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Abstract In this paper, we propose robust fuzzy con-
trol for a hybrid magnetic bearings. The control objec-
tive of HMBs enables the rotor to rotate without any
physical contact in spite of the nonlinearity and uncer-
tainty of the concerned plants. To achieve the robust
stability, we address the uncertainties of the given sys-
tem based on the Takagi–Sugeno fuzzy model. Also,
in order to maintain the relaxed stabilization condition,
nonparallel distributed compensation control law, as
analyzed by the parameter-dependent Lyapunov func-
tion, is applied to the HMBs with parametric uncer-
tainties. The conditions for the robust controller are
obtained in terms of solutions to linear matrix inequal-
ities. Finally, simulation results for HMBs are used to
demonstrate the feasibility of the proposed method.

Keywords Hybrid magnetic bearings (HMBs) ·
Linear matrix inequality (LMI) · Robust sta-
bility · Nonparallel distributed compensation
(non-PDC) · Parameter-dependent Lyapunov
function (PDLF)

1 Introduction

In recent years, magnetic bearings have become more
and more widespread in many industrial applications

H. C. Sung · J. B. Park (B)
Department of Electrical and Electronic Engineering,
Yonsei University, Seoul 120-749, Korea
e-mail: jbpark@yonsei.ac.kr

such as flywheels, satellites and high-speed turbines.
According to the principle of producing suspension
forces, we can classify magnetic bearings as passive
[1], active [2] or hybrid. Among these, hybridmagnetic
bearings (HMBs) have attracted attention because the
control current of HMBs can be reduced considerably
and decreased control current leads to low power loss
[3]. However, the dynamics of HMBs has severe non-
linearities such that control of the given system is not
easy. In other words, the inherently unstable dynamics
of the HMBs, which are associatedwith the complexity
of the rotor dynamics, makes it impossible to operate
the concerned systemwithout proper feedback control.
This is the reason why various control approaches for
HMBs have not been thoroughly researched.

In contrast to HMBs, there have been many stud-
ies on control of the passive/active magnetic bear-
ing, such as sliding mode control [4], adaptive con-
trol [5], feedback linearization [6], fault-tolerant con-
trol [7] and decoupled control [8]. In particular, [9]
dealt with robust control for the active magnetic bear-
ing by using the Takagi–Sugeno (T–S) fuzzy model.
The main advantage of fuzzy control is the ability to
express a nonlinear system using a time-varying con-
vex combination of linear state space models with non-
linear fuzzy membership functions. As a result, it is
easy to apply the various control techniques to com-
plex magnetic systems such as output feedback con-
trol, decentralized control, H∞ control, etc. However,
as we have already mentioned above, these approaches
did not focus on the HMB plant, but on passive/active
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magnetic bearing systems, and thus it is necessary to
re-establish the control algorithm for the HMBs.

During the past three years, some trials have sought
to develop design and control methods for HMBs
[3,10–12]. [3] and [11] proposed various structural
designs for HMBs and [12] showed dynamic behav-
ior for blower applications. Also, dynamic decoupled
control was established in [13] by using a neural net-
work inverse method and the digital control approach
was addressed in [10]. However, since their control
approaches are based on linearized dynamics, these
methods usually require complicated algorithms or
are effective only in the limited small neighborhood
of the nominal equilibrium point. Moreover, these
approaches do not consider robust stabilization prob-
lems which are key topics in the study of magnetic
bearings. In order to minimize the influence of such
problems, it is necessary to develop a novel control
algorithm for HMBs.

Motivated by the above observations, this paper
presents a novel robust control method for stabilizing
the HMBs. To achieve robust stability, we address the
parametric uncertainties of the concerned system in the
form of the norm-bounded. In other words, we derive
robust control methodologies of the HMBs preserving
the property and structure of the uncertainties. Also, the
principles of the nonparallel distributed compensation
(non-PDC) control laws and the parameter-dependent
Lyapunov function (PDLF) are extended to the uncer-
tain fuzzy control system. Using these approaches, it is
possible to improve the robust stability and stabiliza-
tion conditions of a given system. Its constructive con-
ditions are provided in linear matrix inequality (LMI)
format and therefore are tractable using convex opti-
mization techniques. Finally, the obtained LMIs are
applied to the HMBs constructed using the T–S fuzzy
model.

This paper is organized as follows: Sect. 2 deals with
the T–S fuzzy control scheme via the nonlinear aspect.
The robust control methodology based on non-PDC
controller is proposed in Sect. 3. The fuzzy modeling
of the HMBs and robust simulation results are demon-
strated in Sect. 4. This paper is concluded in Sect. 5.

2 Preliminaries

Consider the following nonlinear system

ẋ(t) = f (x(t), u(t)) (1)

where x(t) ∈ R
n constitutes the state vector and u(t) ∈

R
m is the control input. Define compact sets for x(t)

and u(t) as follows:

Bx = {x | ‖x(t)‖ ≤ �x } ⊂ R
n,

Bu = {u | ‖u(t)‖ ≤ �u} ⊂ R
m

for some �x ∈ R>0 and �u ∈ R>0.
Then, it is supposed that (1) can be modeled as the

T–S fuzzy model

Ri : If z1(t) is Γi1 and . . . and z p(t) is Γi p

then ẋ(t) = (Ai + �Ai )x(t)

+ (Bi + �Bi )u(t) (2)

where Ri , i ∈ Ir = {1, 2, . . . , r}, denotes the i th fuzzy
rule, zh(t), h ∈ Ip = {1, 2, . . . , p}, is the hth premise
variable, Γih , (i, h) ∈ Ir × Ip, is the fuzzy set of
zh(t) in Ri , Ai and Bi are known constant matrices
with appropriate dimensions, and �Ai and �Bi are
unknown matrices.

Using the singleton fuzzifier, product inference
engine, and center-average defuzzification [14], (2) is
inferred as

ẋ(t) =
r∑

i=1

θi (z(t)) ((Ai + �Ai ) x(t)

+ (Bi + �Bi )u(t)) (3)

where θi (z(t)) = wi (z(t))/
∑r

i=1 wi (z(t)),wi (z(t)) =∏p
h=1 μΓih (zh(t)) and μΓih (zh(t)): Uzh(t) ⊂ R →

R[0,1] is the membership function of zh(t) on the com-
pact set Uzh(t). Suppose that a fuzzy control for (1) is

Ri : If z1(t) is Γi1 and . . . and z p(t) is Γi p

then u(t) = Ki x(t). (4)

The defuzzified output is given by

u(t) =
r∑

i=1

θi (z(t))Ki

⎛

⎝
r∑

j=1

θ j (z(t))X j

⎞

⎠
−1

x(t) (5)

where u(t) ∈ R
m is the control input and Xi ∈ R

n×n

is a slack variable and is not necessarily symmetric.
For matrices Xi , i ∈Ir ={1, 2, . . . , r}, define X (x)

= ∑r
i=1 θi (z(t))Xi , X−1(x) = (∑r

i=1 θi (z(t))Xi
)−1
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where x = x(t). Then, the closed-loop system is shown
as follows:

ẋ =
(
(A(x) + �A(x)) + (B(x) + �B(x))

×K (x)X−1(x)
)

x . (6)

Remark 1 �A(x) and �B(x) are unknown matrices
with appropriate dimensions that represent the system
uncertainties. In this paper, we assume that�A(x) and
�B(x) can be described as follows:
[
�A(x) �B(x)

] = D(x)F(t)
[
E1 E2

]
(7)

where D(x), E1, and E2 are known constant real
matrices with appropriate dimensions, and F(t) is an
unknown matrix function with Lebesgue measurable
elements that satisfies FT (t)F(t) � I .

Remark 2 The controller in 6 is not of the form of the
general parallel distributed compensation (PDC), but
of a more general form referred to non-PDC. These
relaxed conditions and linear matrix inequality-based
design methodologies are proposed in [15].

3 Robust fuzzy control approach based
on a non-PDC controller

In this section, we present the robust control method
for stabilizing the uncertain fuzzy system. To achieve
the robust stability, we address the parametric uncer-
tainties of the concerned system in the form of the
norm-bounded. The principles of the non-PDC con-
trol laws presented in 6 are applied to an uncertain
fuzzy control system. Using these approaches, it is pos-
sible to improve the robust stability and stabilization

conditions of the given system. More precisely, when
�A(x) = �B(x) = 0, the stabilization condition for
the nominal T–S fuzzy system is given as follows:

Theorem 1 Consider that |ḣρ | ≤ φρ , where φρ ≥
0(ρ = 1, 2, . . . , r) are given scalars. The nominal T–S
fuzzy system 6, which has no parametric uncertainties,
is guaranteed to be asymptotically stable if matrices
�i = �T

i , Γi 
 0, Hi , Li , Ni , Mi , Xi such that the
following inequalities are satisfied:

Γρ − Λi 
 0, (8)

Θi j ≺ 0, (9)

where Θi j is represented as 10 and (i, j, ρ) ∈ (Ir ×
Ir × Ir ), i < j .

Proof The proof processes are similar to Theorem 2 in
[16] with the non-PDC controller. �


Θi j =
⎡

⎢⎣

r

ρ=1φρ(Γρ − �i ) + Ai H T
j + Hj AT

i − Bi MT
j − M j BT

i ∗ ∗
Γi − H T

j + L j AT
i − N j BT

i −L j − LT
j ∗

MT
j − X j BT

i N T
j X j + X T

j − I

⎤

⎥⎦ , (10)

Ωi j =

⎡

⎢⎢⎢⎢⎢⎣

(
−∑r

ρ=1 θ̇ρ

(
Γ̇ρ + Λi

) + Ai H T
j

+Hj AT
i + Bi K j + K T

j BT
i

)
∗ ∗ ∗

Γi − H T
j + L j AT

i −L j − LT
j ∗ ∗

E1i H T
j + E2i K j 0 −εi j I ∗
DT

i 0 0 −εi j I

⎤

⎥⎥⎥⎥⎥⎦
. (11)

As shown in Theorem 1, there have been numerous
research works [16–19] focusing on the design of the
robust fuzzy controller using various methods. How-
ever, non-PDC-based fuzzy control approaches for an
uncertain system have not been sufficiently achieved.
Although Ref. [19] tried to address this problem, it did
not consider the PDLF problem, but rather the general
Lyapunov function. The drawback of [19] is the limited
stabilization region such that it is not easy to obtain the
proper control gain using 5. In order to solve this prob-
lem, we consider the following Lemmas which will be
used in the proof of our main results.

Lemma 1 [20] The following two problems are equiv-
alent:

(i) Find P 
 0 such that

T + P AT + AP < 0
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(ii) Find P 
 0, L and H such that
[

T + H AT + AH T ∗
P − H T + L AT −L − LT

]
.

Lemma 2 [21] For any real matrices Λ1 = ΛT
1 , Λ2,

Λ3(x), and Λ4 with appropriate dimensions, the fol-
lowing inequality holds:

Λ1 + Λ2Λ3(x)Λ4 + ΛT
4 ΛT

3 (x)ΛT
2 ≺ 0

where Λ3(x) satisfies Λ3(x)T Λ3(x) � I if and only if

Λ1 +
[
ε−1Λ4

εΛT
2

]T [
ε−1Λ4

εΛT
2

]
≺ 0

for some ε > 0.

Lemma 3 [20] The following two problems are equiv-
alent:

(i) Find P = PT such that

[
T1 + AT P A ∗

T2 T3

]

(ii) Find P = PT , L1, L2 and H such that

⎡

⎣
T1 + AT LT

1 + L1A ∗ ∗
T2 + L2A T3 ∗

−LT
1 + H T A −LT

2 P − H − H T

⎤

⎦

The main results are summarized as follows:

Theorem 2 Consider that |ḣρ | ≤ φρ , where φρ ≥
0(ρ = 1, 2, . . . , r) are given scalars. The nominal T–
S fuzzy system 6, which has the parametric uncertain
terms �A(x) and �B(x), is guaranteed to be asymp-
totically stable if matrices Λi = ΛT

i , Γi 
 0, Hi , Li ,
Ni , Mi , Xi exist such that the following inequalities
are satisfied:

Γρ − Λi 
 0,

Ωi i ≺ Ψi i ,

Ωi j + Ω j i � Ψi j + Ψ T
ji ,

Ψ ≺ 0

where Ωi j is shown as 11 for (i, j, ρ) ∈ (Ir ×Ir ×Ir ),
i < j and

Ψ =

⎡

⎢⎢⎢⎣

Ψ11 ∗ · · · ∗
Ψ21 Ψ22 · · · ∗
...

...
. . .

...

Ψr1 Ψr2 · · · Ψrr

⎤

⎥⎥⎥⎦ .

Proof Consider the following PDLFs [20]:

V (x) = xT Γ −1(x)x . (12)

From 5 and 6, we have the PDLF candidate as fol-
lows:

V̇ (x) = ẋ T Γ −1(x)x + xT Γ −1(x)ẋ

− xT Γ −1(x)Γ̇ (x)Γ −1(x)x

= xT Γ −1(x)
{
(A(x) + �A(x))

+ (B(x) + �B(x))K (x)Γ −1(x)
}

x

+ xT
{
(A(x) + �A(x)) + (B(x) + �B(x))K (x)

× Γ −1(x)
}T

Γ −1(x)x − xT Γ −1(x)Γ̇ (x)Γ −1(x)x

= x̄ T
{[

(A(x) + �A(x))Γ (x) + Γ (x)(A(x)

+ �A(x))T + (B(x) + �B(x))K (x)

+ K (x)T (B(x) + �B(x))T ] − Γ̇ (x)
}

x̄ (13)

where x̄ = Γ −1(x)x . An Eq. 13 is verified if

(A(x) + �A(x))Γ (x) + Γ (x)(A(x) + �A(x))T

+ (B(x)+�B(x))K (x)+K (x)T (B(x)+�B(x))T

− Γ̇ (x) + Λ(x) < 0 (14)

where Λ(x) = Λ(x)T ∈ R
n×n, i ∈ Ir = {1, 2, . . . , r}

are arbitrarymatrices. LetT = (B(x)+�B(x))K (x)+
K (x)T (B(x) + �B(x))T − Γ̇ (x) + Λ(x), P = Γ (x)

and use Lemma 1 so that we have

Φ(x) +
⎡

⎣
�A(x)H(x)T + H(x)�A(x)T

+�B(x)K (x) + K (x)T �B(x)T ∗
0 0

⎤

⎦ ≺ 0

(15)

where Φ(x) is shown as (16). By Lemma 2, the above
inequality holds for all F(t) satisfying F(t)T F(t) � I

if and only if there exists a constant ε
1
2 > 0 such that

Φ(x) +
[
ε− 1

2
(
E1H(x)T + E2K (x)

)T
ε

1
2 D(x)

]

×
[
ε− 1

2
(
E1H(x)T + E2K (x)

)

ε
1
2 D(x)T

]
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= Φ(x) +
[(

E1H(x)T + E2K (x)
)T

D(x)

]

×
[
ε−1 I 0
0 ε I

] [
E1H(x)T + E2K (x)

D(x)T

]
≺ 0. (16)

Applying Lemmas 3 to 17 results in 18 which is equiv-
alent to 19.

To achieve the generality of LMI formats, we recon-
sider Eq. 19 in the following forms:

(19) ⇔
r∑

i=1

r∑

j=1

θiθ j�i j

�
r∑

i=1

r∑

j=1

θiθ jΩi j

=
r∑

i=1

θ2i Ωi i +
r∑

i=1

r∑

i< j

θiθ j (Ωi j + Ω j i )

�
r∑

i=1

r∑

j=1

θiθ jΨi j

=
r∑

i=1

θ2i Ψi i +
r∑

i=1

r∑

i< j

θiθ j (Ψi j + Ψ j i )

=

⎡

⎢⎢⎢⎣

θ1 I
θ2 I
...

θr I

⎤

⎥⎥⎥⎦

T

Ψ

⎡

⎢⎢⎢⎣

θ1 I
θ2 I
...

θr I

⎤

⎥⎥⎥⎦ ≺ 0. (17)

Φ(x) =
⎡

⎢⎣

(
A(x)H(x)T + H(x)A(x)T

+B(x)K (x) + K (x)T B(x)T − Γ̇ (x) + Λ(x)

)
∗

Γ (x) − H(x)T + L(x)A(x)T −L(x) − L(x)T

⎤

⎥⎦ , (18)

⎡

⎢⎢⎢⎢⎢⎢⎣

(
A(x)H(x)T + H(x)A(x)T + B(x)K (x)

+K (x)T B(x)T − Γ̇ (x) + Λ(x)

)
∗ ∗ ∗

Γ (x) − H(x)T + L(x)A(x)T −L(x) − L(x)T ∗ ∗
E1H(x)T + E2K (x) 0 −ε I ∗

D(x)T 0 0 −ε I

⎤

⎥⎥⎥⎥⎥⎥⎦
≺ 0, (19)

�(x) =

⎡

⎢⎢⎢⎢⎢⎢⎣

(− ∑r
ρ=1 θ̇ρ (Γ̇ (x)+Λ(x))+ A(x)H(x)T

+H(x)A(x)T + B(x)K (x) + K (x)T B(x)T

)
∗ ∗ ∗

Γ (x) − H(x)T + L(x)A(x)T −L(x) − L(x)T ∗ ∗
E1H(x)T + E2K (x) 0 −ε I ∗

D(x)T 0 0 −ε I

⎤

⎥⎥⎥⎥⎥⎥⎦
≺ 0.

(20)

If Ψ ≺ 0, it is possible to obtain asymptotical sta-
bility using the PDLF V̇ (x) ≺ 0. �

Remark 1 This paper makes contributes to the mag-
netic research field of fuzzy control by considering:
(1) the uncertainties in the HMB system ([6,7,10,
11,13] did not consider the uncertainties); (2) the
robust stabilization of the HMB system shown in
Theorem 2 ([6,7,10,11,13] considers only stabiliza-
tion without robustness); (3) Instead of the LMIs in
Theorem 2, we can easily extend our discussion to
stabilizing various magnetic systems such as passive
and active magnetic bearings (the control methodol-
ogy in [4,5,7,9] is only applied to the concerned sys-
tems).

4 Simulation results

4.1 Fuzzy modeling of a HMBs with parametric
uncertainty

In this section, the HMBs and its fuzzy modeling are
discussed. The magnetic flux path of the three-pole
radialmagnetic bearing is shown in Fig. 1 and an equiv-
alent circuit of the HMBs, which is connected to the
power transmission line, is presented in Fig. 2. The con-
trol objective of HMBs enables the rotor to rotate with-
out any physical contact using magnetic forces. The
dynamics of the concerned system can be presented as
follows [13]:
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Fig. 1 Magnetic flux path of the three-pole radialmagnetic bear-
ing

⎡

⎢⎢⎣

ẋ1

ẋ2

ẋ3

⎤

⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎣

− 3
2m kxy −

√
3

2m kxy 0

0 0 0

0 0 − 2F2
mδaμ0Sa

m
(
2δ2a−x23

)2

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎣

x1

x2

x3

⎤

⎥⎥⎦

+

⎡

⎢⎢⎢⎣

3
2kir

3
2m kir

− 2Fm Nzμ0Sa

m
(
2δ2a−x23

)

⎤

⎥⎥⎥⎦ u(t) (21)

where Fm is the magnetomotive force provided by the
permanentmagnet, Nr is the turns of each radial control
coil, μ0 is the permeability of the vacuum, Sa is the
axial magnetic pole area, Sr is the radial magnetic pole
area, δa is the axial air gap length, δr is the radial air
gap length, kir is the radial force-current coefficient,
and kxy is the radial force-displacement coefficient.

Motivated by the above observations, we presume

that theHMBs have nonlinear functions 2F2
mδaμ0Sa

m
(
2δ2a−x23

)2 and

2Fm Nzμ0Sa

m
(
2δ2a−x23

) , which are related to the state equation. In

order to construct the T–S fuzzy model for the HMBs,

Fig. 2 Equivalentmagnetic circuit for the hybrid-type three-pole
bearing

the nonlinear terms have to be represented as a con-
vex combination of appropriate vertices. To solve this
problem, the nonlinear functions should be linearized
with respect to the input. The specified processes with
operation point u∗ = 0 are presented as follows:

f (x(t), u(t)) ∼= f (x(t), u∗)+ δ f (x(t), u(t))

δu(t)
|u(t)=u∗

= 2F2
mδaμ0Sa

m

( 1

(2δ2a − x23 )
2

)
x3

+ 2Fm Nzμ0Sa

m

( 1

(2δ2a − x23 )

)
u3.

(22)

We set the above Eq. 22 as

σ1 := 1
(
2δ2a − x23

)2 , σ2 := 1(
2δ2a − x23

) . (23)

In order to represent the nonlinear terms with convex
combinations of appropriate vertices together with the
membership functions belonging to the unit simplex
[9], we should calculate the minimum and maximum
values of σ1(t) and σ2(t) under

x3(t) ∈ C = [−4.992, 4.992] × 10−3. (24)
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From 24, it is possible to calculate the minimum and
maximum as σ1(t) = [σ1, σ1] and σ2(t) = [σ2, σ2]
such that we obtain the following fuzzy relationships
of these terms:

σ1(t) = σ1Γ
1
1 (σ1(t)) + σ1Γ

2
1 (σ1(t)),

σ2(t) = σ2Γ
1
2 (σ2(t)) + σ2Γ

2
2 (σ2(t)) (25)

where Γ 1
1 (σ1(t)) + Γ 2

1 (σ1(t)) = 1 and Γ 1
2 (σ2(t)) +

Γ 2
2 (σ2(t)) = 1. The membership functions are easy to

calculate as

Γ 1
1 (σ1(t)) = σ1(t)−σ1

σ1−σ1
, Γ 2

1 (σ1(t)) = −σ1(t)+σ1

σ1−σ1
,

Γ 1
2 (σ2(t)) = σ2(t)−σ2

σ2−σ2
, Γ 2

2 (σ2(t)) = −σ2(t)+σ2

σ2−σ2
.

Denote xT = [x1 x2 x3]T , then the identified T–S
fuzzy rules of the HMBs are represented as follows:

R1: IF x1(t) is Γ 1
1 and IF x2(t) is Γ 1

2 ,

THEN ẋ(t) = A1x(t) + B1u(t)

R2: IF x1(t) is Γ 2
1 and IF x2(t) is Γ 1

2 ,

THEN ẋ(t) = A2x(t) + B2u(t)

R3: IF x1(t) is Γ 1
1 and IF x2(t) is Γ 2

2 ,

THEN ẋ(t) = A3x(t) + B3u(t)

R4: IF x1(t) is Γ 2
1 and IF x2(t) is Γ 2

2 ,

THEN ẋ(t) = A4x(t) + B4u(t)

where

A1 = A2 =

⎡

⎢⎢⎣

− 3
2m kxy −

√
3

2m kxy 0

0 0 0

0 0 − 2F2
mδaμ0Sa

m σ1

⎤

⎥⎥⎦ ,

A3 = A4 =

⎡

⎢⎢⎣

− 3
2m kxy −

√
3

2m kxy 0

0 0 0

0 0 − 2F2
mδaμ0Sa

m σ1

⎤

⎥⎥⎦ ,

B1 = B3 =
⎡

⎢⎣

3
2kir
3
2m kir

− 2Fm Nzμ0Sa
m σ2

⎤

⎥⎦ ,

B2 = B4 =
⎡

⎢⎣

3
2kir
3
2m kir

− 2Fm Nzμ0Sa
m σ2

⎤

⎥⎦ .

Table 1 Nominal parameters of the HMBs

Parameters Values

Rotor mass m 6.2 kg

Speed range of wheel rotor n ±5000 (r · min−1)

Angular momentum 30 L/(N · m · s)
Air gap 0.4 s0/mm

Bias flux density in air gap 0.445Bbias/T

Number of winding 200N

Area of the magnetic pole face 336A/nm2

Magnetic cross section area 424Am/nm2

Magnetic thickness 4 hm/mm

In per unit unless indicated specially

4.2 Simulation results for HMBs

To show the effectiveness of the proposed method, the
simulation results for HMBs are presented. Table 1
shows the specific system data for the HMBs.

The initial condition of the concerned system is

given by x(0) = [
1 1 1

]�
. During the simulation,

all system parameters are randomly varied within the
bounds of 5% of their nominal values so that the uncer-
tain matrices �A(x) = D(x)F(t)E1 and �B(x) =
D(x)F(t)E2 are given by

D(x) =
⎡

⎣
0.05 0 0
0 0.05 0
0 0 0.05

⎤

⎦ , E1 =
⎡

⎣
a b 0
0 0 0
0 0 c

⎤

⎦ ,

E2 =
⎡

⎣
1
1
0

⎤

⎦ .

Applying Theorem 2 yields the total fuzzy system
control gain matrices

K1 = [
1.2353 −2.2514 −3.5521

]
,

K2 = [
3.0460 −42.5685 −2.9811

]
,

K3 = [
1.2402 −2.1424 −3.9821

]
,

K4 = [
3.1001 −2.5024 −3.0026

]
.

As shown in Figs. 3, 4 and 5, all system trajectories
converge to zero, indicating that ourmethod guarantees
the robust stability of the controlled system despite the
system uncertainties.

In order to analyze the influence of the uncertainties,
we set the variation of all system parameters to 15%
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Fig. 3 States of the controlled HMB system of x1 (5% uncertain
parameter case)
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Fig. 4 States of the controlled HMB system of x2 (5% uncertain
parameter case)

of their nominal values. That is, the uncertain matrices
�A(x) = D(x)F(t)E1 and �B(x) = D(x)F(t)E2

are given by

D(x) =
⎡

⎣
0.15 0 0
0 0.15 0
0 0 0.15

⎤

⎦ , E1 =
⎡

⎣
a 0 0
0 b 0
0 0 c

⎤

⎦ ,

E2 =
⎡

⎣
0
0
1

⎤

⎦ .

Utilizing Theorem 2 yields the total fuzzy system con-
trol gain matrices as follows:

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

x3

Fig. 5 States of the controlled HMB system of x3 (5% uncertain
parameter case)
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Fig. 6 States of the controlled HMB system of x1 (15% uncer-
tain parameter case)
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Fig. 7 States of the controlled HMB system of x2 (15% uncer-
tain parameter case)
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Fig. 8 States of the controlled HMB system of x3 (15% uncer-
tain parameter case)

K1 = [
0.0153 −0.0501 −0.2269

]
,

K2 = [
0.0142 −0.0516 −0.3242

]
,

K3 = [
0.0152 −0.0508 −0.2113

]
,

K4 = [
0.0137 −0.0499 −0.3243

]
.

The simulation results with larger uncertainties are
shown in Figs. 6, 7 and 8. As shown in these figures,
the proposed method is quite successful even in the
presence of larger parametric uncertainties for complex
nonlinear systems.

5 Conclusion

This paper has presented a novel robust fuzzy control
method for stabilizing theHMBs,which is composedof
anuncertain nonlinear system.Wehave investigated the
parametric uncertainties of the concerned system based
on theT–S fuzzymodel andhave achieved robust stabil-
ity. Utilizing non-PDC control law and PDLF, we have
achieved a more relaxed stabilization condition than
that obtained using other robust fuzzy controllers. The
conditions for robust stabilizing controller designs have
been given in terms of solutions to a set of LMI. The
simulation results for the HMBs have demonstrated the
feasibility of the proposed method.
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