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Abstract The aim of this paper was to study the non-
linear vibrations of a parametric excited Duffing oscil-
lator with time delay feedback. At some values of the
time delay can be used to suppress the vibration of the
nonlinear system.Themethodofmultiple scales pertur-
bation is applied to obtain the analytical solution of the
system and the frequency response equation near sub-
harmonic resonance case. The stability of the obtained
nonlinear solution is studied and solved numerically.
The effects of the different parameters of the system
behavior are investigated. Analytical solution in this
paper is in good agreement with the numerical simula-
tion.
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1 Introduction

Vibration occurring in most dynamical system can be
controlled to decrease the risk of disturbance, dam-
age and destruction of this dynamical system. We con-
trol these risks by different method of vibration con-
trol as passive and active control or by using time
delay. The nonlinear system with time delays has been
an important topic of research over the last decade.
El-Bassiouny and El-kholy [1] investigated the pri-
mary and sub-harmonic resonances of a nonlinear
single-degree-of-freedom system under feedback con-
trol with a time delay. The analytical solution stud-
ied by using the averaging method and multiple scales
method. They obtained that when the time delay is
increased the response amplitude loses stability. El-
Gohary and El-Ganaini [2,3] presented the vibration
reduction of hinged–hinged beam under piezoelec-
tric absorber using time delay. The system is studied
when subjected to different types of excitation forces
at simultaneous resonance condition, where the sys-
tem damage is probable. They illustrated that the time
delay absorber is more effective than ordinary absorber
and the delay time is an important factor in select-
ing the absorber. Saeed et al. [4] illustrated the effects
of the time delay saturation-based controller to sup-
press the vibrations of nonlinear beam. From the results
obtained that at specific values of time delays the con-
troller’s amplitude can be reduced for the excitation
frequencies smaller than the main system’s natural
frequency.
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El-Sayed and Bauomy [5] studied the effect of
time delay absorber on the helicopter blade flapping
system when subjected to multi-parametric excitation
forces. The time delay absorber reduction the high
amplitude of the nonlinear system using the averag-
ing method when the optimum delay time ranges is
τ ≤ 0.004. Nbendjo et al. [6] discussed the con-
trol of vibration, snap-through instability and horse-
shoe chaos in a double-well Duffing oscillator sub-
jected to an external excitation. The effects of the
time delay between the motion of the oscillator and
the action of the control are illustrated. Also, conclu-
sion described that the best estimation of the optimal
parameters for the efficiency of the control should not
neglect the effects of time delay. Zhao and Xu [7] con-
sidered the delayed feedback control in a two-degree-
of-freedom nonlinear system with external excitation.
At some values of the delay the dynamical behaviors
became complex when the gain increasing, but the
vibration can be suppressed more efficiently at other
values.

Lu and Liu [8] investigated the primary resonance
of an externally excited Duffing oscillator under feed-
back control with time delay. Illustrated that appropri-
ate choice for the feedback gains and time delay can
exclude the possibility ofmodulatedmotion and reduce
the amplitude peak of the primary resonance. Naik and
Singru [9] studied the primary, sub-harmonic and super
harmonic resonances of a harmonically excited nonlin-
ear quarter-car model with time delayed active control.
Sun et al. [10] presented the effects of the time delays
on chaos and bifurcation in a non-autonomous system
with multiple time delays. El-Bassiouny [11–13] stud-
ied fundamental and sub-harmonic resonances of har-
monic oscillation with time delay state feedback. Also,
he studied vibration control of a cantilever beam with
time delay state feedback. The stability and oscillation
of two coupled Duffing equations with time delay state
feedback are investigated.

The main aim of this paper is to introduce how to
suppress the vibration in the Duffing oscillator at some
values of time delay feedback. The multiple scales
perturbation analysis is applied to present the ana-
lytical solution of a second-order nonlinear ordinary
differential equations. Stability is studied near sub-
harmonic resonance case. The numerical simulations
for the system without and with time delay feedback
using time history and frequency-response functions
are presented. Comparison between analytical and

Fig. 1 Duffing system as a model of cutting [15]

numerical results is illustrated. Concluding remarks are
presented.

2 Equation of the problem

The model of regenerative cutting, analyzed here, rep-
resents orthogonal cutting where the tool is model one-
degree-of-freedom (1-DOF) rigid body with nonlinear,
cubic stiffness characteristic. The model characterizes
the process where a chip flows along the orthogonal
plane and cutting edge of the tool is perpendicular
to the direction of tool motion. Moreover, vibrations
in u direction (perpendicular to machined surface) are
the most important for the sake of finish surface qual-
ity. The presented model of orthogonal cutting can be
transformed into classical Duffing oscillator with time
delay feedback depicted in Fig. 1. Here, an additional
parametric excitation is introduced to control vibrations
generated by delayed mechanism.

The dynamics of a parametric excited Duffing oscil-
lator under time delay control is described by the mod-
ified nonlinear differential equation given by Ref. [8]
which can be simulated for the model of regenerative
cutting as [15]. And the equation of the system is given
by

ü (t) + 2εμu̇ (t) + ω2
0u (t) + εω2

0u
3 (t) − εu (t)

f cosωt + εBu (t − τ1) + εCu̇ (t − τ2) = 0 (1)

where u(t) is generalized coordinate of the mode under
consideration, the linear damping coefficient μ, ω0 the
natural frequency, ω the external excitation frequency,
B and C are linear coefficients of the system, f the
forcing amplitude, time delay τ and dot denotes differ-
entiation with respect to time
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3 Perturbation analysis

Applying themultiple scalesmethod [14]we can obtain
the first-order approximate solution of Eq. (1). The
approximate solution will be in the form:

u (t, ε) = u0 (T0, T1) + εu1 (T0, T1) + O
(
ε2

)
(2)

u (t − τ, ε) = u0τ (T0, T1) + εu1τ (T0, T1) + O
(
ε2

)

(3)

where ε is a small perturbation parameter, T0 = t and
T1 = εt are the fast and slow timescales, respectively.

The derivatives will be in the form:

d

dt
= D0 + εD1,

d2

dt2
= D2

0 + 2εD0D1 (4)

Substitution from (2) to (4) in (1) and equating the
coefficients of the same power of ε yield,

O
(
ε0

)
:
(
D2
0 + ω2

0

)
u0 = 0 (5)

O
(
ε1

)
:
(
D2
0 + ω2

0

)
u1

= −2D1D0u0 − 2μD0u0 − ω2
0u

3
0 + u0

f

2

×
(
eiωt + e−iωt

)
− Bu0τ1 − cD0u0τ2 (6)

The solutions of Eq. (5) can be expressed in the form:

u0 = A (T1) e
iω0T0 + cc (7)

where A is complex function in T1 and cc. is complex
conjugate of the pervious term.

Expanding Aτ by Taylor series by [7] under the
assumption that the product of the small parameter ε

and time delay is small compared to unity, then

Aτ (T1)= Aτ (T1−ετ) ∼= A (T1)−ετ A′ (T1) + · · ·
(8)

where ()′ = ∂ ()/∂T1 = ∂ ()/∂ (εt) because Tn = εnt
Substituting Eqs. (7) and (8) into Eq. (6), we obtain

(
D2
0 + ω2

0

)
u1

=
[
−2i D1Aω0 − 2i Aμω0 − 3ω2

0A
2 Ā

− BAe−iω0τ1 − CAiω0e
−iω0τ2

]
eiω0T0

−
[
ω2
0A

3
]
e3iω0T0 +

[
f A

2

]

ei(ω+ω0)T0 +
[
f Ā

2

]
ei(ω−ω0)T0 + cc. (9)

By eliminating the secular term from Eq. (9), the first
approximation solution can be written as

u1 =
[
A3

8

]
e3iω0T0 +

[
f A

2
(
ω2
0 − (ω + ω0)

2)
]

ei(ω+ω0)T0 +
[

f Ā

2
(
ω2
0 − (ω − ω0)

2)
]

ei(ω−ω0)T0 + cc. (10)

Then, the reported resonance cases at this approxima-
tion order are:

(i) Trivial resonance: ω = 0
(ii) Sub-harmonic resonance: ω = 2ω0

4 Stability of the system

In this work, we considered the sub-harmonic reso-
nance caseω = 2ω0 as the worst resonance case, intro-
ducing the external detuning parameter σ as

ω = 2ω0 + εσ (11)

Inserting Eq. (11) leads to the secular and small-divisor
terms into Eq. (9) and removing these secular terms to
obtain solvability for the first-order approximation

2i D1Aω0 = −2i Aμω0 − 3ω2
0A

2 Ā − BAe−iω0τ1

−CAiω0e
−iω0τ2 + f Ā

2
eiσT1 (12)

Letting A = 1
2ae

iγ in Eq. (12) and separating real
and imaginary parts, we obtain the equations of the
amplitude a and the phase of the motion γ

ȧ = −μa + 1

2ω0
Ba sinω0τ1

− 1

2
Ca cosω0τ2 + f

4ω0
asinθ (13)

γ̇ a = 3

8
ω0a

3 + 1

2ω0
Ba cosω0τ1

+ 1

2
Ca sinω0τ2 − f

4ω0
acosθ (14)

where θ = σT1 − 2γ
For the steady-state solutions of the system we have

ȧ = θ̇ = 0, then we get

μa − 1

2ω0
Ba sinω0τ1 + 1

2
Ca cosω0τ2

= f

4ω0
asinθ (15)
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−1

2
aσ + 3

8
ω0a

3 + 1

2ω0
Ba cosω0τ1

+1

2
Ca sinω0τ2

= f

4ω0
acosθ (16)

Squaring Eqs. (15) and (16) then adding the squared
equations together, to obtain the frequency response
equation (FRE)

1

4
a2σ 2 +

[
− Ba2

2ω0
cosω0τ1 − 3

8
ω0a

4

− ca2

2
sinω0τ2

]
σ + 1

4ω2
0

B2a2 + 3

8

Ba4 cosω0τ1 + 9

64
ω2
0a

6 + μ2a2 − μBa2

ω0

sinω0τ1 + μCa2 cosω0τ2

+ C2a2

4
+ 3Cω0a4

8
sinω0τ2 − f 2

16ω2
0

a2

− 1

2ω0
a2BC sinω0(τ1 − τ2) = 0 (17)

To determine the stability of the steady-state solution,
one lets

a = a0 + a1 and θ = θ0 + θ1 (18)

where a0 and θ0 are the solutions of (13), (14) and
a1, θ1 are perturbations which are assumed to be small
compared to a0 and θ0. Substituting (18) into (13), (14)
andkeepingonly the linear terms ina1 and θ1,weobtain

ȧ1 =
[
−μ + 1

2ω0
B sinω0τ1

− 1

2
C cosω0τ2 + f

4ω0
sinθ0

]
a1

+
[

f

4ω0
a0 cos θ0

]
θ1 (19)

θ̇1 =
[

σ

a0
− 9

4
ω0a0 − 1

ω0a0
B cosω0τ1

− 1

a0
C sinω0τ2 + f

2a0ω0
cosθ0

]
a1

+
[
− f

2ω0
sin θ0

]
θ1 (20)

The above system can be write in the matrix
[
ȧ1 θ̇1

]T = [J ]
[
a1 θ1

]T
(21)

where [J ] is the Jacobian matrix of the right hand sides
of (19) and (20).

The eigen values of [J ] are given by the following
equation:

λ2 + R1λ + R2 = 0 (22)

Fig. 2 Non-resonance cases for the system

Fig. 3 Response of the system without time delay at sub-harmonic resonance case (ω ∼= 2ω0)
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where R1 and R2 are coefficients of (23). The stability
for the system is studied by examination of the eigen-
values of the Jacobian matrix of (22). The correspond-
ing solution is stable, if the real part of each eigenvalue
is negative. If the real part of any of the eigenvalues is
positive, the corresponding solution is unstable.

5 Numerical simulations

The numerical solution for the differential equation (1)
of the main system is obtained by applying Rung–
Kutta fourth order method (RK-4) using MATLAB
7.14(R2012a) package (ode45) at sub-harmonic res-
onance case (ω = 2ω0).

Figure 2 shows that the steady-state amplitude of the
system and the phase-plane for the non-resonant sys-
tem at selected values of the equation parameters (μ =
0.01, ω0 = 6, f = 20, B = 0.04,C = 0.06, ω = 4).

For the sub-harmonic resonance case (ω = 2ω0) as
shown in Fig. 3, the steady-state amplitude is increased
to about 16.7×106% of that value shown in Fig. 2 with
multi limit cycle.

5.1 Effects of time delay on system behavior

The effect of delay timeon system responsewas studied
numerically (the delay in the amplitude and the velocity
of the system are equal). Figure 4a shows amplitude-
delay τ1 response curve for τ2 = 0, while Fig. 4b shows
amplitude-delay τ2 response curve for τ1 = 0. It can
be observed from the above mentioned figures that, the
effects of the different time delay are the same then we
use τ1 = τ2 = τ . It has been noticed that for 2.2 <

τ < 2.3 the steady-state amplitude and the velocity
of the system can be reduced, as shown in Fig. 4c, d.
This means that the delay in this range can be used as
a controller. Away from this range of time delay the
steady-state amplitude and the velocity for the main
system are increasing and decreasing.

5.2 Effect of various parameters for the system

The frequency response equation (FRE) given by
Eq. (17) is nonlinear algebraic equations of the ampli-
tude a against the detuning parameter σ .This equation
is solved numerically as shown in figures. The curves

c

d

b

a
2 0τ =

1 0τ =

1 2τ τ τ= =

1 2τ τ τ= =

Fig. 4 Effect of delay time on system steady-state amplitude

of all these figures consist of two branches represent-
ing stable (solid line) and unstable (dashed lines) solu-
tions. Figure 5a shows the effects of the detuning para-
meter σ on the steady-state amplitude of the system.
Figure 5b shows that the steady-state amplitude of the
system is shifted to the right for increasing value of
linear parameter B. The steady-state amplitude of the
system is monotonic decreasing function of the time
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Fig. 5 a The effective of
detuning parameter σ . b
The effective of the linear
coefficient B. c The
effective of the time delay
τ . d The effective of the
damping coefficient μ. e
The effective of linear
coefficient C. f The
effective of the forcing
amplitude f . g The effective
of natural frequency ω0

10B =

5B =
0.04B =

2.3τ =

2.2τ =0τ =
0.8μ =

0.5μ =

0.01μ =

2C =

1.5C =

0.06C =

0 6ω =

50f =

30f =

20f =

0 12ω =
0 9ω =

a b

c d

e f

g

delay at the range 2.2 < τ < 2.3 as shown in Fig. 5c.
Also, for increasing values of the damping coefficient
μ and linear coefficient C the steady-state amplitude
is decreased as shown in Fig. 5d, e. From Fig. 5f, the
steady-state amplitude of the system is a monotonic
increasing function in the parametric excitation force
f . Moreover, in Fig. 5g we observed that for increas-

ing values of the natural frequency ω0 the continuous
curve is bent to right with decreasing the steady-state
amplitude of the system.

Figure 6a illustrates the effects of parametric exci-
tation f on the steady-state amplitude of the sys-
tem represent stable region (solid line) and unsta-
ble region (dashed lines). From Fig. 6b, we observed
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Fig. 6 a The effective of
force without time delay. b
The effective of linear
coefficient B. c The
effective of linear damping
coefficient μ. d The
effective of linear
coefficient C. e The
effective of the time delay τ .
f The effective of detuning
parameter σ . g The effective
of natural frequency ω0

10B =

5B =

0.04B =

2.3τ =

2.2τ =

0τ =

0.8μ =

0.5μ =

0.01μ =

2C =

1.5C =

0.06C =

20σ =
10σ =

3σ =

0 6ω =

0 12ω =

0 9ω =

a b

c d

e f

g

that for increasing values of linear coefficient B, the
continuous curve is shifted downwards with decreas-
ing the steady-state amplitude of the system and the
unstable region. Figure 6c–e shows that the steady-
state amplitude is shifted to right and decreasing as
the linear damping μ, nonlinear coefficient C and
time delay τ are increasing. Moreover, for increas-

ing values of the detuning parameter σ , the continu-
ous curve is shifted to right with increasing the steady-
state amplitude of the system and unstable region as
shown in Fig. 6f. Furthermore, Fig. 6g presented that
for increase the natural frequency ω0 is shifted down-
wardswith decreasing the steady-state amplitude of the
system.
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Fig. 7 Comparison between the analytical and numerical solu-
tions of the nonlinear system solid line numerical solution and
dashed line analytical solution

5.3 Comparison between analytical and numerical
solution and effects of parameters

For validity, the analytical solution given by Eqs. (13),
(14) is compared with the numerical solution of Eq.
(1) for nonlinear dynamical system as shown in Fig. 7
by using the chosen values of the system parameters
which presented graphically in Fig. 4.

From Fig. 8a, b, it can be seen that the amplitude
is monotonic decreasing function on the coefficients B
and C, which is a good agreement with Figs. 5b, e and
6b, d. Also from Fig. 8c we find that the steady-state
amplitude has peak and then increase at resonance case
at subharmonic resonance case, which is studied in the
frequency response equations.

Fig. 9 Validated between RK-4 and FRC

5.4 Validated between RK-4 and FRC

Figure 9 clarifies that the validation between the steady-
state amplitude (u) using the numerical solution (RK-4)
of Duffing Oscillator Eq. (1) (marked as small circles)
and the steady-state amplitude (a) using the frequency
response equation (FRC) given by Eq. (17). Figure 9
presents a good agreement with the amplitude using
RK-4 at the same value for the detuning parameter σ .

5.5 Comparison with published work

1. Reference [8] studiedDuffingoscillator under feed-
back control with time delay subjected to external
force at primary internal resonance case (ω ≈ ω0).

Fig. 8 a The effective of
the linear parameter B. b
The effective of the linear
parameter C . c Response of
the natural and excitation
frequencies
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2. This paper illustrates Duffing oscillator system
with time delay feedback control under paramet-
ric excitation force at sub-harmonic resonance case
(ω ∼= 2ω0). We succeeded to reduce the steady-
state amplitude of the system using time delay con-
trol in the range 2.2 < τ < 2.3. Moreover, numer-
ically the stable and unstable regions are defined
when studying the effects of the selected parame-
ters.

6 Conclusions

Duffing oscillator system with time delay feedback has
been considered and solved under parametric excita-
tion force. The time delay can be used as a controller
for reduction of the amplitude of the nonlinear sys-
tem. The MSPT method has been applied to determine
the frequency response equations. Then, it is observed
from the numerical study of the stability.

1) The worst behavior of the main system occurs at
sub-harmonic resonance case ω ∼= 2ω0.

2) Time delay can be used as a control parameter for
suppressing the vibration of the dynamical system
in the ranges is 2.2 < τ < 2.3 as show in Fig. 4.

3) The steady-state amplitude of the main system is
monotonic increasing function of the excitation
force f .

4) The steady-state amplitude of the main system is
monotonic decreasing functions of the coefficient
C , natural frequencyω0 and damping coefficientμ.
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