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Abstract A finite element solution procedure is pro-
posed, and the nonlinear vibrations of a flexible mem-
brane under periodic load are investigated numerically.
First, a simplified model is proposed for the flow-
induced vibration of a membrane wing at higher angles
of attack and the corresponding governing equation is
derived briefly. Then, a solution procedure based on the
Galerkin finite element method, Generalized-αmethod
and Newton–Raphson method is developed to solve
the governing equation and its accuracy and stability
are examined by a steady problem with exact solu-
tion. Finally, using the numerical method proposed,
the forced vibration of a flexible membrane under peri-
odic load is simulated, and the effects of the mem-
brane density, elastic modulus and pre-strain are inves-
tigated in detail. In addition, the change in the vibration
state along the membrane is also analysed to examine
whether the centre point can reflect correctly the vibra-
tion state of the whole structure.
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1 Introduction

In nature and engineering, there are various types of
membrane structures such as heart valves, parachutes,
sails, wings of micro-aerial vehicles (MAVs) and fly-
ing insects, and lightweight fabric building structures.
Usually, these structures are very flexible and easy to
deform or vibrate even when the velocity of the sur-
rounding flow is very small. For the membrane struc-
tures such as parachutes, sails and lightweight fab-
ric building structures, the flow-induced deformation
(FID) and flow-induced vibration (FIV) are usually
harmful and may lead to instability, fatigue failure or
even breakage of the structure. For MAVs and flying
insects, however, FID and FIV of the membrane wing
could enhance significantly their aerodynamic perfor-
mance. Hence, the fluid–membrane interaction (FMI)
problem has attracted a lot of attention in the past a few
decades.

The study of FMI could be traced back to the 1980s
in the background of sail design. In the earlier studies,
FID of the sail under external flow was mainly con-
cerned. In 1986, using the potential flow model and
supposing the membrane as a weightless chain of thin
tracts, de Matteis and de Socio [1] studied the FID of a
two-dimensional (2D) membrane at different angles of
attack (AOAs). In their research, the computed mem-
brane deformation agreed very well with the experi-
mental results at smaller AOAs but had a large dis-
crepancy at higher AOAs, due to the poor performance
of the potential flow model when large-scale separa-
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tion appears in the flow. In 1994, to better describe the
flow separation, Rast [2] proposed an improved FMI
model by combining the steady Navier–Stokes (NS)
equations and a steady membrane equation consider-
ing both normal and tangential flow stresses, and the
FID of a piece of membrane wall in a 2D channel with
laminar internal flows (Re = 10−300) was simulated
to study the nature of partial collapses of elastic tubes
conveying fluid in physiological settings such as blood
vessels and large airways.

In the 1990s, FIV of the membrane structures
began to receive attention. In 1995, by combining the
unsteady NS equations and a steady membrane equa-
tion, Smith and Shyy [3] investigated the unsteady
response of a membrane wing in the laminar flow
(Re = 4000) with a periodic free-stream velocity. In
1996, this FMI model was modified and extended to
the case with turbulent flow by taking the unsteady
Reynolds-averaged NS (RANS) equations and shear
stress transport (SST) k − ω turbulence model as the
governing equations of the flowfield [4]. In both studies
of [3,4], the aerodynamic performances of the mem-
brane wing at higher AOAs were predicted more accu-
rately than those obtained from the FMImodel ignoring
the fluid viscosity [1]. However, since a steady equation
was employed to describe FIV of the membrane wing,
the FMI model proposed by Smith and Shyy [3,4] was
still quasi-unsteady.

Subsequently, the FMI model proposed by Smith
and Shyy [3,4] was further improved by other
researchers to capture the dynamic response of the
membrane structure in viscous flows. In 1997, Liang
et al. [5] proposed a deformable spatial domain space–
time algorithm for FMI problems. Different from the
model of Smith and Shyy [3,4], the FMI model in [5]
took the effects of inertia/mass into account, and the
FIV of a lid driven cavity with flexible bottom was
simulated successfully. In 2008, combing the unsteady
incompressible NS equations with a structure model
taking the membrane as a chain of nodes connected
by a spring and dashpot system, Matthews et al. [6]
computed the dynamic response of a 2D membrane
wing in a laminar flow with Re = 4000. Different
from the steady models in [1,2] and quasi-unsteady
models in [3,4], the FMI models in [5,6] are unsteady
and capable of capturing the dynamic response of the
membrane structures in unsteady flowswith large-scale
separation and vortex shedding. However, in the works
of Liang et al. [5] and Matthews et al. [6], the fluid–

structure interaction (FSI) algorithm was mainly con-
cerned, while the dynamic behaviours of themembrane
under time-varying fluid loads were not discussed in
detail.

Recently, with rapid development of MAVs, more
studies [7–12] have been carried out on the FIV of
the fixed membrane wing. From 2009 to 2011, Rojrat-
sirikul et al. [7–9] conducted many experiments on
the FMI of the membrane wing and found that FIV
of the membrane could promote reattachment of the
separated shear layer, delay stall and increase signifi-
cantly the lift of the membrane wing at higher AOAs.
Subsequently, these findings were confirmed by Gord-
nier et al. [10–12] using numerical simulation. In [10–
12], taking the unsteady compressible NS equations
and an unsteady membrane equation as the governing
equations and using a strongly coupled algorithm for
FSI simulation, FMIs of the membrane wing in flows
with lower Reynolds numbers (Re = 2500, 5000 and
10,000) were successfully simulated, and the effects
of AOA, rigidity, pre-strain and Reynolds number on
the aerodynamic performance as well as the dynamic
response of the membrane wing were analysed. Based
on the numerical results, it was found that, for a fixed
membrane wing, not only the amplitude and dominant
frequency but also the state of FIV of the membrane
wing will change with the flow and structure parame-
ters. Subsequently, this FSI solver was improved and
utilized by Jaworski and Gordnier [13,14], Visbal et al.
[15] and Tregidgo et al. [16] to study the dynamic
responses of themembranewingwith prescribed pitch-
ing and/or heaving motions, and it was found that the
FMIs could decrease the separation region, enhance
thrust and propulsive efficiency and increase the adapt-
ability of the membrane wing to the transient gust. In
addition,Arbós-Torrent [17] observed from their exper-
iments that the shape of the leading and trailing edges
has a great effects on the FIV of the membrane wing;
Curet et al. [18] found that coupling the forced har-
monic oscillation with the FIV could increase signifi-
cantly the lift of the membrane wing; Serrano-Galiano
and Sandberg [19] proposed a direct numerical sim-
ulation (DNS) method for the FMI with transition in
the flow field; Bleischwitz et al. [20] investigated the
aspect-ratio effect on the aerodynamic performance
of the membrane wing and found that decreasing the
aspect ratio could suppress stall and increase the pitch-
ing stability; Bleischwitz et al. [21] revealed that the
ground effect could result in an earlier onset of the
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leading-edge vortex shedding and excite highly ener-
getic oscillation of the membrane wing.

In the numerical studies of Gordnier et al. [10–12],
the unsteady flow as well as the FIV state of the mem-
brane wing was found changed greatly with the angle
of attack, Reynolds number, rigidity and pre-strain of
the membrane. However, because FSI simulation has
to solve both flow and structure domains and is very
time-consuming, only 3 or 5 values of each parameter
were considered in these studies [10–12], and a thor-
ough simulation of the bifurcation process of the FIV
of the membrane wing with respect to each parame-
ter, which usually needs to compute hundreds or even
thousands of points for each parameter, has not been
done yet.

In this paper, a simplified FMI model is proposed
to reveal the bifurcation characteristics of the dynamic
response of a membrane wing under periodic aerody-
namic loads at higher AOAs, and the effects of the
structure parameters including the membrane density,
elastic modulus and pre-strain are analysed in detail.
In addition, bifurcation of the vibration state along the
membrane is also discussed to examine whether the
centre point, which is usually taken as themonitor point
in many previous studies [7–12], can reflect correctly
the vibration state of the whole membrane. This paper
might help people get a better understanding of the FIV
of the membrane structures in the flow with large-scale
separation.

2 FMI model

In Fig. 1, a membrane wing model is proposed based
on the experimental model of Rojratsirikul et al. [7–9],
which is formed by gluing a thin latex sheet to the rigid
mounts at both leading and trailing edges. As shown in
this figure, when there is flow past the membrane wing,
the membrane will deform to the leeward side of the
wing due to the pressure difference between the lower
and upper surfaces. At very small AOAs, themembrane
wing might eventually stay at a static equilibrium posi-
tion after a transient process.At higherAOAs, however,
since the fluid load becomes unsteady due to separation
and vortex shedding on the upper surface, the mem-
brane wing cannot stay at a static equilibrium position
but will vibrate with time. To describe the deformation
of amembranewing under fluid load, a local coordinate
system is established in Fig. 1. In this local coordinate
system, the leading edge is taken as the origin of coor-

dinates, the x axis is along the wing chord, and the z
axis is perpendicular to the wing chord and directed
to the leeward side. Consider the dynamic equilibrium
of an elementary length dl of the membrane wing. In
principle, the lower and upper surfaces of this element
are subjected to both normal and shear stresses from the
fluid and it will deform in both x and z directions. How-
ever, considering the deformation of the membrane is
mainly driven by the pressure difference between the
lower and upper surfaces, the shear stress and other
components of the normal stress except for the pres-
sure are ignored and the deformation is supposed to be
only in z direction. In addition, since the thickness of
the membrane is very small, shear forces and bending
moments at the two ends and the gravity of the mem-
brane element are also ignored.

Based on the assumptions stated above, the external
loads imposed on the membrane element are presented
in Fig. 1. As shown in the figure, the pressures on the
upper and lower surfaces are p+ and p−, respectively,
the membrane element is subjected to the same ten-
sion T at both ends, and the damping force per unit
length is fD , the direction of which is always oppo-
site to the motion. Following Newton’s second law,
vibration equation of this membrane element can be
expressed by

ρShdl
∂2z

∂t2
= (

p− − p+)
dl

+T sin (θ + dθ) − T sin θ − fDdl (1)

where ρS is the membrane density, h the thickness, z
the displacement and θ the angle between the tension
and horizontal line in Fig. 1. Suppose that the lateral
deformation z is not large and both θ and dθ are small
values. Then, substituting sin θ ≈ θ , sin (θ + dθ) ≈
θ + dθ and also fD = ρSCd

∂z
∂t into Eq. (1) yields

ρSh
∂2z

∂t2
+ ρSCd

∂z

∂t
− T

dθ

dl
= p− − p+ (2)

where dθ/dl is the curvature and can be computed by

dθ

dl
= ∂2z

∂x2

[

1 +
(

∂z

∂x

)2
]− 3

2

(3)

Assume the membrane material is linearly elastic
and therefore the membrane tension can be further
expressed as
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Fig. 1 A mechanical model
of a membrane wing under
fluid load
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T = Eh
(
δ0 + δ̄

)
(4)

where E is the elastic modulus, δ0 the pre-strain and δ̄

the strain, which can be calculated by

δ̄ = LS − L0

L0
(5)

In Eq. (5), L0 and LS are the membrane lengths before
and after deformation, respectively, and LS can be com-
puted by

LS =
∫ c

0

√

1 +
(

∂z

∂x

)2

dx (6)

In Eq. (2), p− − p+ = �p is the fluid load
imposed on the membrane wing. For FSI problems,
this term is determined not only by the flow parameters
such as the Reynolds number and AOA (α in Fig. 1)
but also affected by the structure parameters such as
ρS, h,Cd , E and δ0. Hence, �p could be expressed
generally by �p = Q(Re, α, ρS, h, Cd , E, δ0,

x, t). As mentioned above, when AOA is very small,
the membrane wing might eventually stay at a static
equilibrium position and be subjected to a steady fluid
load. In this case, the relationship between �p and
the flow and structure parameters can be simplified to
�p = Q′ (Re, α, h, E, δ0, x). In the work of Wald-
man and Breuer [22], a specific form of Q′ is proposed
for the case at small AOAs by assuming that�p is uni-
form over the membrane wing and the lift is equal to
the circular arcs in potential flow. Unfortunately, to the
best of our knowledge, the specific form of Q has not
been reported yet for the case at higher AOAs due to the
complexity of the relationship. In this paper, to investi-
gate the dynamic response of a membrane wing under

periodic fluid load at higher AOAs, a simple form of Q
is proposed by supposing�p is periodic and distributed
uniformly over the membrane, namely

�p = σ sin(2π fet) (7)

where σ is the amplitude and fe the oscillating fre-
quency. Substituting Eqs. (3) and (7) into Eq. (2), the
vibration equation of a membrane wing under periodic
fluid load can be derived as

ρSh
∂2z

∂t2
+ ρSCd

∂z

∂t
− T

∂2z

∂x2

[

1 +
(

∂z

∂x

)2
]− 3

2

= σ sin(2π fet) (8)

Furthermore, take U, L = c and ρ0 as the reference
velocity, length and density, respectively, and define

x̃ = x/L , t̃ = tU/L , C̃d = Cd/U,

ρ̃S = ρS/ρ0, h̃ = h/L ,

c̃ = c/L = 1.0, f̃e = feL/U, z̃ = z/L ,

L̃ S = LS/L , L̃0 = L0/L ,

E = E/
(
ρ0U

2
)
, σ̃ = σ/

(
ρ0U

2
)
,

T̃ = T L/
(
ρ0U

2
)
. (9)

The non-dimensional form of the governing equations
can be obtained as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ̃Sh̃
∂2 z̃

∂ t̃2
+ ρ̃SC̃d

∂ z̃

∂ t̃
− T̃

∂2 z̃

∂ x̃2

[

1 +
(

∂ z̃

∂ x̃

)2
]− 3

2

= σ̃ sin(2π f̃e t̃),

T̃ = Ẽ h̃
(
δ0 + δ̄

)
, δ̄ = L̃ S − L̃0

L̃0
, L̃ S

= ∫ c̃=1
0

√

1 +
(

∂ z̃
∂ x̃

)2
dx̃ .

(10)
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Fig. 2 A schematic of the membrane elements

In the rest of this paper, the non-dimensional symbol
“∼” in Eqs. (9) and (10) is dropped for convenience.

3 Numerical method

3.1 Spatial discretization

As shown inFig. 2, themembrane is first divided intoM
parts with the same length of�x , and then the Hermite
polynomial is used to approach the deformation of each
element using the displacements and gradients at the
two end nodes, namely

ze (x) = Ne1ze1 + Ne2

(
∂z

∂x

)

e1
+ Ne3ze2

+ Ne4

(
∂z

∂x

)

e2
, (11)

where e1 and e2 denote the left and right end nodes of
element e, respectively, and the interpolation functions
in element e can be expressed by

Ne1 = 1 − 3ξ2 + 2ξ3, Ne2 = �x(ξ − 2ξ2 + ξ3),

Ne3 = 3ξ2 − 2ξ3, Ne4 = �x(ξ3 − 2ξ2), (12)

where ξ is the local coordinate and defined by

ξ = (x − xe1)/(xe2 − xe1). (13)

Based on the approximate displacement on each ele-
ment, the displacement z (x) on the whole membrane
can be expressed by

z (x) = N1z1 + N2

(
∂z

∂x

)

1
· · · + N(2I−1)zI

+ N2I

(
∂z

∂x

)

I
· · · + N(2M+1)z(M+1)

+ N2(M+1)

(
∂z

∂x

)

(M+1)
, (14)

where N(2I−1) and N2I represent the shape functions
of grid node I . Equation (14) can also be rewritten in
the vector form as

z (x) = N · x (15)

where

N = {
N1, N2, N3 · · · N2(M+1)

}
,

x =
{

z1,

(
∂z

∂x

)

1
, z2,

(
∂z

∂x

)

2
· · · z(M+1),

(
∂z

∂x

)

(M+1)

}T

.

(16)

Substituting Eq. (16) into Eq. (10) and taking N as the
weighting function yield

Mẍ + Cẋ + K(x)x = Q (17)

where

M = ρSh
∫ 1

0
NTNdx (18)

C = ρSCd

∫ 1

0
NTNdx (19)

K(x) =
∫ 1

0

∂

∂x

⎧
⎨

⎩
NTT

[

1 +
(

∂N · x
∂x

)2
]− 3

2

⎫
⎬

⎭
∂N
∂x

dx

(20)

Q =
∫ 1

0
NTσ sin(2π fet)dx (21)

3.2 Time integration

It is obvious that Eq. (17) is a group of nonlinear ordi-
nary partial differential equations, which can be inte-
grated in time by algorithms such as the Runge–Kutta
method, Newmark method or Generalized-α method.
Considering its advantages in both accuracy and sta-
bility, the Generalized-α method proposed by Chung
and Hulbert [23] is used here.

According to the Generalized-α method, Eq. (13) is
further discretized in time as

Mẍn+1−αm + Cẋn+1−α f + K(xn+1−α f )xn+1−α f

= Q(tn+1−α f ) (22)
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where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẍn+1−αm = (1 − αm) ẍn+1 + αm ẍn, ẋn+1−α f

= (
1 − α f

)
ẋn+1 + α f ẋn,

xn+1−α f = (
1 − α f

)
xn+1 + α f xn, tn+1−α f

= (
1 − α f

)
tn+1 + α f tn,

ẋn+1 = ẋn + �t
[
(1 − γ ) ẍn + γ ẍn+1

]
,

xn+1 = xn + �t ẋn + �t2
[( 1

2 − β
)
ẍn + βẍn+1

]
,

αm = 2ς − 1

ς + 1
, β = 1

4

(
1 − αm + α f

)2
,

α f = ς
ς+1 , γ = 1

2 − αm + α f ,

(23)

In Eq. (23), ς ∈ [0, 1] is a governing parameter, which
can control the high-frequency dissipation to vary from
the no dissipation case (ς = 1) to asymptotic annihi-
lation case (ς = 0). In this paper, ς = 0.1 is used for
all computations.

Substituting Eq. (23) into Eq. (22) and rearranging,
a fully discretized form of Eq. (10) can be obtained as
[
1 − αm

β�t2
M +

(
1 − α f

)
γ

β�t
C

+ (
1 − α f

)
K

(
xn+1−α f

) ]
xn+1

+α fK(xn+1−α f )xn
= Q

(
tn+1−α f

)

+M
[
1 − αm

β�t2
xn+ 1 − αm

β�t
ẋn+ 1 − αm−2β

2β
ẍn

]

+C

[(
1−α f

)
γ

β�t
xn+

(
1−2α f

)
β−(

1−α f
)
γ

β
ẋn

−�t
(
1 − α f

) (
1 − γ

2β

)
ẍn

]
. (24)

Equation (24) is a group of nonlinear algebraic equa-
tions and is solved by the Newton–Raphson method.

4 Examples and discussion

4.1 Code verification

Before applied to the case with periodic load, the pro-
posed solution procedure and codes are applied first to
the casewith constant load for verification. If a constant
load σ0 is distributed uniformly over the membrane
and the membrane deformation is very small, the static
equilibrium shape [24] of themembrane is governed by

d2z

dx2
= −σ0

T
, (25)

which has an exact solution as

z = βx (1 − x) , (26)

where

{
β = σ0/2T

T = Eh
[
δ0 +

(
β
√
1 + β2 + sinh−1β

)
/2β − 1

]

(27)

Hence, this problem can be used to test the accuracy of
the proposed finite element procedure and correspond-
ing codes by simplifying Eq. (10) into

ρSh
∂2z

∂t2
+ ρSCd

∂z

∂t
− T

∂2z

∂x2
= σ0 (28)

TwocaseswithρS = 1000, h = 0.001,Cd = 0.001,
σ = 1.0, E = 25,000 and δ0 = 0 and δ0 = 0.02 are
considered, and the corresponding values of parameter
β in Eq. (27) are 0.449 and 0.415, respectively. In both
cases, the membrane is divided into M = 20 elements
and the time step is taken as �t = 0.005. As shown in
Fig. 3, the computed membrane deformations have an
excellent agreement with the exact solutions.

4.2 Grid independence test

To test the influence of the grid density and make the
numerical results more reliable, dynamic responses of
the membrane with ρS = 1000, h = 0.001, Cd =
0.001, σ = 1.0, fe = 1.0, E = 25,000, δ0 = 0,
�t = 0.005 and t ∈ [0, 100] are computed first using
four meshes with M = 5, 10, 20 and 40. In all cases,
the initial conditions are defined as z = 0, ż = 0 and
z̈ = 0.

In Figs. 4 and 5, the computed time history of the dis-
placement at the centre point of the membrane in time
interval t ∈ [95, 100] and the instantaneous membrane
deformation at t = 100 are presented, respectively. As
shown in the figures, with increase in the total num-
ber of the element, discrepancy between the results is
decreased. In particular, the computed centre point dis-
placement in Fig. 4 and the membrane deformation in
Fig. 5 are changed very small when M is increased
from 20 to 40. This means that a solution indepen-
dent of the mesh size could be obtained at M = 20.
Hence, M = 20 is used for all computations hereafter.
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Fig. 3 Final deformations of the membrane under constant load. a δ0 = 0. b δ0 = 0.02

Fig. 4 Time histories of the displacement at the centre point of
the membrane (t = 95−100)

Fig. 5 Instantaneous deformation of the membrane at t = 100

In addition, in the following sections, when effect of
one parameter is investigated, the values of other para-
meters will remain the same as this section.

4.3 Effect of density

To investigate the effect of the membrane density ρS ,
dynamic responses of a flexible membrane under peri-
odic load when ρS is increased from 1 to 700 are sim-
ulated. In Fig. 6, instantaneous positions of the centre
point in t ∈ [80, 100] when its velocity becomes zero
(or changes direction) are presented to illustrate the
final state of the vibration state at the membrane cen-
tre. In fact, the points in Fig. 6 can also be taken as a
Poincare map of the phase portraits by taking the plane
ż = v = 0 as the Poincare section.

As shown in Fig. 6, when the non-dimensional den-
sity ρS is decreased from 700 to 1, vibration state of
membrane centre will change greatly. As marked in
Fig. 6a, the bifurcation diagram with respect to ρS can
be divided roughly into four regions:
Region I (ρS ∈ [549.5, 700]) As shown in Figs. 6a and
7, in this region the vibration of the membrane centre is
always period 1 and has the same period with the exter-
nal load, namely Tc = Te = 1.0. With decrease in ρS ,
the amplitude of vibration is increased continuously.
Region II (ρS ∈ [125.5, 549.5)) As shown in Figs. 6a
and 8, vibration state in this region is also period 1 with
Tc = Te = 1.0. However, different from region I, the
amplitude of vibration in this region is much larger and
decreased with ρS , and the two branches in the bifur-
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Fig. 6 Bifurcation diagram at the centre point of the membrane with respect to ρS . a ρS ∈ [0, 700]. b ρS ∈ [1, 125]. c ρS ∈ [116, 126]
(upper branch). d ρS ∈ [70, 120]
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Fig. 7 Phase portrait and spectrogram at ρS = 700

Fig. 8 Phase portrait and spectrogram at ρS = 400

cation diagram have become discontinuous at several
points. Moreover, the amplitude of the harmonic com-
ponent with fc = 3 is increased in Fig. 8.

On the boundary between regions I and II in Fig. 6a,
the amplitude of the membrane centre is increased
abruptly from 0.0887 to 0.265 when ρS is decreased
slightly near ρS = 549.5. To study the reason for
this phenomenon, dynamic responses of the membrane
from 40 different initial velocities (see the red points
in Fig. 9) are computed at both ρS = 548.4 (point A
in Fig. 6a) and 549.5 (point B in Fig. 6a). As shown
in Fig. 9, in both cases two stable orbits (i.e. the limit
cycle oscillation, LCO) can be observed in the phase
plane, and the trajectories initiated from some of the
initial points are eventually attracted by LCO1 while
the others are attracted by LCO2. In Fig. 9, the trajec-

tory initiated from z = 0 and v = 0 is also presented
and highlighted by blue colour. As seen, the trajectory
from z = 0 and v = 0 is eventually attracted by LCO1
at ρS = 548.4 while by LCO2 at ρS = 549.5. Hence,
because the amplitude of LCO1 is much larger than
LCO2, an abrupt jump between point A and point B is
observed in Fig. 6a.
Region III (ρS ∈ [68.6, 125.5)) As shown in Fig. 6,
various types of periodic vibration can be observed
in this region. First, when ρS is decreased in ρS ∈
[116.8, 125.5), it can be seen from Fig. 6c that the
period of vibration at the membrane centre is increased
gradually from Te to 2Te in ρS ∈ [121.5, 125.5), 4Te
in ρS ∈ [118.5, 121.5) and other periodic vibrations
with higher periods in ρS ∈ [116.8, 118.5), which
can be seen more clearly from the phase portraits and
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Fig. 9 Phase portraits from different initial points. a ρS = 548.4 (point A). b ρS = 549.5 (point B)

spectrograms given in Fig. 10. As shown in the fig-
ures, the membrane is still vibrating near LCO1 in
ρS ∈ [116.8, 125.5) with more harmonic components
than region II. Moreover, although the vibration states
at ρS = 122, 120 and 117 are very different, the ampli-
tudes of their dominant vibration components are not
changed very much.

Then, when ρS is decreased in ρS ∈ [68.6, 116.8),
it can be seen from Figs. 6d and 11 that dynamic
responses of the membrane centre are still periodic and
the period is also increased with ρS . However, differ-
ent from the vibration state in ρS ∈ [116.8, 125.5), two
new branches appear in Fig. 6d when ρS is less than
116.8, which can also be seen from the phase portraits.
As shown in Fig. 11, different from those in Fig. 10, the
trajectories at ρS = 73, 93 and 110 are twining not only
around LCO1 but also LCO2. Moreover, it can also be
found from the spectrograms in Fig. 11 that the number
of the dominant frequency components has increased in
ρS ∈ [68.6, 116.8) compared with ρS ∈ [68.6, 125.5).
Region IV (ρS ∈ [1, 68.6))As shown in Fig. 6, whenρS

is decreased near 68.6, the vibration state at the mem-
brane centre will become very complicated. As shown
in Fig. 6b, this region can be further divided into several
subregions, such as ρS ∈ [62.5, 68.6), [57.1, 58.6],
[18.3, 21.3] and [8, 10], connected by several periodic
windows.

In Fig. 12, the phase portraits and spectrograms at
ρS = 68, 50, 45, 30 and 20 are given. As shown in
Fig. 12a, quite different from those in Figs. 7, 8, 10
and 11, the vibration has become quasi-periodic at
ρS = 68 and two irrational frequency peaks are

observed near 2.45 and 4.53. Then, the number of irra-
tional frequency components is increased in Fig. 12c
when ρS is decreased to 45, and finally the spectro-
gram becomes almost continuous in Fig. 12e at a much
smaller density of ρS = 20, which may indicate the
vibration has turn to chaotic. Moreover, it can be seen
from Fig. 12b, d that the vibration periods in both of
the windows ρS ∈ [47, 57.1] and ρS ∈ [27, 44] are
3Te. This could be another proof of the appearance of
chaotic vibration according to the Li–Yorke conjecture
of “Period three implies chaos”[25].

Finally, the change of vibration state of the mem-
brane centre with respect to ρS is summarized in
Table 1. As shown in the table, with decrease in ρS ,
the vibration state at the membrane centre has varied
from period 1 to period 2, period 4, multi-period with
higher period, quasi-period and chaos. These results
have shown that the mass/inertia of the membrane,
which is usually ignored in many previous studies of
FMI, has very great effect on the dynamic response
of the membrane wing under unsteady fluid loads. In
addition, it seems that increasing the mass/inertia of
the membrane could make its response under periodic
fluid loads more regular and controllable.

4.4 Effect of elastic modulus

The effect of the non-dimensional elasticmodulus E on
the dynamic response of themembrane is considered by
changing it from 100 to 100,000, and Fig. 13 presents
the bifurcation diagram of the vibration at the mem-
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Nonlinear vibrations of a flexible membrane under periodic load 2477

Fig. 10 Phase portrait and spectrogram at several membrane densities in ρS ∈ [116.8, 125.5). a ρS = 122(Tc = 2Te). b ρS =
120(Tc = 4Te). c ρS = 117(Tc = 18Te)

brane centre with respect to E . As shown in Fig. 13a,
the bifurcation diagram in E ∈ [100, 100,000] can be
divided roughly into three regions.

Region I (E ∈ [100, 1182.9]) As shown in Figs. 13a
and 14, in this region the final state of vibration at
the membrane centre is period 1 with Tc = Te, and
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Fig. 11 Phase portrait and spectrogram at several membrane densities in ρS ∈ [68.6, 116.8). a ρS = 110(Tc = 2Te). b ρS = 93(Tc =
3Te). c ρS = 73(Tc = 6Te)
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Fig. 12 Phase portrait and spectrogram at several membrane densities in ρS ∈ (0, 68.6). a ρS = 68. b ρS = 50. c ρS = 45. d ρS = 30.
e ρS = 20
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Fig. 12 continued

Table 1 Variation of the vibration state with respect to the membrane density

Region I II III IV

Range of ρS [549.5, 700] [125.5, 549.5) [68.6, 125.5) [1, 68.6)

Vibration state Period 1 Period 1 Period 2, period 4 and other
multi-period with higher
period

Quasi-period and chaos
with period-3 windows

the amplitude of vibration is increased gradually with
E in a wave form. At each wave crest or trough, the
bifurcation curveswill becomediscontinuous and jump
abruptly fromonebranch to anotherwith different char-
acteristics, as shown in Fig. 13a. In Section 4.3, sim-
ilar phenomenon of jump in the bifurcation diagram
has been discussed and it is found caused by the jump
of the vibration state between two stable orbits. To

examine whether the jump in Fig. 13 caused by the
same reason as that in Fig. 6, dynamic responses at
E = 663.5 (point A Fig. 13a) and E = 668.4 (point B
in Fig. 13a) initiated from 40 different initial states are
simulated and the obtained phase portraits are shown in
Fig. 15. As shown in Fig. 15a, at E = 663.5 trajectories
from all initial conditions are attracted eventually by a
stable periodic orbit (LCO1) after a transient process.
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Fig. 13 Bifurcation diagram with respect to E . a E ∈ [100, 100,000]. b E ∈ [1000, 10,000]. c E ∈ [2200, 2600] (upper branch)

At E = 668.4, however, another stable periodic orbit
(LCO2) is observed and the trajectories from some ini-
tial conditions are eventually attracted by LCO1 while
the others attracted by LCO2. In particular, the trajec-
tory from z = 0 and v = 0 is attracted by LCO1 at
E = 663.5 while by LCO2 at E = 668.4. Hence, a
jump is observed in Fig. 13a when E is increased very
slightly from 663.5 to 668.4, which indicates that the
reason of the jumps in Figs. 6 and 13 are very simi-
lar. However, because the difference of the amplitude
between LCO1 and LCO2 in Fig. 15 is much smaller
than that in Fig. 9, the jumpbetweenAandB in Fig. 13a
is not as significant as that in Fig. 6a.
Region II (E ∈ (1182.9, 9190.9]) As shown in
Fig. 13b, in this region the vibration amplitude is
also increased gradually with E in a wave form, but
the vibration state has become more complicated. As
shown in the figure, near the boundary of region I and

region II, the vibration jumps from LCO2 to LCO1.
However, different from that in region I, the period of
LCO1 is Tc = 3Te near E = 1182.9 and then turn
back to Tc = Te when E ∈ [1480.3, 2200], as shown
in Figs. 13b and 16a. When E is further increased,
the stability of LCO1 is decreased and the vibration
changes gradually from periodic to quasi-periodic in
E ∈ [2200, 2600], as shown in Figs. 13c and 16(b).
Then, near E = 2600, the vibration state will jump
from LCO1 back to LCO2. With further increase in
E , the stability of LCO2 will also be decreased when
E ∈ [7392, 9190.9].
Region III (E ∈ (9190.9, 100,000]) As shown in
Fig. 13a, near E = 9190.9 the vibration state will
jump fromquasi-period to period 1when E is increased
slightly. In Fig. 17, trajectories from 40 different ini-
tial points at E = 9190.9 (point C in Fig. 13a) and
E = 9290.8 (point D in Fig. 13a) are given to illustrate
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Fig. 14 Phases portrait and spectrogram at E = 1100

Fig. 15 Phase portraits from different initial points at E = 663.5 and E = 668.4. a E = 663.5 (point A). b E = 668.4 (point B)

more clearly the change in the vibration state here. As
seen, at both E = 9190.9 and E = 9290.8, LCO2
has become quasi-periodic and another stable periodic
orbit (LCO3)with larger amplitude appears in the phase
plane. Because the trajectory initiated from z = 0 and
v = 0 is attracted by LCO2 at E = 9190.9 while by
LCO3 at E = 9290.8, the amplitude in the bifurca-
tion diagram is jumped from point C to D in Fig. 13a.
Then, when E is increased from 9290.9 to 100,000,
the vibration state of the membrane centre is no longer
changed very much expect that the amplitude of LCO3
is decreased gradually.

4.5 Effect of pre-strain

With other parameters fixed, the effect of pre-strain on
the dynamic response of the membrane under periodic

load is investigated by increasing δ0 from 0 to 0.08.
As shown in the bifurcation diagram in Fig. 18 and the
phase portrait and spectrogram inFig. 19, the amplitude
of the vibration is first decreased and then increased
with δ0, but the vibration state is always period 1 with
Tc = Te. Compared with the density and elastic modu-
lus, the pre-strain has smaller influence on the dynamic
response of the membrane.

4.6 Vibration along the membrane

In the above sections, only the dynamic response at the
centre point of the membrane is considered. In fact, in
most of the existing FMI studies, the centre point is also
taken as the indicator of the vibration state of the whole
membrane. Can the centre point reflect correctly the
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Fig. 16 Phases portraits and spectrogram at several E . a E = 1300. b E = 2600

Fig. 17 Phase portraits from different initial points at E = 9190.9 and E = 9290.8. a E = 9190.9. b E = 9290.8
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Fig. 18 Bifurcation diagram with respect to δ0

vibration state of the whole structure? In this section,
this is investigated based on the results of Section 4.3.

In Fig. 20, bifurcation diagrams with respect to x
are given to illustrate the vibration states of the whole
membrane at several membrane densities. As seen, at
ρS = 300 (Fig. 20a),ρS = 50 (Fig. 20d) and ρS = 20
(Fig. 20f), the vibration states at different membrane
points are very similar. TakingρS = 50 inFig. 20d as an
example, although the amplitude is decreased from the
centre point (x = 0.5) to the two ends (x = 0 and x =
1), the vibration states at almost all locations are period
3. In this case, the vibration states at other membrane
points can be reflected by the centre point. However,
at ρS = 120 (Fig. 20b), ρS = 70 (Fig. 20c) and ρS =
30 (Fig. 20e), the situation is quite different and the
vibration statewill change greatly along themembrane.

TakingρS = 30 in Fig. 20e as an example, the vibration
of the membrane is period 3 in x ∈ (0, 0.15], x ∈
[0.33, 0.66] and x ∈ [0.85, 1) but becomes period 2 in
x ∈ (0.15, 0.33) and x ∈ (0.66, 0.85), which means
the vibration state at other positions might different
from that at the membrane centre point. In this case,
the vibration state of the whole membrane cannot be
reflected correctly if only taking the membrane centre
as the indicator.

5 Conclusions

Nonlinear vibrations of a flexible membrane under
external periodic loads is computed using the stan-
dard finite element method and Generalized-α method,
and the effects of the membrane density, elastic mod-
ulus, pre-strain and location are investigated in detail.
From the obtained numerical results, several conclu-
sions could be made as follows:

(1) Using the standard finite element method for spa-
tial discretization, Generalized-α method for tem-
poral integration andNewton–Raphsonmethod for
the nonlinear algebra equations, an accurate and
robust numerical scheme can be obtained for the
nonlinear vibration of a flexible membrane under
time-varying loads. With little modification, the
solution procedure proposed here can be employed
as the structure solver for FMI simulations.

(2) With decrease in the membrane density, vibration
state of the membrane is varied gradually from
period 1 to multi-period, quasi-period and chaos

Fig. 19 Phases portrait and spectrogram at δ0 = 0.01
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Fig. 20 Bifurcation diagram with respect to x at several membrane densities. a ρS = 300. b ρS = 120. c ρS = 70. d ρS = 50. e
ρS = 30. f ρS = 20

although the external load is uniform and peri-
odic. This indicates that the mass/inertia, which
is usually ignored in the existing FMI analysis,
has great influence on the dynamic response of

the flexile membrane when unsteady fluid loads
are imposed, and FIV of the membrane structures
with larger mass/inertia is more regular and con-
trollable.
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(3) For a flexible membrane under periodic loads, the
vibration state might change suddenly at some
membrane densities and elasticmoduli. Near these
critical structure parameters, it is found that there
is more than one stable orbit in the phase portraits
and the final state of vibration will jump between
them.

(4) Compared with the density and elastic modulus,
the effect of pre-strain on the dynamic response of
the membrane is much smaller.

(5) At some structure parameters, the computed vibra-
tion states of the centre point are quite differ-
ent with those at other membrane locations. It
means that, for membrane and other continuous
structures, taking the centre point as the indi-
cator of the vibration state of the whole struc-
ture might lead to mistakes in some cases. For
the vibration problems involving continuous struc-
tures such as membrane, beam and rod, newmeth-
ods or indicators should be developed to reflect
more accurately the vibration state of the whole
structure.
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