+1∑
i=0

pβ(i)

τβ
(∇U n+1−i

h ,∇vh) + (F(un+1
H )

+F ′(un+1
H )(U n+1

h − un+1
H ), vh) = (gn+1, vh),

(26)

where h � H .

Remark 2 In the solving system above, we can seek
a solution un+1

H ∈ VH on the coarse grid TH in the
nonlinear system (23)–(24) and then get the solution
U n+1

h ∈ Vh on the fine grid Th in the linear system
(25)–(26). We call the system (23)–(24) with (25)–(26)
as two-grid FE system, which is more efficient than the
standard nonlinear FE system (21)–(22). In the results
of numerical calculations, we will see the CPU time
usedby two-gridFEscheme is less than that by standard
nonlinear FE scheme.

In what follows, for the convenience of discussions
on stability and a priori error analysis, we first give the
following lemma.

Lemma 6 For series {wn}, the following inequality
holds

(3
2
δn+1

t wn+1 − 1

2
δn

t wn, wn+1
)

≥ 1

4τ
[�(wn+1, wn) − �(wn, wn−1)], (27)

where

�(wn, wn−1) � ‖wn‖2 + ‖2wn − wn−1‖2. (28)

In the next process, we firstly consider the stability
for systems (23)–(24) and (25)–(26).
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3 Analysis of stability based on two-grid FE
algorithm

We first derive the stability based on two-grid FE algo-
rithm.

Theorem 1 For the two-grid FE system (23)–(26)
based on coarse grid TH and fine grid Th, the fol-
lowing stable inequality for U n

h ∈ Vh holds

‖U n
h ‖2 ≤ C(‖U 0

h ‖2 + ‖u0
H ‖2 + max

0≤i≤n
‖gi‖2), (29)

Proof We first consider the results for the case n ≥ 1.
Setting vh = U n+1

h in (26), and noting that the inequal-
ity (27), we have

1

4τ
[�(U n+1

h , U n
h ) − �(U n

h , U n−1
h )]

+
n+1∑
i=0

pα(i)

τα
(U n+1−i

h , U n+1
h )

+
n+1∑
i=0

pβ(i)

τβ
(∇U n+1−i

h ,∇U n+1
h )

= −(F(un+1
H ) + F ′(un+1

H )(U n+1
h − un+1

H ), U n+1
h )

+ (gn+1, U n+1
h ). (30)

Using Cauchy–Schwarz inequality and Young inequal-
ity, we easily get

1

4τ
[�(U n+1

h , U n
h ) − �(U n

h , U n−1
h )]

+
n+1∑
i=0

pα(i)

τα
(U n+1−i

h , U n+1
h )

+
n+1∑
i=0

pβ(i)

τβ
(∇U n+1−i

h ,∇U n+1
h )

≤ C‖un+1
H ‖‖U n+1

h ‖ + ‖F ′(un+1
H )‖∞(‖U n+1

h ‖2
+‖un+1

H ‖‖U n+1
h ‖) + ‖gn+1‖‖U n+1

h ‖
≤ C(‖un+1

H ‖2 + ‖U n+1
h ‖2 + ‖gn+1‖2). (31)

Sum (31) for n from 1 to L and use (27) to get

�(U n+1
h , U n

h ) + τ 1−α
L∑

n=1

n+1∑
i=0

pα(i)(U n+1−i
h , U n+1

h )

+ τ 1−β
L∑

n=1

n+1∑
i=0

pβ(i)(∇U n+1−i
h ,∇U n+1

h )

≤ Cτ

L∑
n=1

(‖un+1
H ‖2 + ‖U n+1

h ‖2 + ‖gn+1‖2). (32)

Set vh = U 1
h in (25) and use Cauchy–Schwarz inequal-

ity and Young inequality to arrive at

(
δ1t U 1

h , U 1
h

)
+

1∑
i=0

pα(i)

τα
(U 1−i

h , U 1
h )

+
1∑

i=0

pβ(i)

τβ
(∇U 1−i

h ,∇U 1
h ) = −(F(u1

H )

+F ′((u1
H )(U 1

h − u1
H ), U 1

h ) + (g1, U 1
h )

≤ C(‖u1
H ‖2 + ‖U 1

h ‖2 + ‖g1‖2). (33)

From (33), it easily follows that

‖U 1
h ‖2 + τ 1−α

1∑
i=0

pα(i)(U 1−i
h , U 1

h )

+ τ 1−β
1∑

i=0

pβ(i)(∇U 1−i
h ,∇U 1

h )

≤ Cτ(‖u1
H ‖2 + ‖U 0

h ‖2 + ‖U 1
h ‖2 + ‖g1‖2). (34)

Make a combination for (32) and (34) to get

‖U L
h ‖2 + τ 1−α

L∑
n=0

n∑
i=0

pα(i)

τα
(U n−i

h , U n
h )

+ τ 1−β
L∑

n=0

n∑
i=0

pβ(i)

τβ
(∇U n−i

h ,∇U n
h )

≤ Cτ

L∑
n=0

(‖un
H ‖2 + ‖U n

h ‖2 + ‖gn‖2) + C‖U 0
h ‖2.

(35)

Note that lemma 5 and use Cronwall lemma to get

‖U L
h ‖2 ≤ C‖U 0

h ‖2 + Cτ

L∑
n=0

(‖un
H ‖2 + ‖gn‖2). (36)

For the next estimates, we have to discuss the term
‖un

H ‖2. �	

In (23) and (24),we takeu1
H andun+1

H forvH , respec-
tively, and use a similar process of derivation to the
‖U L

h ‖2 to arrive at

‖un
H ‖2 ≤ C(‖u0

H ‖2 + max
0≤i≤n

‖gi‖2) (37)
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Substitute (37) into (36) and note that τ
∑L

n=0 ≤ T to
get

‖U L
h ‖2 ≤ C(‖U 0

h ‖2 + ‖u0
H ‖2 + max

0≤i≤L
‖gi‖2), (38)

which indicate that the conclusion (29) of Theorem 1
holds.

4 Error analysis based on two-grid algorithm

For discussing and deriving a priori error estimates
based on fully discrete two-grid FE method, we have
to introduce a Ritz projection operator which is defined
by finding �� : H1

0 (Ω) → V� such that

(∇(��w),∇w�) = (∇w,∇w�),∀w� ∈ V�, (39)

with the following estimate

‖w − ��w‖ + �‖w − ��w‖1 ≤ C�
r+1‖w‖r+1,

∀w ∈ H1
0 (Ω) ∩ Hr+1(Ω), (40)

where � is coarse grid step length H or fine grid size h

and the norms are defined by ‖w‖l =
( ∑
0≤|θ |≤l

∫
Ω

|Dθ

w|2dx
) 1

2
with the polynomial’s degree l.

In the following contents, based on the given Ritz
projection [63] and estimate inequality (40), we will do
some detailed discussions on a priori error analysis.

Now we rewrite the errors as

u(tn) − U n
h = (u(tn) − �hU n)

+ (�hU n − U n
h ) = Pn

u + Mn
u .

Theorem 2 With u(tn) ∈ H1
0 (Ω) ∩ Hr+1(Ω), U n

h ∈
Vh and U 0

h = �hu(0), we obtain the following a priori
error results in L2-norm

‖u(tn) − U n
h ‖ ≤ C[τ 2

+ (1 + τ−α)hr+1 + (1 + τ−2α)H2r+2], (41)

where C is a positive constant independent of coarse
grid step length H, fine grid size h and time step para-
meters τ .

Proof Combine (26) and (7) with (39) to arrive at the
error equations for any vh ∈ Vh and n ≥ 1
(3
2
δn+1

t Mn+1
u − 1

2
δn

t M
n
u, vh

)

+
n+1∑
i=0

pα(i)

τα
(Mn+1−i

u , vh)

+
n+1∑
i=0

pβ(i)

τβ
(∇Mn+1−i

u ,∇vh)

= −
(3
2
δn+1

t Pn+1
u − 1

2
δn

t P
n
u, vh

)

−
n+1∑
i=0

pα(i)

τα
(Pn+1−i

u , vh)

− (F(un+1) − F(un+1
H )

+F ′(un+1
H )(Mn+1

u + Pn+1
u − un+1 + un+1

H ), vh)

+ (ēn+1
1 , vh) + (ēn+1

2 , vh) + (Δēn+1
3 , vh)

.= I1 + I2 + I3 + I4 + I5 + I6. (42)

In what follows, we need to estimate the terms I j , j =
1, . . . , 6. First we estimate the third term I3. For con-
sidering the nonlinear term, we use Taylor expansion
to obtain

F(un+1) − F(un+1
H ) = F ′(un+1

H )(un+1 − un+1
H )

+ 1

2
F ′′(χn+1)(un+1 − un+1

H )2, (43)

where χ j is a value between u j and u j
H .

Based on (43), we obtain

F(un+1) − F(un+1
H ) + F ′(un+1

H )(Mn+1
u + Pn+1

u

− un+1 + un+1
H ) = F ′(un+1

H )(Mn+1
u + Pn+1

u )

+1

2
F ′′(χn+1)(un+1 − un+1

H )2. (44)

So, we have

I3 = −(F(un+1) − F(un+1
H ) + F ′(un+1

H )(Mn+1
u

+Pn+1
u − un+1 + un+1

H ), vh)

≤ 1

2
‖F ′(un+1

H )‖∞(‖Pn+1
u ‖2 + ‖Mn+1

u ‖2)

+ 1

4
‖F ′′(χn+1)‖∞‖(un+1 − un+1

H )2‖2

+ (
1

2
‖F ′(un+1

H )‖∞ + 1

4
‖F ′′(χn)‖∞)‖vh‖2.

(45)

We now use Cauchy–Schwarz inequality with Young
inequality to get

I1 = −
(3
2
δn+1

t Pn+1
u − 1

2
δn

t P
n
u, vh

)

≤
∥∥∥3
2
δn+1

t Pn+1
u − 1

2
δn

t P
n
u

∥∥∥‖vh‖

≤ C
∫ tn+1

tn−1

‖Put‖2ds + C‖vh‖2, (46)
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and

I4 + I5 + I6=(ēn+1
1 , vh)+(ēn+1

2 , vh) + (Δēn+1
3 , vh)

≤ C(τ 4 + ‖vh‖2). (47)

By using lemma 4 with Cauchy–Schwarz inequality
and Young inequality, we have

I2 = −
n+1∑
i=0

pα(i)

τα
(Pn+1−i

u , vh)

≤ 1

τα

n+1∑
i=0

|pα(i)||(Pn+1−i
u , vh)|

≤ α + 2

2τα
gα
0 ‖Pn+1

u ‖‖vh‖

+ 1

τα

n+1∑
i=1

∣∣∣α + 2

2
gα

i + −α

2
gα

i−1

∣∣∣‖Pn+1−i
u ‖‖vh‖

≤ Chr+1‖vh‖
(α + 2

2τα
gα
0 + 1

τα

n+1∑
i=1

∣∣∣ − α + 2

2
gα

i

∣∣∣

+ 1

τα

n+1∑
i=1

∣∣∣−α

2
gα

i−1

∣∣∣
)

≤ Chr+1‖vh‖
(α + 1

τα
gα
0 + α + 2

2τα

n+1∑
i=1

−gα
i

+ α

2τα

n∑
i=1

−gα
i

)

≤ C(α)τ−αhr+1‖vh‖
≤ C(α)τ−2αh2r+2 + C‖vh‖2. (48)

In (42), (45)–(48), we take vh = Mn+1
u and make a

combination for these expressions to get

1

4τ
[�(Mn+1

u ,Mn
u) − �(Mn

u,Mn−1
u )]

+
n+1∑
i=0

pα(i)

τα
(Mn+1−i

u ,Mn+1
u )

+
n+1∑
i=0

pβ(i)

τβ
(∇Mn+1−i

u ,∇Mn+1
u )

.= I1 + I2 + I3 + I4 + I5 + I6

≤ C(τ 4 + τ−2αh2r+2) + 1

2
‖F ′(un+1

H )‖∞‖Pn+1
u ‖2

+ 1

4
‖F ′′(χn+1)‖∞‖(un+1 − un+1

H )2‖2

+ (‖F ′(un+1
H )‖∞

+1

4
‖F ′′(χn)‖∞ + 1)‖Mn+1

u ‖2. (49)

Multiply (49) by 4τ and sum (49) for n from 1 to L to
get

�(ML+1
u ,ML

u )

+ 4τ 1−α
L∑

n=1

n+1∑
i=0

pα(i)(Mn+1−i
u ,Mn+1

u )

+ 4τ 1−β
L∑

n=1

n+1∑
i=0

pβ(i)(∇Mn+1−i
u ,∇Mn+1

u )

≤ �(M1
u,M0

u) + Cτ

L∑
n=1

(τ 4 + τ−2αh2r+2)

+ Cτ

L∑
n=1

‖F ′(un+1
H )‖∞‖Pn+1

u ‖2

+ τ

L∑
n=1

‖F ′′(χn+1)‖∞‖(un+1 − un+1
H )2‖2

+ τ

L∑
n=1

(‖F ′(un+1
H )‖∞

+ 1

4
‖F ′′(χn)‖∞ + 1)‖Mn+1

u ‖2. (50)

Subtract (25) from (15), we have

(
δ1t M

1
u, vh

)
+

1∑
i=0

pα(i)

τα
(M1−i

u , vh)

+
1∑

i=0

pβ(i)

τβ
(∇M1−i

u ,∇vh) = −
(
δn+1

t P1
u, vh

)

−
1∑

i=0

pα(i)

τα
(P1−i

u , vh) − (F(u1) − F(u1
H )

−F ′(u1
H )(U 1

h − u1
H ), vh) + (ē11, vh) + (ē12, vh)

+ (Δē13, vh). (51)

In (51), we choose vh = M1
u and use (45) and (48) to

get

‖M1
u‖2 − ‖M0

u‖2 + ‖M1
u − M0

u‖2

+ 2τ 1−α
1∑

i=0

pα(i)(M1−i
u ,M1

u)

+ 2τ 1−β
1∑

i=0

pβ(i)(∇M1−i
u ,∇M1

u) = −2τ
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×
(
δn+1

t P1
u,M1

u

)

−2τ
1∑

i=0

pα(i)

τα
(P1−i

u ,M1
u) − 2τ(F(u1) − F(u1

H )

−F ′(u1
H )(U 1

h − u1
H ),M1

u)

+ 2τ(ē11,M
1
u) + 2τ(ē12,M

1
u) + 2τ(Δē13,M

1
u)

≤ τ‖F ′(u1
H )‖∞(‖P1

u‖2 + ‖M1
u‖2)

+ τ

2
‖F ′′(χ1)‖∞‖(u1 − u1

H )2‖2

+ (τ‖F ′(u1
H )‖∞ + τ

2
‖F ′′(χ1)‖∞)‖M1

u‖2 + Cτ 4

+ Cτ−2αh2r+2 + 1

4
‖M1

u‖2, (52)

Simplifying for (52) and using triangle inequality, we
have

�(M1
u,M0

u) + 2τ 1−α
1∑

i=0

pα(i)(M1−i
u ,M1

u)

+ 2τ 1−β
1∑

i=0

pβ(i)(∇M1−i
u ,∇M1

u)

≤ Cτh2r+2 + Cτ−2αh2r+2

+ τ

2
‖(u1 − u1

H )2‖2 + Cτ 4. (53)

Combine (50) with (53) and note that M0
u = 0 to get

�(ML+1
u ,ML

u )

+ 4τ 1−α
L∑

n=−1

n+1∑
i=0

pα(i)(Mn+1−i
u ,Mn+1

u )

+ 4τ 1−β
L∑

n=−1

n+1∑
i=0

pβ(i)(∇Mn+1−i
u ,∇Mn+1

u )

≤ Cτ

L∑
n=1

(τ 4 + τ−2αh2r+2)

+ Cτ

L∑
n=1

‖F ′(un+1
H )‖∞‖Pn+1

u ‖2

+ τ

L∑
n=1

‖F ′′(χn+1)‖∞‖(un+1 − un+1
H )2‖2

+ τ

L∑
n=1

(‖F ′(un+1
H )‖∞

+ 1

4
‖F ′′(χn)‖∞ + 1)‖Mn+1

u ‖2 + Cτh2r+2

+ τ

2
‖(u1 − u1

H )2‖2 + Cτ 4. (54)

By using theCronwall lemma and the relationship (22),
we have for sufficiently small τ

�(ML+1
u ,ML

u )

≤ C(τ 4 + τ−2αh2r+2 + h2r+2)

+ Cτ

L∑
n=0

‖(un+1 − un+1
H )2‖2. (55)

For the next discussion, we need to give the estimate
for the term ‖(un+1 − un+1

H )2‖.
Subtract (23), (24) from (15), (16), respectively, and

use the Ritz projection (39) to arrive at the error equa-
tions under the coarse grid for any vH ∈ VH

Case n = 0:

(
δ1t D

1
u, vH

)
+

1∑
i=0

pα(i)

τα
(D1−i

u , vH )

+
1∑

i=0

pβ(i)

τβ
(∇D1−i

u ,∇vH ) = −
(
δ1t A

1
u, vH

)

−
1∑

i=0

pα(i)

τα
(A1−i

u , vH )

− (F(u1) − F(u1
H ), vH ) + (ē11, vH ) + (ē12, vH )

+ (Δē13, vH ), (56)

Case n ≥ 1:
(3
2
δn+1

t Dn+1
u − 1

2
δn

t D
n
u, vH

)

+
n+1∑
i=0

pα(i)

τα
(Dn+1−i

u , vH )

+
n+1∑
i=0

pβ(i)

τβ
(∇Dn+1−i

u ,∇vH )

= −
(3
2
δn+1

t An+1
u − 1

2
δn

t A
n
u, vH

)

−
n+1∑
i=0

pα(i)

τα
(An+1−i

u , vH )

− (F(un+1) − F(un+1
H ), vH ) + (ēn+1

1 , vH )

+ (ēn+1
2 , vH ) + (Δēn+1

3 , vH ), (57)

where An
u = u(tn) − �H un ,Dn

u = �H un − un
H .

In (56) and (57), we take vH = D1
u and vH = Dn+1

u ,
respectively, and use a similar process of proof to the
estimate for ‖un − U n

h ‖ to get

‖un+1 − un+1
H ‖ ≤ C(τ 2 + τ−α Hr+1 + Hr+1). (58)
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Table 1 L2-errors with
α = 0.01, β = 0.99 and
τ = 1/100

H h ‖u − Uh‖ Order CPU time (in seconds)

1/4 1/16 6.3566e−003 – 43.231369

1/5 1/25 2.6118e−003 1.9930 122.612277

1/6 1/36 1.2323e−003 2.0600 414.219975

1/7 1/49 6.3532e−004 2.1489 1810.428349

FE algorithm h ‖u − uh‖ Order CPU time (in seconds)

1/16 6.4246e−003 – 49.760083

1/25 2.6815e−003 1.9578 145.938800

1/36 1.3025e−003 1.9803 488.617402

1/49 7.0575e−004 1.9876 2112.565940

Substitute the above estimate inequality (58) into (55)

�(ML+1
u ,ML

u ) ≤ C(τ 4 + τ−2αh2r+2

+ h2r+2 + τ−4α H4r+4 + H4r+4), (59)

which combine the triangle inequality with (40) to get
the conclusion of Theorem 2. �	
Remark 3 Based on the theorem’s results, we obtain
the temporal convergence ratewith second-order result,
which is free of fractional parameters α and β. More-
over, we can find that the time convergence rate by
using second-order backward difference method and
second-order WSGD scheme is higher than the one
with O(τ 2−α + τ 2−β) obtained by L1 approximation.

5 Numerical tests

In this section, we consider a numerical example in
space–time domain [0, 1] × [0, 1]2 to verify the theo-
retical results of two-grid FE algorithm combined with
second-order backward difference method and second-
order WSGD scheme. We now choose the nonlinear
termF(u) = u3−u and the exact solution u(x, y, t) =
t2 sin(2πx) sin(2πy) and then easily determine that the
known source function in (1) is

g(x, y, t) =
[
2t − t2 + 2t2−α

Γ (3 − α)
+ 16π2 t2−β

Γ (3 − β)

]

sin(2πx) sin(2πy) + t6 sin3(2πx) sin3(2πy).

We now divide uniformly the spatial domain [0, 1]2
by using rectangular meshes, approximate first-order
integer derivative with two-step backward Euler
method and discretize the fractional direvative with
second-order scheme. Now we take the continuous

bilinear functions space Vh with Q(x, y) = a0+a1x +
a2y + a3xy.

For showing the current method in the this paper,
we calculate some error results with convergence order
for different fractional parameters α and β. In Table 1,
by taking fractional parameters α = 0.01, β = 0.99
and fixed temporal step length τ = 1/100, we show
some a priori errors in L2-norm and convergence orders
for two-grid algorithm with coarse and fine meshes
H = √

h = 1/4, 1/5, 1/6, 1/7 and FE method with
h = 1/16, 1/25, 1/36, 1/49. From Table 1, ones can
see that the results with second-order convergence rate
by using our method are stable and the CPU time in
seconds for two-grid FE method is less than that by
making use of the standard FE method. In Table 2, we
use the same computing method and spatial meshes as
in Table 1 and then obtain the errors and convergence
rates when taking α = 0.5, β = 0.5 and τ = 1/100.
The similar calculated results with α = 0.99, β = 0.01
and τ = 1/100 are also shown in Table 3. These
numerical results shown in Tables 1, 2 and 3 also tell
ones that compared to widely used L1 formula with
O(τ 2−α + τ 2−β), the WSGD scheme in this paper can
get second-order convergence rate. For obtaining the
second-order accuracy in time, we here use the second-
order backward differencemethod to approximate time
direction. Compared to commonly used one-step back-
ward Euler difference method, for getting the same
calculated accuracy, the second-order backward differ-
ence method can reduce the number of iterations in
time and save the calculating time. From the numeri-
cal results presented in Tables 1 and 2, ones can see
that the convergence order of our method is slightly
higher than that of the standard nonlinear FE method,
while in Table 3, our method shows the similar con-
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Table 2 L2-errors with
α = 0.5, β = 0.5 and
τ = 1/100

H h ‖u − Uh‖ Order CPU time (in seconds)

1/4 1/16 6.6252e−003 – 34.637650

1/5 1/25 2.7694e−003 1.9545 102.802120

1/6 1/36 1.3488e−003 1.9729 374.852060

1/7 1/49 7.3406e−004 1.9733 1745.224030

FE algorithm h ‖u − uh‖ Order CPU time (in seconds)

1/16 6.6292e−003 – 37.660242

1/25 2.7735e−003 1.9525 116.171144

1/36 1.3529e−003 1.9687 448.280514

1/49 7.3816e−004 1.9651 2189.299786

Table 3 L2-errors with
α = 0.99, β = 0.01 and
τ = 1/100

H h ‖u − Uh‖ Order CPU time (in seconds)

1/4 1/16 6.9107e−003 – 53.860030

1/5 1/25 2.8841e−003 1.9581 153.053853

1/6 1/36 1.4003e−003 1.9815 497.518498

1/7 1/49 7.5807e−004 1.9905 2040.087416

FE algorithm h ‖u − uh‖ Order CPU time (in seconds)

1/16 6.9107e−003 – 57.108134

1/25 2.8841e−003 1.9581 163.841391

1/36 1.4003e−003 1.9815 554.982539

1/49 7.5809e−004 1.9904 2416.876270

vergence rate to that of nonlinear FE method. These
phenomena indicate that compared to nonlinear FE
method, ourmethod has advantages in solving the time-
fractional Cable equation covering the space–time par-
tial derivative term R

0 ∂
β
t Δu with larger fractional para-

meter β ∈ (0, 1).
In Figs. 1, 2 and 3, by taking α = 0.99, β = 0.01,

τ = 1/100 and h = H2 = 1/25, we show the sur-
faces for the exact solution u, two-grid FE solution
Uh and FE solution uh , respectively. Ones easily see
that both two-grid FE solution Uh based on coarse and
fine meshes and FE solution uh can approximate well
the exact solution u. In particular, from the surface for
errors u − Uh and u − uh in Figs. 4 and 5, ones easily
find that two-grid FE method holds the similar com-
putational accuracy to that of standard nonlinear FE
method.

In summary, from the computed error results and
convergence rate in Tables 1, 2 and 3 and the surfaces
shown in Figs. 1, 2, 3, 4 and 5, ones can know that
with the similar computational accuracy to that for stan-

dard nonlinear FE method, our two-grid FE method is
more efficient in computational time than the standard
nonlinear FE method. Moreover, the current method
combined with the second-order backward difference
method and second-order WSGD operator can get a
stable second-order convergence rate, which is inde-
pendent of fractional parameters α and β and is higher
than the convergence result O(τ 2−α + τ 2−β) derived
by L1 approximation.

6 Some concluding remarks

In this article, we consider two-grid method combined
with FEmethods to give the numerical solution for non-
linear fractional Cable equations. First, we give some
lemmas used in our paper; second, we give the approx-
imate formula for fractional derivative and then for-
mulate the numerical scheme based on two-grid FE
method; finally, we do some detailed derivations for
the stability of numerical scheme and a priori error
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analysis with second-order convergence rate in time
and then compute some numerical errors and conver-
gence orders to verify the theoretical results.
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From the numerical results, ones easily see that two-
grid FE method studied in this paper can solve well the
nonlinear time-fractional Cable equation. Based on the
point of view of calculating efficiency, compared to
FE method, two-grid FE method can spend less time.
Moreover, compared with the time convergence rate
O(τ 2−α + τ 2−β) obtained by usual L1 approximation,
the current numerical scheme can arrive at second-
order convergence rate independent of fractional para-
metersα andβ. Considering thementioned advantages,
in the future works, we will discuss the numerical theo-
ries of two-grid FE method for some space and space–
time-fractional partial differential equations with non-
linear term.
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