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Abstract In this paper, the problem of exponen-
tial cluster synchronization of general hybrid-coupled
impulsive dynamical networks with internal delay
and delayed coupling is investigated. A more gen-
eral delayed coupling term including different trans-
mission delay and self-feedback delay is taken into
account. By using average impulsive interval approach
and the analysis technique, some novel globally expo-
nential cluster synchronization criteria are derived ana-
lytically. It is noted that the internal delay, transmission
delay and self-feedback delay are all time-varying and
can be different from each other, the inner connect-
ing matrices are not demanded to be diagonal and the
coupling matrices are not restricted to be symmetric
or irreducible, more consistent with the realistic net-
works. Particularly, it is shown that the derived cluster
synchronization criteria are simultaneously applicable
for studying general delayed dynamical networks with
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synchronizing impulses or desynchronizing impulses.
Numerical examples are finally given to illustrate the
effectiveness of the obtained theoretical results.
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1 Introduction

In the past fewdecades,much effort has been devoted to
the study of complex dynamical networks for theirwide
and potential applications in various fields [1,2]. Espe-
cially, synchronization phenomena known as typical
collective behaviors of complex dynamical networks
have attracted increasing attention because network
synchronization not only can explain many natural
phenomena but also has many applications in image
processing, secure communication, mechanical engi-
neering, etc. [2,3]. Up to now, many different synchro-
nization patterns have been well studied, such as com-
plete synchronization [3], phase synchronization [4],
projective synchronization [5], cluster synchronization
[6].Among them, complete synchronization is themost
special one and characterized by that all nodes in a
dynamical network approach to a uniform dynamical
behavior [3].

Cluster synchronization is a particular synchroniza-
tion phenomenon requiring that the set of nodes in a
dynamical network split into several subgroups called
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clusters or communities, such that the nodes in the
same cluster reach complete synchronization but those
in different clusters do not [6]. Due to its significance
in biological science [7] and communication engineer-
ing [8], cluster synchronization of complex dynamical
networks has recently received notable attention, and
some interesting results have been reported [6,9–12].
For example, Ma et al. [6] designed a coupling scheme
with cooperative and competitive weight couplings to
realize cluster synchronization for connected chaotic
networks. Cao et al. [9] considered cluster synchroniza-
tion in an array of hybrid-coupled neural networks with
delay. Zhang et al. [10] considered cluster synchroniza-
tion problem for coupled impulsive genetic oscillators
with external disturbances and communication delay.
Zhang et al. [11] investigated cluster synchronization
in networkswith asymmetric negative couplings. Cai et
al. [12] discussed cluster synchronization of overlap-
ping uncertain complex networks with time-varying
impulse disturbances. Meanwhile, many effective con-
trol strategies have been proposed to drive complex
dynamical networks to achieve cluster synchronization
[13–18]. In [13], a simple pinning control scheme was
proposed to realize cluster synchronization in commu-
nity networks with or without delay. In [14], the prob-
lem of driving a general network to a selected cluster
synchronization pattern by means of a pinning con-
trol strategy was discussed. In [15], by using a decen-
tralized adaptive strategy, pinning control for cluster
synchronization of undirected complex dynamical net-
works was investigated. In [16], by adding some simple
intermittent pinning controllers, cluster synchroniza-
tion in linear coupled networks was considered. Based
on a decentralized adaptive intermittent pinning con-
trol scheme, cluster synchronization of directed het-
erogeneous dynamical networks was explored in [17].
In addition, Hu et al. [18] studied cluster synchroniza-
tion of complex networks via event-triggered strategy
under stochastic sampling.

In reality, due to the finite speeds of transmission
and spreading as well as traffic congestion, time delay
often occurs in the process of information storage
and transmission in dynamical networks, and it can
cause instability, oscillation or bad systemperformance
[9,19–31]. Therefore, it is necessary to study the effect
of time delay on synchronization of dynamical net-
works. Generally, there are two types of time delays
in dynamical networks. One is internal delay occur-
ring inside the dynamical node [9,19–23]. The other

is coupling delay caused by the exchange of informa-
tion between dynamical nodes [21–31]. The first type
of time delay comes from intrinsic factor associated
with the dynamical node or oscillator, and it is usually
called response or processing time delay, for instance,
the time delay associated with autapse connected to
neuron [20]. The second type of time delay is regarded
as transmission (or propagation) delay between dynam-
ical nodes of network; for example, time delay with
diversity is involved in the neuronal network and the
effect of time delay is considered in biological systems
[23–25]. Hence, when modeling real-world complex
dynamical networks, both the internal delay and cou-
pling delay should be taken into consideration. Indeed,
this kind of dynamical network is ubiquitous in the
real world, especially in many biological networks and
neural networks. For example, in cell-cell communica-
tion network, due to the transcription, translation and
translocation processes of regulatory molecules, and
diffusion or transport process of the signal molecules
among cells, time delays are unavoidably encountered
in both cell genetic systems and the interacting among
the cell genetic systems [22,23]. In the implementation
of neural networks, due to the finite switching speeds
of neurons and amplifiers, and finite information trans-
mission andprocessing speeds among theneurons, time
delays inevitably exist in both neurons and the signal
transmission among the neurons [29].

Recently, considerable attention has been paid to
synchronization in delayed dynamical networks. It is
noted that most of the existing studies have been
focused on the delayed coupling term given by
Γ1

(
x j (t − σ) − xi (t − σ)

)
or Γ1

(
x j (t − σ) − xi (t)

)

[22,26–31]. The first one means that the node’s own
state and neighbors’s states are affected by the same
delay, i.e., each dynamical node has a feedback term
with the same delay as the transmission delay [22,26,
27], while the second one implies that only the trans-
mission delay for signal sent from node j to node
i exists in the network, i.e., no self-delay exists in
the feedback term [28,29]. However, as mentioned in
[21,30,31], in the signal transmission process, delay
may affect both the node’s own state and neighbors’s
states and self-delaymay be different from neighboring
delay; that is, the delayed coupling term is described
by Γ1

(
x j (t − σ1) − xi (t − σ2)

)
, which is feedback

with different self-delay. As a matter of fact, when
the ability of an isolated dynamical node to acquire
its own information is ineffective, there should exist
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a delayed feedback term [29], and so it is reasonable
to assume that the delayed coupling term has the form
of Γ1

(
x j (t − σ1) − xi (t − σ2)

)
. Obviously, this type

of delayed coupling term takes the aforementioned two
types of delayed coupling terms as a special case. So far,
there are few to discuss the case in which the delayed
coupling term is given by Γ1

(
x j (t − σ1) − xi (t −

σ2)
)
[21,30,31]. Therefore, cluster synchronization of

dynamical networks with the delayed coupling term as
Γ1

(
x j (t − σ1(t)) − xi (t − σ2(t))

)
will be considered

in this paper.
On the other hand, because of switching phenom-

enon, frequency change, or other sudden noise, the
states of nodes in many real-world dynamical net-
works are often subject to instantaneous perturbations
and experience abrupt changes at certain instants, i.e.,
they exhibit impulsive effects [31–38,41–44]. Impul-
sive effects can also be found in many evolutionary
processes and biological systems [31,32,41]. In the
last decade, impulsive dynamical networks have drawn
more and more attention for their various applications
in information science, economic systems, automated
control systems, etc. [41–44]. Recently, much progress
has been made in the investigation of synchroniza-
tion of impulsive dynamical networks [31–44]. For
instance, stochastic synchronization was addressed for
delayed dynamical networks with desynchronizing and
synchronizing impulses in [31]. In [34], synchroniza-
tion of nonlinear dynamical networks with heteroge-
neous impulses was investigated, where the impul-
sive effect in each node is not only nonidentical from
each other, but also time-varying at different impulsive
instants. In [39], the problem of designing decentral-
ized impulsive controllers for global synchronization of
complex dynamical network with nonidentical nodes
and coupling delays was studied. In [40], the H∞ syn-
chronization problem for complex dynamical networks
with coupling delays and external disturbance via dis-
tributed impulsive control was addressed. In [41], Lu
et al. proposed a concept of average impulsive interval
to describe the impulses sequences and then derived a
unified synchronization criterion for directed dynam-
ical networks with desynchronizing or synchronizing
impulses. In addition,Lu et al. [42] also discussed expo-
nential synchronization of linearly coupled neural net-
works with impulsive disturbances by using the aver-
age impulsive interval approach. However, cluster syn-
chronization of general impulsive delayed dynamical
networks has seldom been investigated. As indicated in

[41–44], by average impulsive interval, the derived syn-
chronization criterion of complex dynamical networks
is less conservative no matter desynchronizing or syn-
chronizing impulses. Hence, in this paper we are con-
cerned with cluster synchronization of general hybrid-
coupled delayed dynamical networks with impulsive
effects using the average impulsive interval approach.
To the best of our knowledge, there is still no theoretical
result concerning this issue.

Motivated by the above statements, this paper
aims to investigate cluster synchronization of a class
of hybrid-coupled impulsive delayed dynamical net-
works. Based on the average impulsive interval app-
roach and the analysis technique, some novel glob-
ally exponential cluster synchronization criteria are
derived analytically. Two numerical examples are also
given to show the effectiveness of the obtained theoret-
ical results. The main contributions of this paper can
be listed as follows: (1) a more general delayed cou-
pling term involving the transmission delay and self-
feedback delay is introduced in the network model.
Meanwhile, the internal delay, transmission delay and
self-feedback delay are all time-varying and can be dif-
ferent from each other. Moreover, the inner connect-
ing matrices are not required to be diagonal, and the
coupling matrices are not restricted to be symmet-
ric or irreducible; (2) two types of impulses occurred
in the nodes’ states are considered: synchronizing
impulses and desynchronizing impulses; (3) the con-
cept of average impulsive interval is utilized to describe
the impulses sequences, which makes the derived clus-
ter synchronization criteria less conservative; (4) the
established cluster synchronization criteria are simul-
taneously valid for synchronizing and desynchronizing
impulses.

2 Model and preliminaries

In this paper, we consider a general hybrid-coupled
delayed dynamical network consisting of N nodes
with m clusters, where each node is an n-dimensional
dynamical system with time-varying delay. Without
loss of generality, the sets of subscripts of these clusters
are denoted by C1 = {1, 2, . . . , l1}, C2 = {l1 + 1, l1 +
2, . . . , l1 + l2}, . . . , Cm = {l1 + l2 + · · · + lm−1 +
1, l1 + l2 + · · · + lm−1 + 2, . . . , N }, i.e., ⋃m

i=1 Ci =
{1, 2, . . . , N }. It is well known that, in many realistic
networks such as neural, gene regulation, metabolic or
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software networks, the individual nodes in each cluster
can be viewed as the identical functional units, while
any pair of nodes in different clusters are essentially
different according to their functions [13]. Hence, we
assume that the local dynamics of individual nodes in
each cluster are identical, while those of any pair of
nodes in different clusters are different. According to
these settings, the dynamical behavior of the complex
delayed dynamical network can be described as

ẋi (t) = fr
(
t, xi (t), xi (t − τr (t))

)

+ c0

N∑

j =1, j �=i

b(0)
i j Γ0

(
x j (t) − xi (t)

)

+ c1

N∑

j =1, j �=i

b(1)
i j Γ1

(
x j (t − σ1(t))

− xi (t − σ2(t))
)
, i ∈ Cr , (1)

where r ∈ R = {
1, 2, . . . ,m

}
, xi (t) = (xi1(t),

xi2(t), . . . , xin(t))� ∈ R
n is the state variable of each

isolated node, fr : [0,+∞) × R
n × R

n → R
n is a

continuous vector-valued function governing the evo-
lution of each individual node in the cluster Cr . The
time delays τr (t), σ1(t) and σ2(t)may be unknown but
are bounded by known constants, i.e., 0 ≤ τr (t) ≤ τr ,
0 ≤ σ1(t) ≤ σ1, and 0 ≤ σ2(t) ≤ σ2, in which
τr (t) denotes the internal delay occurring inside the
individual node in the cluster Cr , σ1(t) represents the
transmission delay for signal sent from node j to
node i and σ2(t) is the self-feedback delay. The pos-
itive constants c0 and c1 are the coupling strengths.
Γ0 = (γ 0

i j )n×n > 0 and Γ1 = (γ 1
i j )n×n represent

the inner connecting matrices. B(0) = (b(0)
i j )N×N and

B(1) = (b(1)
i j )N×N are the coupling matrices represent-

ing the topological structure of the network, in which
b(0)
i j and b(1)

i j are defined as follows: if node i receives
direct information from node j at time t and t − τ2(t),
respectively, then b(0)

i j �= 0 and b(1)
i j �= 0; otherwise,

b(0)
i j = 0 and b(1)

i j = 0. Additionally, the diagonal ele-

ments of matrices B(0) and B(1) are defined by b(l)
i i =

−∑
j =1, j �=i b

(l)
i j , i = 1, 2, . . . , N , l = 0, 1, and thus,

one has
∑N

j=1 b
(l)
i j = 0, i = 1, 2, . . . , N , l = 0, 1. In

general, B(0) and B(1) are asymmetric matrices and
may not be identical. Throughout the paper, we always
assume that there exist some constants L0

r and Lτ
r such

that

(
x(t) − y(t)

)�(
fr
(
t, x(t), x(t − τr (t))

)

− fr
(
t, y(t), y(t − τr (t))

))

≤ L0
r

(
x(t) − y(t)

)�(
x(t) − y(t)

)

+ Lτ
r

(
x(t − τr (t))

− y(t − τr (t))
)�(

x(t − τr (t)) − y(t − τr (t))
)
,

(2)

for any x(t), y(t) ∈ R
n and r ∈ R.

Remark 1 The condition (2) gives some constraints on
the dynamics of isolated node in the cluster Cr . If the
function describing each node in the cluster Cr satisfies
uniform Lipschitz condition with respect to the time
t , i.e., ‖ fr (t, x(t), x(t − τr (t))) − fr (t, y(t), y(t −
τr (t)))‖ ≤ K 0

r ‖x(t) − y(t)‖ + K τ
r ‖x(t − τr (t)) −

y(t − τr (t))‖, one can select L0
r = K 0

r + εK τ
r /2 and

Lτ
r = K τ

r /(2ε) to satisfy the condition (2), where ε

is a positive constant. Additionally, it is easy to check
that almost all the well-known chaotic systems with
or without delay, such as the Lorenz system, Chen sys-
tem, Chua’s circuit, as well as the delayed Hopfield
neural networks and delayed cellular neural networks
(see [21,36] and the references therein) satisfy the form
of Eq. (2).

Remark 2 In network model (1), a more general
delayed coupling term is considered, where the node’s
own state and neighbors’ states are affected by differ-
ent delays. Meanwhile, the internal delay τr (t), trans-
mission delay σ1(t) and self-feedback delay σ2(t) are
all time-varying and can be different from each other.
Moreover, the inner connecting matrices Γ0 and Γ1 are
not required to be diagonal, and the coupling matri-
ces B(0) and B(1) are not needed to be symmetric or
irreducible (i.e., the corresponding graphs generated
by the matrices B(0) and B(1) can be directed, weakly
connected and even do not contain any rooted span-
ning directed tree). Hence, our network model is more
consistent with a real-world dynamical network.

In practice, the states of nodes in many dynamical net-
works are often subject to instantaneous perturbations
and experience abrupt changes at certain instants due to
switching phenomenon, frequency change or other sud-
den noise, i.e., they exhibit impulsive effects [10,31–
33,44]. Hence, it is reasonable to assume that at time
instants tk , there exist “sudden changes” (or “jumps”)
in the state of node i such that
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�xi
∣
∣
t=tk

	= xi (t
+
k ) − xi (t

−
k ) = dkxi (t

−
k ),

i = 1, 2, . . . , N , (3)

where {t1, t2, t3, . . .} is an impulsive sequence satis-
fying tk < tk+1 and limk→∞ tk = +∞, xi (t

+
k ) =

limt→t+k
xi (t), xi (t

−
k ) = limt→t−k

xi (t), and dk ∈ R

represents the strength of impulse. Then, we can obtain
the following impulsive delayed dynamical network:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi (t) = fr
(
t, xi (t), xi (t − τr (t))

)

−c1b
(1)
i i Γ1

(
xi (t − σ1(t)) − xi (t − σ2(t))

)

+ c0

N∑

j =1

b(0)
i j Γ0x j (t) + c1

N∑

j =1

b(1)
i j Γ1x j (t−σ1(t)), t �= tk ,

�xi = xi (t
+
k ) − xi (t

−
k ) = dk xi (t

−
k ), t = tk , k ∈ Z+,

xi (t0 + s) = ϕi (s), s ∈ [−σ ∗, 0], i ∈ Cr , r ∈ R, t ≥ t0,

(4)

where Z+ = {1, 2, . . .} denotes the set of posi-
tive integer numbers and σ ∗ = max{σ1, σ2, τ ∗} with
τ ∗ = maxr∈R τr . Without loss of generality, it is
assumed that xi (t) is left continuous at t = tk ,
i.e., xi (tk) = xi (t

−
k ). The initial conditions ϕi (s) ∈

PC
([−σ ∗, 0],Rn

)
, in which PC

([−σ ∗, 0],Rn
)
deno-

tes the set of all functions of bounded variation and left
continuous on any compact subinterval of [−σ ∗, 0]. To
show the information communication among different
clusters, we further rewrite network (4) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi (t) = fr
(
t, xi (t), xi (t − τr (t))

) − c1b
(1)
i i Γ1

(
xi (t − σ1(t))

−xi (t − σ2(t))
) + c0

m∑

p=1

∑

j ∈Cp

b(0)
i j Γ0x j (t)

+ c1

m∑

p=1

∑

j ∈Cp

b(1)
i j Γ1x j (t − σ1(t)), t �= tk ,

�xi = xi (t
+
k ) − xi (t

−
k ) = dk xi (t

−
k ), t = tk , k ∈ Z+,

xi (t0 + s) = ϕi (s), s ∈ [−σ ∗, 0], i ∈ Cr , r ∈ R, t ≥ t0,

(5)

In this paper, we are mainly interested in studying
the cluster synchronization problem for the impulsive
delayed dynamical network (5) or (4). To this end, we
first give the definition of cluster synchronous mani-
fold.

Definition 1 [14] The set M =
{(
x�
1 (t), x�

2 (t), . . . ,

x�
N (t)

)�∈R
nN : x1(t)= x2(t)=· · · = xl1(t), xl1+1(t)

= xl1+2(t) = · · · = xl1+l2(t), . . . , xl1+l2+···+lm−1+1(t)

= xl1+l2+···+lm−1+2(t) = · · · = xN (t)
}
is called the

cluster synchronous manifold of the impulsive delayed
dynamical network (5).

Definition 2 [14] The impulsive delayed dynamical
network (5) with N nodes is said to realize cluster syn-
chronization, if N nodes can be divided intom clusters
as defined above such that

lim
t→+∞ ||xi (t) − x j (t)|| = 0, ∀i, j ∈ Cr , r ∈ R, (6)

and

lim
t→+∞ ||xi (t) − x j (t)|| �= 0, i ∈ Cr1 , j ∈ Cr2 ,
r1 �= r2, r1, r2 ∈ R. (7)

Evidently, when the impulsive delayed dynami-
cal network (5) reaches cluster synchronization, i.e.,
limt→+∞ ||xi (t)− zr (t)|| = 0, i ∈ Cr , r ∈ R, the clus-
ter synchronized state equations can be characterized
by:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

żr (t) = fr
(
t, zr (t), zr (t − τr (t))

)

− c1b
(1)
i i Γ1

(
zr (t − σ1(t)) − zr (t − σ2(t))

)

+ c0

m∑

p=1

∑

j ∈Cp

b(0)
i j Γ0z p(t)

+ c1
m∑

p=1

∑

j ∈Cp

b(1)
i j Γ1z p(t − σ1(t)), t �= tk,

zr (t
+
k ) = (1 + dk)zr (t

−
k ), t = tk, k ∈ Z+,

(8)

where i ∈ Cr and r ∈ R. To discuss cluster synchro-
nization, a prerequisite requirement is that the cluster
synchronous manifold M should be invariant through
the impulsive delayed dynamical network (5) [14], i.e.,
the synchronous state zr (t) in the same cluster should
be uniform for each i ∈ Cr . In view of this, similar to
[6,11,12,14–18], the following assumptions are given.

Assumption 1 Suppose that the coupling matrix
B(l) (l = 0, 1) of dynamical network (5) has the fol-
lowing block form:

B(l) =

⎛

⎜⎜⎜⎜
⎝

B(l)
11 B(l)

12 · · · B(l)
1m

B(l)
21 B(l)

22 · · · B(l)
2m

...
...

. . .
...

B(l)
m1 B(l)

m2 · · · B(l)
mm

⎞

⎟⎟⎟⎟
⎠

where each block B(l)
uv = (b(l)

i j ) ∈ R
lu× lv (u, v ∈ R) is a

zero-row-summatrix, i.e.,
∑

j ∈Cv
b(l)
i j = 0, i ∈ Cu , and

each diagonal block B(l)
uu = (b(l)

i j ) ∈ R
lu× lu satisfies

b(l)
i j ≥ 0(i �= j) and b(l)

i i = −∑
j ∈Cu , j �=i b

(l)
i j , i ∈ Cu .

In addition, rank
(
B(0)
uu

) = lu − 1, u ∈ R.
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Assumption 2 Suppose that there exist constants αr
for r ∈ R such that the diagonal elements of the cou-
pling matrix B(1) of dynamical network (5) satisfy

b(1)
11 = · · · = b(1)

l1, l1
= −α1,

b(1)
l1+1, l1+1 = · · · = b(1)

l1+l2, l1+l2
= −α2, . . . ,

b(1)
l1+l2+···+lm−1+1, l1+l2+···+lm−1+1 = . . . = b(1)

NN = −αm .

Remark 3 Assumptions 1 and 2 ensure the cluster syn-
chronous manifold M is an invariant manifold of the
impulsive delayed dynamical network (5) [14]. In gen-
eral, b(l)

i j > 0 (or < 0), i �= j , l = 0, 1 is viewed as the
cooperative (or competitive) relationship between node
i andnode j [14–18].Hence,Assumption 1 implies that
nodes belonging to the same cluster only have cooper-
ative relationships, while the nodes in different clusters
can have both competitive and cooperative relation-
ships. In addition, thematrix B(0)

uu can be regarded as the
Laplacian matrix of a weighted graph with a spanning
tree, and B(0)

uu has an eigenvalue 0 with multiplicity 1
[28,36].

Remark 4 Actually, Assumption 2 on the coupling
matrix B(1) is not conservative. The reason is that if
each diagonal block B(1)

uu of the coupling matrix B(1)

satisfiesb(1)
i j ≥ 0(i �= j) andb(1)

i i = −∑
j ∈Cu , j �=i b

(1)
i j ,

i ∈ Cu , then it is easy to verify that all diag-
onal entries of the matrix B̃(1)

uu = (b̃(1)
i j )lu×lu =

(
b(1)
i j /(

∑
j ∈Cu , j �=i b

(1)
i j )

)

lu×lu
are −1, and so we can

design the diagonal block matrices of B(1) as B(1)
uu =

αu B̃
(1)
uu for u ∈ R, which satisfy the above assumption.

In order to study cluster synchronization of the
impulsive delayed dynamical network (5), we intro-

duce sr (t) = (1/lr )
(∑

w∈Cr xw(t)
)
, r ∈ R, and define

error vectors as eir (t) = xi (t) − sr (t), i ∈ Cr and r ∈
R. By Assumption 1, one has

∑
j ∈Cp

b(0)
i j Γ0sp(t) =

∑
j ∈Cp

b(1)
i j Γ1sp

(
t − σ1(t)

) = 0n for i = 1, 2, . . . , N
and p = 1, 2, . . . ,m, where 0n denotes the n-
dimensional vector of zeros. Hence, we get

ėir (t) = ẋi (t) − ṡr (t) = ẋi (t) − 1

lr

∑

w∈Cr
ẋw(t)

= f̃r (t, xi , sr , x
τr
i , sτr

r )

+αr c1Γ1

(
eir (t − σ1(t)) − eir (t − σ2(t))

)

+ c0

m∑

p=1

∑

j ∈Cp

b(0)
i j Γ0e jp(t)

+c1

m∑

p=1

∑

j ∈Cp

b(1)
i j Γ1e jp

(
t−σ1(t)

)+ Jr , t �= tk,

�eir (tk) = eir (t
+
k ) − eir (t

−
k ) = xi (t

+
k ) − xi (t

−
k )

− (
sr (t

+
k ) − sr (t

−
k )

)

= xi (t
+
k ) − xi (t

−
k )

− 1

lr

∑

w∈Cr

(
xw(t+k ) − xw(t−k )

)

= dkxi (t
−
k ) − dk

lr

∑

w∈Cr
xw(t−k )

= dkeir (t
−
k ), t = tk,

∑

i∈Cr
eir (t) =

∑

i∈Cr

(
xi (t) − sr (t)

)
=

∑

i∈Cr
xi (t) − lr sr (t)

=
∑

i∈Cr
xi (t) −

∑

w∈Cr
xw(t) = 0n,

where f̃r
(
t, xi , sr , x

τr
i , sτr

r
) = fr

(
t, xi (t), xi (t −

τr (t))
)− fr

(
t, sr (t), sr (t−τr (t))

)
and Jr = fr

(
t, sr (t),

sr (t−τr (t))
)−(1/lr )

∑
w∈Cr fr

(
t, xw(t), xw(t−τr (t))

)

−(1/lr )
∑

w∈Cr
(
c0

∑N
j=1 b

(0)
w j Γ0x j (t)+c1

∑N
j=1 b

(1)
w j

Γ1x j (t − σ1(t))
)
. Recall that xi (t) is left continuous

at t = tk , i.e., xi (tk) = xi (t
−
k ); thus, we can derive the

following error dynamical system:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ėir (t) = f̃r (t, xi , sr , x
τr
i , sτr

r )

+αr c1Γ1

(
eir (t − σ1(t)) − eir (t − σ2(t))

)

+ c0

m∑

p=1

∑

j ∈Cp

b(0)
i j Γ0e jp(t) + c1

m∑

p=1

∑

j ∈Cp

b(1)
i j Γ1e jp

(
t − σ1(t)

) + Jr , t �= tk,
eir (t

+
k ) = (1 + dk)eir (tk), t = tk, k ∈ Z+,

t ≥ t0, i ∈ Cr , r ∈ R.

(9)

Obviously, if the zero solution of the error dynamical
system (9) is globally exponentially stable, then glob-
ally exponential cluster synchronization of the impul-
sive delayed dynamical network (5) is achieved accord-
ing to Definition 2.

Remark 5 It is easy to see thatwhen |(1+dk)| < 1 (i.e.,
the impulsive strengths −2 < dk < 0), the impulses
benefit to the cluster synchronization since the absolute
values of the error variables are reduced. Thus, such
kind of impulses are called synchronizing impulses
[41]. Conversely, when |(1+ dk)| > 1 (i.e., the impul-
sive strengths dk > 0 or dk < −2), the impulses can
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potentially destroy the cluster synchronization since
the absolute values of the error variables are enlarged.
Hence, the impulses with |(1 + dk)| > 1 are called
desynchronizing impulses [41]. Additionally, when
|(1 + dk)| = 1 (i.e., the impulsive strengths dk = 0 or
dk = −2), the impulses are neither beneficial nor harm-
ful for the cluster synchronization since the absolute
values of the error variables remain unchanged. This
kind of impulses are called inactive impulses [41]. We
will not discuss inactive impulses in this paper because
they have no effect on the cluster synchronization.

Definition 3 [41,43] An impulsive sequence ζ =
{t1, t2, t3, . . .} is said to have average impulsive interval
Ta if there exist positive integer ς0 and positive number
Ta such that

T − t

Ta
− ς0 ≤ Nζ (T, t) ≤ T − t

Ta
+ ς0, ∀T ≥ t≥0,

(10)

where Nζ (T, t) denotes the number of impulsive times
of the impulsive sequence ζ on the time interval (t, T ),
the constant ς0 is called the “elasticity number” of the
impulsive sequence, which implies that, on the time
interval (t, T ), the practical number of impulsive times
Nζ (T, t) may be more or less than (T − t)/Ta by ς0.

Lemma 1 [31] If Y and Z are real matrices with
appropriate dimensions, then there exists a positive
constant ε > 0 such that

Y�Z + Z�Y ≤ ε Y�Y + ε−1Z�Z .

3 Main results

For convenience, let L̄τ = (
max1≤r≤m Lτ

r

)
, ᾱ =

(
max1≤r≤m αr

)
, β0 = max1≤r, q≤m, r �=q

(
λmax

(
B(0)
rp

B(0)
rp

�))
, β1 = max1≤r, q≤m

(
λmax

(
B(1)
rp B(1)

rp
�))

, l0 =
0, Lm = N , and Lr−1 =

(∑r−1
j= 0 l j

)
, r ∈ R, and

define the matrix B̃(0)
r as B̃(0)

r
�= (

B(0)
rr + B(0)

rr
�) −

Ξr , where Ξr = diag
(
ξ r
1 , ξ r

2 , . . . , ξ r
lr

)
with ξ r

j =
∑

u∈Cr b
(0)
u, L r−1+ j , r ∈ R. Under Assumption 1, one

can easily verify that the matrix B̃(0)
r is a symmetric

irreducible matrix with zero-row-sum and nonnegative
off-diagonal elements. This means that, for r ∈ R,
zero is an eigenvalue of B̃(0)

r with multiplicity 1, and
all the other eigenvalues of B̃(0)

r are strictly negative

[28,36]. Hence, eigenvalues of B̃(0)
r can be arranged as

follows: 0 = λ̃r1 > λ̃r2 ≥ · · · ≥ λ̃rlr . In the following,
by using the average impulsive interval approach, we
will rigorously derive some globally exponential clus-
ter synchronization criteria for the impulsive delayed
dynamical network (5). The main results are stated as
follows:

Theorem 1 Suppose that Assumptions 1 and 2 hold,
and the impulsive sequence ζ = {t1, t2, t3, . . .} satisfies
(10) with average impulsive interval Ta and elasticity
number ς0. Then the impulsive delayed dynamical net-
work (5) is globally exponential cluster synchronized if
there exist positive constants ς1, ς2, ς3, ς4 and d such
that

1. (1 + dk)2 ≤ d, k ∈ Z+,
2. �

�= ln d
Ta

+ p̄ + γ q < 0,

where q = (
2L̄τ + ᾱc1ς

−1
1 + ᾱc1ς

−1
2 + mς−1

4

)
,

γ = max{ d−ς0 , 1, d ς0}, p̄ = (
max1≤r≤m pr

)
, pr =

ωr + Θrλ(Θr ), ωr =
(
2L0

r + αr c1ς1λmax(Γ1Γ
�
1 ) +

αr c1ς2λmax(Γ1Γ
�
1 ) + (m − 1)ς3β0 λmax

(
Γ0Γ

�
0

) +
(m − 1)ς−1

3 + mς4β1 λmax
(
Γ1Γ

�
1

))
, and Θr =

c0
(
λ̃r2 + (

max1≤ j≤ lr ξ r
j

))
with

λ(Θr ) =
⎧
⎨

⎩

λmax(Γ0), if Θr > 0,
0, if Θr = 0,
λmin(Γ0), if Θr < 0.

Proof Let E1(t) = (
e�
11(t), . . . , e

�
L1, 1

(t)
)�, E2(t) =

(
e�
L1+1, 2(t), . . . , e

�
L2, 2

(t)
)�, . . ., Em(t) = (

e�
Lm−1+1,m

(t), . . . , e�
N m(t)

)�, E(t) = (
E�
1 (t), E�

2 (t), . . . ,

E�
m (t)

)�, and construct a Lyapunov function candi-
date:

V (t) = 1

2
E�(t)(IN ⊗ In)E(t)

= 1

2

m∑

r=1

E�
r (t)(Ilr ⊗ In)Er (t)

= 1

2

m∑

r=1

∑

i∈Cr
e�
ir (t)eir (t), (11)

where ⊗ denotes the Kronecker product of two matri-
ces.
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Calculating the upper Dini derivative of V (t) along
the solution of Eq. (9), by using (2) and noting that∑

i∈Cr eir (t) = 0n , r ∈ R, we get t �= tk

D+V (t) =
m∑

r=1

∑

i∈Cr

e�
ir (t)

[
f̃r (t, xi , sr , x

τr
i , sτr

r )

+ αr c1Γ1

(
eir (t − σ1(t)) − eir (t − σ2(t))

)

+ c0

m∑

p=1

∑

j ∈Cp

b(0)
i j Γ0e jp(t)

+ c1

m∑

p=1

∑

j ∈Cp

b(1)
i j Γ1e jp

(
t − σ1(t)

) + Jr

]

≤
m∑

r=1

∑

i∈Cr

L0
r e

�
ir (t)eir (t)

+
m∑

r=1

∑

i∈Cr

Lτ
r e

�
ir (t − τr (t))eir (t − τr (t))

+ αr c1

m∑

r=1

∑

i∈Cr

e�
ir (t)

×
(
Γ1eir (t − σ1(t)) − Γ1eir (t − σ2(t))

)

+ c0

m∑

r=1

∑

i∈Cr

m∑

p=1

∑

j ∈Cp

b(0)
i j e

�
ir (t)Γ0e jp(t)

+ c1

m∑

r=1

∑

i∈Cr

m∑

p=1

∑

j ∈Cp

b(1)
i j e

�
ir (t)Γ1e jp

(
t − σ1(t)

)
.

≤
m∑

r=1

E�
r (t)

(
L0
r Ilr ⊗ In

)
Er (t)

+
m∑

r=1

E�
r (t − τr (t))

(
Lτ
r Ilr ⊗ In

)
Er (t − τr (t))

+ αr c1

m∑

r=1

∑

i∈Cr

e�
ir (t)

×
(
Γ1eir (t − σ1(t)) − Γ1eir (t − σ2(t))

)

+ c0

m∑

r=1

E�
r (t)

(
B(0)
rr ⊗ Γ0

)
Er (t)

+ c0

m∑

r=1

m∑

p=1,p �=r

E�
r (t)

(
B(0)
rp ⊗ Γ0

)
Ep(t)

+ c1

m∑

r=1

m∑

p=1

E�
r (t)

(
B(1)
rp ⊗ Γ1

)
Ep

(
t − σ1(t)

)
.

(12)

According to Lemma 1 and the property of the
Kronecker product of the matrices [21], the following
inequalities can be derived

c1

m∑

r=1

∑

i∈Cr

αr e
�
ir (t)Γ1eir (t − σ1(t))

≤ c1
2

[
ς1

m∑

r=1

∑

i∈Cr

αr e
�
ir (t)Γ1Γ

�
1 eir (t)

+ ς1
−1

m∑

r=1

∑

i∈Cr

αr e
�
ir (t − σ1(t))eir (t − σ1(t))

]

≤ c1
2

[
ς1λmax(Γ1Γ

�
1 )

m∑

r=1

∑

i∈Cr

αr e
�
ir (t)eir (t)

+ ς−1
1

m∑

r=1

∑

i∈Cr

αr e
�
ir (t − σ1(t))eir (t − σ1(t))

]
,

− c1

m∑

r=1

∑

i∈Cr

αr e
�
ir (t)Γ1eir (t − σ2(t)) (13)

≤ c1
2

[
ς2

m∑

r=1

∑

i∈Cr

αr e
�
ir (t)Γ1Γ

�
1 eir (t)

+ ς2
−1

m∑

r=1

∑

i∈Cr

αr e
�
ir (t − σ2(t))eir (t − σ2(t))

]

≤ c1
2

[
ς2λmax(Γ1Γ

�
1 )

m∑

r=1

∑

i∈Cr

αr e
�
ir (t)eir (t)

+ ς−1
2

m∑

r=1

∑

i∈Cr

αr e
�
ir (t − σ2(t))eir (t − σ2(t))

]
, (14)

m∑

r=1

m∑

p=1,p �=r

E�
r (t)

(
B(0)
rp ⊗ Γ0

)
Ep(t)

≤ 1

2

m∑

r=1

m∑

p=1,p �=r

[
ς3E

�
r (t)

(
B(0)
rp B(0)

rp
� ⊗ Γ0Γ

�
0

)
Er (t)

+ ς−1
3 E�

p (t)
(
Ilp ⊗ In

)
Ep(t)

]

≤ 1

2

m∑

r=1

m∑

p=1,p �=r

[
ς3λmax

(
B(0)
rp B(0)

rp
�)

λmax
(
Γ0Γ

�
0

)

∑

i∈Cr

e�
ir (t)eir (t) + ς−1

3

∑

i∈Cp

e�
i p(t)eip(t)

]

≤ m − 1

2

(
ς3β0 λmax

(
Γ0Γ

�
0

) + ς−1
3

) m∑

r=1

∑

i∈Cr

e�
ir (t)eir (t),

(15)
m∑

r=1

m∑

p=1

E�
r (t)

(
B(1)
rp ⊗ Γ1

)
Ep

(
t − σ1(t)

)

≤ 1

2

m∑

r=1

m∑

p=1

[
ς4E

�
r (t)

(
B(1)
rp B(1)

rp
� ⊗ Γ1Γ

�
1

)
Er (t)

+ ς−1
4 E�

p (t − σ1(t))
(
Ilp ⊗ In

)
Ep(t − σ1(t))

]
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≤ m

2
ς4β1 λmax

(
Γ1Γ

�
1

) m∑

r=1

∑

i∈Cr

e�
ir (t)eir (t)

+ m

2
ς−1
4

m∑

r=1

∑

i∈Cr

e�
ir (t − σ1(t))eir (t − σ1(t)). (16)

On the other hand, since B̃(0)
r is a symmetric matrix

with zero row sum, there exists a unitary matrix
Ur = (ur1, u

r
2 . . . , urlr ) with UrU�

r = Ilr such that

B̃(0)
r = Urdiag(λ̃r1, λ̃

r
2, . . . , λ̃

r
lr
)U�

r . Introduce a trans-

formation Zr (t) = (U�
r ⊗ In)Er (t), where Zr (t) =

(
zr1

�(t), zr2
�(t), . . . , zrlr

�(t)
)�, zrj ∈ R

n , r ∈ R, then
one has

Z�
r (t)Zr (t) =

∑

i∈Cr
e�
ir (t)eir (t). (17)

Note that λ̃r1 = 0 is an eigenvalue of the matrix

B̃(0)
r and its corresponding eigenvector is ur1 =
1√
lr

(
1, 1, . . . , 1

)�, then we obtain

zr1(t) = (ur1
� ⊗ In)Er (t)

= 1√
lr

∑

i∈Cr
eir (t) = 0n, r ∈ R. (18)

It follows that

c0

m∑

r=1

E�
r (t)

(
B(0)
rr ⊗ Γ0

)
Er (t)

= c0
2

m∑

r=1

E�
r (t)

((
B̃(0)
r + Ξr

) ⊗ Γ0

)
Er (t)

= c0
2

m∑

r=1

E�
r (t)

(Ur ⊗ In)

((
diag(λ̃r1, λ̃

r
2, . . . , λ̃

r
lr )

+U�
r ΞrUr

)
⊗ Γ0

)
(U�

r ⊗ In)Er (t)

≤ c0
2

m∑

r=1

Z�
r (t)

((
diag(λ̃r1, λ̃

r
2, . . . , λ̃

r
lr )

+ λmax(U
�
r ΞrUr )Ilr

)
⊗ Γ0

)
Zr (t)

≤ c0
2

m∑

r=1

Z�
r (t)

((
diag(λ̃r1, λ̃

r
2, . . . , λ̃

r
lr )

+ (
max

1≤ j≤ lr
ξ r
j

)
Ilr
)

⊗ Γ0

)
Zr (t)

= c0
2

m∑

r=1

lr∑

i=1

(
λ̃ri + (

max
1≤ j≤ lr

ξ r
j

))
zri

�
(t)Γ0z

r
i (t)

= c0
2

m∑

r=1

lr∑

i=2

(
λ̃ri + (

max
1≤ j≤ lr

ξ r
j

))
zri

�
(t)Γ0z

r
i (t)

≤ c0
2

m∑

r=1

lr∑

i=2

(
λ̃r2 + (

max
1≤ j≤ lr

ξ r
j

))
zri

�
(t)Γ0z

r
i (t)

= c0
2

m∑

r=1

(
λ̃r2 + (

max
1≤ j≤ lr

ξ r
j

)) lr∑

i=1

zri
�
(t)Γ0z

r
i (t)

≤ 1

2

m∑

r=1

Θrλ(Θr )

lr∑

i=1

zri
�
(t)zri (t)

= 1

2

m∑

r=1

∑

i∈Cr
Θrλ(Θr )e

�
ir (t)eir (t)

= 1

2

m∑

r=1

E�
r (t)

(
Θrλ(Θr )Ilr ⊗ In

)
Er (t). (19)

Substituting (13)–(16) and (19) into (12) produces

D+V (t) ≤ 1

2

m∑

r=1

E�
r (t)

(((
ωr + Θrλ(Θr )

)
Ilr

)
⊗ In

)
Er (t)

+ q

2

(
sup

t−σ ∗≤s≤t

m∑

r=1

E�
r (s)Er (s)

)

= 1

2

m∑

r=1

E�
r (t)

((
pr Ilr

) ⊗ In
)
Er (t)

+ q

2

(
sup

t−σ ∗≤s≤t

m∑

r=1

E�
r (s)Er (s)

)

≤ p̄

2

m∑

r=1

E�
r (t)Er (t) + q

2

×
(

sup
t−σ ∗≤s≤t

m∑

r=1

E�
r (s)Er (s)

)

= p̄V (t) + q
(

sup
t−σ ∗≤s≤t

V (s)
)
, t �= tk , k ∈ Z+.

(20)

For t = tk , k ∈ Z+, from the second equation of (9)
and condition (i), one can obtain that

V (t+k ) = 1

2

m∑

r=1

∑

i∈Cr
e�
ir (t

+
k )eir (t

+
k )

= 1

2

m∑

r=1

∑

i∈Cr
(1 + dk)

2e�
ir (tk)eir (tk) ≤ dV (tk).

(21)
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In the following, based on the average impulsive
interval approach, we will prove that (20), (21) and
condition (ii) imply that

V (t) ≤ γ
(

sup
t0−σ ∗≤s≤t0

V (s)
)
e−λ(t−t0), t ≥ t0. (22)

where γ = max{ d−ς0 , 1, d ς0} and λ > 0 is the unique
positive solution of the equation λ + (ln d)/Ta + p̄ +
γ qeλσ ∗ = 0.

Let W (t) = e− p̄ (t−t0)V (t), from (20) and (21), we
know that for t ∈ (tk−1, tk], k ∈ Z+,

D+W (t) = e− p̄ (t−t0)D+V (t) − p̄ e− p̄ (t−t0)V (t)

≤ e− p̄ (t−t0)
[
p̄V (t) + q

(
sup

t−σ ∗≤s≤t
V (s)

)]

− p̄ e− p̄ (t−t0)V (t)

= qe− p̄ (t−t0)
(

sup
−σ ∗≤ θ ≤ 0

V (t + θ)
)
, (23)

and

W (t+k ) = e− p̄ (t+k −t0)V (t+k )

≤ de− p̄ (tk−t0)V (tk) = dW (tk), k ∈ Z+.(24)

For t ∈ [t0, t1], integrating inequality (23) from t0
to t , we get

W (t) ≤ W (t0) +
∫ t

t0
qe− p̄ (s−t0)

(
sup

−σ ∗≤ θ ≤ 0
V (s + θ)

)
ds,

(25)

and so

W (t1) ≤ W (t0) +
∫ t1

t0
qe− p̄ (s−t0)

(
sup

−σ ∗≤ θ ≤ 0
V (s + θ)

)
ds.

(26)

Similarly, for t ∈ (t1, t2], it is derived from (23), (24)
and (26) that

W (t) ≤ W (t+1 ) +
∫ t

t1
qe− p̄ (s−t0)

(
sup

−σ ∗≤ θ ≤ 0
V (s + θ)

)
ds

≤ dW (t0) + d
∫ t1

t0
qe− p̄ (s−t0)

(
sup

−σ ∗≤ θ ≤ 0
V (s + θ)

)
ds

+
∫ t

t1
qe− p̄ (s−t0)

(
sup

−σ ∗≤ θ ≤ 0
V (s + θ)

)
ds.

and so

W (t2) ≤ dW (t0) + d
∫ t1

t0
qe− p̄ (s−t0)

(
sup

−σ ∗≤ θ ≤ 0
V (s + θ)

)
ds

+
∫ t2

t1
qe− p̄ (s−t0)

(
sup

−σ ∗≤ θ ≤ 0
V (s + θ)

)
ds.

By mathematical induction, we have that for t ∈
(tk−1, tk], k ∈ Z+ [45],

W (t) ≤ W (t0)
( ∏

t0 ≤ tk < t

d
)

+
∫ t

t0

( ∏

s ≤ tk < t

d
)
qe− p̄ (s−t0)

×
(

sup
−σ ∗≤ θ ≤ 0

V (s + θ)
)
ds.

It follows that

V (t) ≤ V (t0)
( ∏

t0 ≤ tk < t

d
)
e p̄ (t−t0)

+
∫ t

t0

( ∏

s ≤ tk < t

d
)
e p̄ (t−s)q

(
sup

−σ∗≤ θ ≤ 0
V (s + θ)

)
ds, t ≥ t0.

(27)

Let Nζ (t, s) be the number of impulsive times of
the impulsive sequence ζ in the interval [s, t), then we
have
( ∏

s ≤ tk < t

d
)
e p̄ (t−s) = dNζ (t,s)e p̄ (t−s), t > s ≥ t0.

(28)

Since the impulsive sequence ζ = {t1, t2, t3, . . .} satis-
fies (10) with average impulsive interval Ta and elas-
ticity number ς0, we get

t − s

Ta
− ς0 ≤ Nζ (t, s) ≤ t − s

Ta
+ ς0, ∀t > s ≥ t0.

(29)

If 0 < d < 1, then it follows from (28) and (29) that
( ∏

s ≤ tk < t

d
)
e p̄ (t−s) = dNζ (t,s)e p̄ (t−s)

≤ d−ς0d(t−s)/Tae p̄ (t−s)

= d−ς0eln d (t−s)/Tae p̄ (t−s)

= d−ς0e( p̄+(ln d)/Ta) (t−s)

= d−ς0e−η(t−s), t > s ≥ t0,

where η = −(
p̄ + (ln d)/Ta

)
. Similarly, when d ≥ 1,

one has from (28) and (29) that
( ∏

s ≤ tk < t

d
)
e p̄ (t−s) ≤ dς0d(t−s)/Tae p̄ (t−s)

= dς0e−η(t−s), t > s ≥ t0.

Hence, we conclude that
( ∏

s ≤ tk < t

d
)
e p̄ (t−s) ≤ γ e−η(t−s), t > s ≥ t0, (30)
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Hybrid-coupled impulsive delayed dynamical networks 2415

Substituting (30) into (27) gives

V (t) ≤ γ V (t0)e
−η(t−t0)

+
∫ t

t0
γ e−η (t−s)q

(
sup

−σ ∗≤ θ ≤ 0
V (s + θ)

)
ds.

(31)

Denote H(ν) = ν − η + γ qeνσ ∗
. By condition (ii),

one has η − γ q > 0, γ q ≥ 0, and so H(0) < 0,
H(+∞) > 0 and dH(ν)

dν
> 0. Using the continuity

and the monotonicity of H(ν), the equation H(ν) = 0
has an unique positive solution λ > 0, i.e., λ − η +
γ qeλσ ∗ = 0. Since γ ≥ 1 and λ > 0, it is obvious that

V (t) ≤ (
sup

t0−σ ∗ ≤ s ≤ t0
V (s)

) ≤ γ
(

sup
t0−σ ∗ ≤ s ≤ t0

V (s)
)

e−λ(t−t0), t0 − σ ∗ ≤ t ≤ t0. (32)

Let M0 = γ
(
supt0−σ ∗ ≤ s ≤ t0 V (s)

)
. Now, we show

that (22) holds, i.e, V (t) ≤ M0e−λ(t−t0), t ≥ t0. If this
is not true, there must exist a t∗ > t0 such that

V (t∗) > M0e
−λ(t∗−t0), (33)

V (t) ≤ M0e
−λ(t−t0), t0 − σ ∗ ≤ t < t∗. (34)

Notice that λ − η + γ qeλσ ∗ = 0, we get from (31) and
(34) that

V (t∗) ≤ M0e
−η(t∗−t0) +

∫ t∗

t0
γ e−η (t∗−s)

q
(

sup
−σ ∗≤ θ ≤ 0

V (s + θ)
)
ds

≤ M0e
−η(t∗−t0) + γ M0 qe

λσ ∗

∫ t∗

t0
e−η (t∗−s)e−λ (s−t0)ds

= M0e
−λ(t∗−t0), (35)

which contradicts (33); thus, (22) holds. This means
the zero solution of the error dynamical system (9) is
globally exponentially stable. The proof is completed.

��
Remark 6 Based on the average impulsive interval
approach, Theorem 1 presents a novel globally expo-
nential cluster synchronization criterion for general
impulsive dynamical networks with the internal delay
and delayed coupling. To the best of our knowledge,
there are few reports on cluster synchronization of
impulsive delayed dynamical networks. In our network
model, the delayed coupling term involves different

transmission delay and self-feedback delay; in addi-
tion, the internal delay, transmission delay and self-
feedback delay are all time-varying and can be differ-
ent from each other, and the couplingmatrices B(0) and
B(1) are not assumed to be symmetric or irreducible.
Hence, our theoretical results are general.

Remark 7 It can be seen that the constant d is only
required to be greater than zero, no matter whether
d < 1 or d > 1. This means that the cluster synchro-
nization criterion obtained in Theorem 1 can be applied
not only to the case with |1 + dk | < 1 (synchronizing
impulses) but also to the case with |1+dk | > 1 (desyn-
chronizing impulses). That is to say, the derived clus-
ter synchronization criterion is simultaneously applica-
ble for synchronizing impulses and desynchronizing
impulses.

The uncertain constants ς1, ς2, ς3, ς4 and d in
Theorem 1 make the results flexible in practical appli-
cations. However, inappropriate choosing of ς1, ς2, ς3
and ς4 may enlarge the value of the polynomial on the
left-hand side of inequality (ii) in Theorem 1 and thus
make the results conservative. Inspired by [31,38,43]
and the extreme value theory of multivariate function,
it is easy to check that a good choice of these con-

stants is ς1 = ς0
1 = 1/

√
λmax(Γ1Γ

�
1 ), ς2 = ς0

2 =
1/

√
λmax(Γ1Γ

�
1 ), ς3 = ς0

3 = 1/
√

β0 λmax
(
Γ0Γ

�
0

)

and ς4 = ς0
4 = 1/

√
β1 λmax

(
Γ1Γ

�
1

)
. Substituting ς0

1 ,

ς0
2 , ς0

3 and ς0
4 into Theorem 1 yields the following

Corollary.

Corollary 1 Suppose that Assumptions 1 and 2 hold,
and the impulsive sequence ζ = {t1, t2, t3, . . .} satisfies
(10) with average impulsive interval Ta and elasticity
number ς0. Then the impulsive delayed dynamical net-
work (5) is globally exponential cluster synchronized
if there exists a positive constant d > 0 such that

(i) (1 + dk)2 ≤ d, k ∈ Z+,
(ii) �

�= ln d
Ta

+ p̄ + γ q < 0,

where q =
(
2L̄τ + 2ᾱc1

√
λmax(Γ1Γ

�
1 ) +

m
√

β1 λmax(Γ1Γ
�
1 )

)
, p̄ = (

max1≤r≤m pr
)
, pr =

ωr + Θrλ(Θr ), ωr =
(
2L0

r + 2αr c1
√

λmax(Γ1Γ
�
1 ) +

2(m − 1)
√

β0 λmax
(
Γ0Γ

�
0

) + m
√

β1 λmax
(
Γ1Γ

�
1

) )
,
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Θr = c0
(
λ̃r2 + (

max1≤ j≤ lr ξ r
j

))
, and the other para-

meters are defined as those in Theorem 1.
For simplicity, we consider the impulsive strengths

dk ≡ d0, k ∈ Z+. Selecting d = (1 + d0)2, then
conditions (i) in Corollary 1 holds. Hence, the above
corollary can be reduced to the following.

Corollary 2 Suppose that Assumptions 1 and 2 hold,
and the impulsive sequence ζ = {t1, t2, t3, . . .} satisfies
(10) with average impulsive interval Ta and elasticity
number ς0. Then the impulsive delayed dynamical net-
work (5) is globally exponential cluster synchronized
if the following condition holds

�
�= 2 ln |1 + d0|

Ta
+ p̄ + γ q < 0, d0 �= −1, (36)

where q =
(
2L̄τ + 2ᾱc1

√
λmax(Γ1Γ

�
1 ) +

m
√

β1 λmax(Γ1Γ
�
1 )

)
, p̄ = (

max1≤r≤m pr
)
, pr =

ωr + Θrλ(Θr ), ωr =
(
2L0

r + 2αr c1
√

λmax(Γ1Γ
�
1 ) +

2(m − 1)
√

β0 λmax
(
Γ0Γ

�
0

) + m
√

β1 λmax
(
Γ1Γ

�
1

) )
,

Θr = c0
(
λ̃r2 + (

max1≤ j≤ lr ξ r
j

))
, γ = max

{
(1 +

d0)−2ς0 , 1, (1 + d0)2ς0
}
, and λ(Θr ) is defined as that

in Theorem 1.

If only transmission delay for signal sent from node
j to node i exists in the network, i.e., σ2(t) = 0, then
dynamical network (5) is simplified as the following
impulsive delayed dynamical network:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi (t) = fr
(
t, xi (t), xi (t − τr (t))

)

+αr c1Γ1
(
xi (t − σ1(t)) − xi (t)

)

+ c0

m∑

p=1

∑

j ∈Cp

b(0)
i j Γ0x j (t)

+ c1
m∑

p=1

∑

j ∈Cp

b(1)
i j Γ1x j (t − σ1(t)), t �= tk ,

�xi = xi (t
+
k ) − xi (t

−
k ) = dk xi (t

−
k ), t = tk , k ∈ Z+,

xi (t0 + s) = ϕi (s), s ∈ [−σ ∗, 0], i ∈ Cr , r ∈ R, t ≥ t0,

(37)

For the impulsive delayed dynamical network (37),
the following result can be derived based on Theorem 1
and Corollary 2.

Corollary 3 Suppose that Assumptions 1 and 2 hold,
and the impulsive sequence ζ = {t1, t2, t3, . . .} satisfies
(10) with average impulsive interval Ta and elasticity
number ς0. Then the impulsive delayed dynamical net-
work (37) is globally exponential cluster synchronized
if the following condition holds

�
�= 2 ln |1 + d0|

Ta
+ p̄ + γ q < 0, d0 �= −1, (38)

where q =
(
2L̄τ + ᾱc1

√
λmax(Γ1Γ

�
1 ) +

m
√

β1 λmax(Γ1Γ
�
1 )

)
, p̄ = (

max1≤r≤m pr
)
, pr =

ωr + Θrλ(Θr ), ωr =
(
2L0

r + αr c1
(√

λmax(Γ1Γ
�
1 ) −

λmin
(
Γ1 + Γ �

1

)) + 2(m − 1)
√

β0 λmax
(
Γ0Γ

�
0

) +
m
√

β1 λmax
(
Γ1Γ

�
1

) )
,Θr =c0

(
λ̃r2+

(
max1≤ j≤ lr ξ r

j

))
,

γ = max
{
(1+ d0)−2ς0 , 1, (1+ d0)2ς0

}
, and λ(Θr ) is

defined as that in Theorem 1.

When the node’s own state and neighbor’s states are
affected by the same delay, i.e., σ1(t) = σ2(t), then
network (5) turns to the following impulsive delayed
dynamical network:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi (t) = fr
(
t, xi (t), xi (t − τr (t))

)

+ c0
m∑

p=1

∑

j ∈Cp

b(0)
i j Γ0x j (t)

+ c1
m∑

p=1

∑

j ∈Cp

b(1)
i j Γ1x j (t − σ1(t)), t �= tk ,

�xi = xi (t
+
k ) − xi (t

−
k ) = dkxi (t

−
k ), t = tk , k ∈ Z+,

xi (t0 + s) = ϕi (s), s ∈ [−σ ∗, 0], i ∈ Cr , r ∈ R, t ≥ t0,

(39)

For the impulsive delayed dynamical network (39),
the followingCorollary can be easily derived fromThe-
orem 1 and Corollary 2.

Corollary 4 Suppose that Assumptions 1 and 2 hold,
and the impulsive sequence ζ = {t1, t2, t3, . . .} satisfies
(10) with average impulsive interval Ta and elasticity
number ς0. Then the impulsive delayed dynamical net-
work (39) is globally exponential cluster synchronized
if the following condition holds

�
�= 2 ln |1 + d0|

Ta
+ p̄ + γ q < 0, d0 �= −1, (40)

where q =
(
2L̄τ + m

√
β1 λmax(Γ1Γ

�
1 )

)
, p̄ =

(
max1≤r≤m pr

)
, pr = ωr + Θrλ(Θr ), ωr =

(
2L0

r +
2(m − 1)

√
β0 λmax

(
Γ0Γ

�
0

) + m
√

β1 λmax
(
Γ1Γ

�
1

) )
,

Θr = c0
(
λ̃r2 + (

max1≤ j≤ lr ξ r
j

))
, γ = max

{
(1 +

d0)−2ς0 , 1, (1 + d0)2ς0
}
, and λ(Θr ) is defined as that

in Theorem 1.

Remark 8 When the original impulse-free dynamical
network is synchronized and the impulsive effects are
harmful, in order to guarantee synchronization, the
impulses should not occur too frequently. Hence, there
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Hybrid-coupled impulsive delayed dynamical networks 2417

always exists a requirement that infk∈Z+{tk+1 − tk} ≥
ε1 [32,33], where the positive constant ε1 can be
viewed as a measure to ensure the harmful impulses do
not occur too frequently. Conversely, when the origi-
nal impulse-free dynamical network is unsynchronized
and the impulsive effects are beneficial, in order to
ensure the synchronization of the dynamical network,
the frequency of impulses naturally should not be too
low. Therefore, there always exists an assumption that
supk∈Z+{tk+1 − tk} ≤ ε2 [35–38], where the positive
constant ε2 is given to ensure there will be no overly
long impulsive intervals. However, in this paper nei-
ther infk∈Z+{tk+1 − tk} ≥ ε1 nor supk∈Z+{tk+1 −
tk} ≤ ε2 are required by using the average impul-
sive interval Ta . Since Ta < supk∈Z+{tk+1 − tk}

(
Ta >

infk∈Z+{tk+1 − tk}
)
, our cluster synchronization cri-

teria increase (decreases) the impulses distances of
synchronizing impulses (desynchronizing impulses).
Thus, results of this paper are less conservative and
can be available for a wider range of impulsive signals.

Remark 9 In [41,42], complete synchronization of
impulsive dynamical networks was investigated by
using the average impulsive interval approach. How-
ever, the network model presented in [41] did not
include time delay; only coupled delayed neural net-
works with desynchronizing impulses was considered
in [42]. Moreover, both the results in [41,42] only dis-
cussed the case of dynamical networks with impulses
occurred in the processes of coupling. They cannot be
directly extended to the case of hybrid-coupled delayed
dynamical networks with impulsive effects on the
nodes’ states; another common phenomenon occurred
inmany realistic networks [10,31–33,44]. In this paper,
by using the average impulsive interval approach and
the analysis technique, some generic sufficient con-
ditions for globally exponential cluster synchroniza-
tion of the hybrid-coupled impulsive delayed dynami-
cal networks with internal delay and delayed coupling
(5) are established analytically, which is simultane-
ously effective for synchronizing and desynchronizing
impulses. Thus, our theoretical results generalizes the
previous works.

Remark 10 In [39,40], global synchronization of com-
plex dynamical networks with nonidentical nodes and
coupling delays, and H∞ synchronization of complex
dynamical networks with coupling delays and external
disturbance were studied via impulsive control, respec-
tively. To solve the synthesis problem of impulsive con-

trollers, the notation of S(δ1, δ2) (i.e., δ1 ≤ tk+1− tk ≤
δ2, k ∈ Z+, where δ1 and δ2 represent, respectively, the
lower bound and upper bound of impulsive intervals)
was used to describe the impulsive sequence with non-
equidistant impulsive intervals in [39,40] and an impul-
sive time-dependent Lyapunov function-/functional-
basedmethodwas also introduced. In this paper, similar
to [41–44], the concept of average impulsive interval is
adopted to describe the impulses sequences, and then
some globally exponential cluster synchronization cri-
teria are derived based on the analysis technique. Thus,
themethods used in the present paper are different from
the techniques employed in [39,40].

Remark 11 In order to derive the exponential cluster
synchronization criteria, in this paper, we firstly estab-
lish an impulsive differential inequality [i.e., Eqs. (20)
and (21)] and then utilize the average impulsive interval
approach and the analysis technique to derive the theo-
retical results. For establishing the impulsive differen-
tial inequality, the inequalities (13), (13) and (16) have
been used to deal with the delayed coupling terms. This
leads to the inner couplingmatrixΓ1 has no effect on the
cluster synchronization, which may make the derived
cluster synchronization criteria be conservative.Hence,
how to obtain less conservative cluster synchronization
criteria by incorporating the effect of the inner coupling
matrix Γ1 would be an interesting problem, which will
be our future research topic.

4 Numerical examples

In this section, we provide two numerical examples
to illustrate our theoretical results which are simulta-
neously valid for synchronizing and desynchronizing
impulses. The delayed neural networks with different
system parameters [29,42] and the delayed Chua oscil-
lators with different system parameters [21] are chosen
as the isolated nodes in different clusters of dynamical
network (1) in Examples 1 and 2, respectively.

The delayed neural network is described by [29,42]

ẋ(t) = fr
(
t, x(t), x(t − τr (t))

) = Ωr x(t)

+Ωr
0g0(x(t)) + Ωr

1g1
(
x(t − τr (t))

)
, r ∈ R,

(41)

where x(t) = (
x1(t), x2(t)

)� ∈ R
2, g0(x(t)) =

g1(x(t)) = (
tanh(x1), tanh(x2)

)� ∈ R
2,

Ωr =
(−1 0

0 −1

)
, Ωr

0 =
(

σ1 σ r
2

σ3 σ4

)
, Ωr

1 =
(

υ1 υ2
υr
3 υ4

)
,
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and σ1 = 2.0, σ3 = −5.0, σ4 = 3.2, υ1 = −1.6,
υ2 = −0.1, υ4 = −2.4, and τr (t) = et/(1 + et ). It is
easy to verify that
(
x(t) − y(t)

)�(
fr (t, x(t), x(t − τr (t)))

− fr (t, y(t), y(t − τr (t)))
)

≤ (
x(t) − y(t)

)�
Ωr

(
x(t) − y(t)

)

+ ||Ωr
0 || ||x(t) − y(t)||2

+ ||Ωr
1 || ||x(t) − y(t)|| ||x(t − τr (t))

− y(t − τr (t))||
≤ λmax(Ω̃r )

(
x(t) − y(t)

)�(
x(t) − y(t)

)

+ ||Ωr
1 ||/(2ρr

0)
(
x(t − τr (t))

− y(t − τr (t))
)�(

x(t − τr (t)) − y(t − τr (t))
)

= L0
r

(
x(t) − y(t)

)�(
x(t) − y(t)

)

+ Lτ
r

(
x(t − τr (t)) − y(t − τr (t))

)�(
x(t − τr (t))

− y(t − τr (t))
)
.

where Ω̃r =
(
Ωr + ||Ωr

0 ||I2 + (ρr
0/2)||Ωr

1 ||I2
)
, and

L0
r = λmax(Ω̃r ), Lτ

r = ||Ωr
1 ||/(2ρr

0) can be deter-
mined by choosing an appropriate parameter ρr

0 > 0.
Therefore, the condition (2) holds.

The dynamics of delayed Chua oscillator is [21]

ẋ(t) = fr
(
t, x(t), x(t − τr (t))

)

= Ar x(t) + g0r (x(t)) + gτ
r

(
x(t − τr (t))

)
, r ∈ R,

(42)

where x(t) = (
x1(t), x2(t), x3(t)

)� ∈ R
3, g0r (x(t)) =

(− 1
2η

r
0(m1−m2)( |x1(t)+1|−|x1(t)−1| ), 0, 0 )� ∈

R
3, gτ

r

(
x(t − τr (t))

) = (
0, 0, −β r

0 �0 sin
(
v0x1(t −

τr (t))
) )� ∈ R

3, Ar =
(−ηr0(1+m2) ηr0 0

1 −1 1
0 −β r

0 −ωr
0

)
, and

m1 = −1.4325, m2 = −0.7831, v0 = 0.5, �0 = 0.2,
and τr (t) = 0.02. It is easy to check that
(
x(t) − y(t)

)�(
fr (t, x(t), x(t − τr (t)))

− fr (t, y(t), y(t − τr (t)))
)

≤ 1

2

(
x(t) − y(t)

)�(
Ar + A�

r

)(
x(t) − y(t)

)

+ |ηr0(m1 − m2)|
(
x1(t) − y1(t)

)2

+β r
0 �0v0|x3(t) − y3(t)| |x1(t − τr (t))

− y1(t − τr (t))|
≤ λmax( Ãr )

(
x(t) − y(t)

)�(
x(t) − y(t)

)

+ (β r
0 �0v0)/(2κ

r
0)
(
x(t − τr (t))

− y(t − τr (t))
)�(

x(t − τr (t)) − y(t − τr (t))
)

= L0
r

(
x(t) − y(t)

)�(
x(t) − y(t)

)

+ Lτ
r

(
x(t − τr (t))

− y(t − τr (t))
)�(

x(t − τr (t)) − y(t − τr (t))
)
.

where Ãr =
((

Ar + A�
r

)
/2+ diag

(|ηr0(m1 −m2)|, 0,
κr0(β

r
0 �0 v0)/2

))
, and L0

r = λmax( Ãr ), Lτ
r = (β r

0

�0v0)/(2κr0) can be determined by choosing an appro-
priate parameter κr0 > 0. Thus, the condition (2) is
satisfied.

For most real-world impulsive signals, the occur-
rence of impulses is not uniformly distributed. For con-
venience, the following special nonuniformly distrib-
uted impulsive signal is considered [41]:

ζ̄ =
{
ε0, 2ε0, . . . , (N0 − 1)ε0, N0Ta, N0Ta + ε0, N0Ta

+ 2ε0, . . . , N0Ta + (N0 − 1)ε0, 2N0Ta, . . .
}
,

which can also be rewritten as follows:

tk+1 − tk =
{

ε0, if mod(k, N0) �= 0,
N0(Ta − ε0) + ε0, if mod(k, N0) = 0,

(43)

where k ∈ Z+, ε0 and Ta are positive numbers satisfy-
ing ε0 < Ta , and N0 is a positive integer. As shown in
[43], the elasticity number and average impulsive inter-
val of the impulsive sequence, respectively, are ς0 =[
N0− (N0−1) ε0

Ta

]
and Ta , where [·] represents the integer

function. In addition, from the structure of the impul-
sive signal ζ , one can get that infk∈Z+{tk+1 − tk} = ε0
and supk∈Z+{tk+1 − tk} = N0(Ta − ε0) + ε0 [41].

Example 1 Consider a directed network consisting of
10 nonidentical delayed neural networks (41) with syn-
chronizing impulses, which is supposed to be divided
into two clusters: C1 = {1, 2, 3, 4, 5} and C2 =
{6, 7, 8, 9, 10}. The state equations of the whole net-
work are given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi (t) = Ωr xi (t) + Ωr
0g0(xi (t))

+Ωr
1g1

(
xi (t − τr (t))

) + αr c1Γ1
(
xi (t − σ1(t))

− xi (t − σ2(t))
) + c0

2∑

p=1

∑

j ∈Cp

b(0)
i j Γ0x j (t)

+ c1
2∑

p=1

∑

j ∈Cp

b(1)
i j Γ1x j (t − σ1(t)), t �= tk,

�xi = xi (t
+
k ) − xi (t

−
k ) = dkxi (t

−
k ),

t = tk, k ∈ Z+, i ∈ Cr , t ≥ 0,

(44)
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where r ∈ R = {1, 2}, Γ0 = Γ1 = I2, c0 = 2, c1 = 1,
σ1(t) = 0.5et/(1+et ), andσ2(t) = 0.25| sin(t)|. Here,
we select σ 1

2 = −0.1, υ1
3 = −0.18 for the cluster C1,

and σ 2
2 = −0.11, υ2

3 = −0.2 for the cluster C2. In this
example, we assume that the coupling matrices B(l) =
(b(l)

i j )10×10 =
(

B(l)
11 B(l)

12

B(l)
21 B(l)

22

)
, l = 0, 1, are characterized

as follows:

B(0)
11 =

⎛

⎜⎜⎜⎜
⎝

−3 1 1 0 1
1 −4 1 1 1
1 0 −3 1 1
1 1 0 −3 1
0 1 0 1 −2

⎞

⎟⎟⎟⎟
⎠

,

B(0)
12 =

⎛

⎜⎜⎜⎜
⎝

0 0 1 0 −1
0 0 0 0 0
0 0 0 0 0
1 0 0 −1 0
0 0 0 0 0

⎞

⎟⎟⎟⎟
⎠

,

B(0)
21 =

⎛

⎜⎜
⎜⎜
⎝

0 −1 0 0 1
0 0 0 0 0
1 0 0 −1 0
0 0 0 0 0
0 −1 0 1 0

⎞

⎟⎟
⎟⎟
⎠

,

B(0)
22 =

⎛

⎜
⎜⎜⎜
⎝

−2 1 0 0 1
1 −3 1 0 1
1 1 −4 1 1
0 1 1 −3 1
1 1 0 1 −3

⎞

⎟
⎟⎟⎟
⎠

,

B(1)
11 =

⎛

⎜⎜⎜⎜
⎝

−1/2 1/6 0 1/6 1/6
1/8 −1/2 1/8 1/8 1/8
1/6 0 −1/2 1/6 1/6
0 1/6 1/6 −1/2 1/6
1/4 0 0 1/4 −1/2

⎞

⎟⎟⎟⎟
⎠

,

B(1)
22 =

⎛

⎜⎜⎜
⎜
⎝

−1/3 0 0 1/6 1/6
1/9 −1/3 1/9 1/9 0
1/6 0 −1/3 0 1/6
0 1/9 1/9 −1/3 1/9
1/3 0 0 0 −1/3

⎞

⎟⎟⎟
⎟
⎠

,

B(1)
12 = B(1)

21 =

⎛

⎜⎜
⎜⎜
⎝

0 0 0.2 0 −0.2
0 0 0 0 0
0 0 0 0 0
0.2 0 0 −0.2 0
0 0 0 0 0

⎞

⎟⎟
⎟⎟
⎠

.

Obviously, B(0) satisfies Assumption 1, and B(1) sat-
isfies Assumptions 1 and 2 with α1 = 1/2, α2 = 1/3.
Selecting ρ1

0 = ρ2
0 = 2, then one has L0

1 = 7.6163,
Lτ
1 = 0.6060, L0

2 = 7.6214 and Lτ
2 = 0.6070.

0 0.2 0.4 0.6 0.8 1
−0.35

−0.25

−0.15

−0.05

t

d 0

Fig. 1 Synchronizing impulsive sequence with Ta = 0.015,
ε0 = 0.005, N0 = 2 and d0 = −0.25 in time interval [0 1]

0 0.2 0.4 0.6 0.8 1

0

2

4

E i11
(t)

 (1
≤ 

i ≤
 5

)

0 0.2 0.4 0.6 0.8 1

0

1

2

3

E i21
(t)

 (1
≤ 

i ≤
 5

)

t

Fig. 2 Time evolutions of E1
i j (t) = |xi j (t)−s1 j (t)| (i ∈ C1, j =

1, 2) for the first cluster of dynamical network (44) with synchro-
nizing impulses d0 = −0.25

By operating on computer with MATLAB, we get
that ω1 = 24.3885, ω2 = 24.0653, q = 3.5414,
Θ1 = −7.0376, Θ2 = −7.4372, and so p̄ = 17.3509.

Let the synchronizing impulsive strengths dk ≡
d0 = −0.25, k ∈ Z+, and the impulsive signal ζ sat-
isfy (43) with average impulsive interval Ta = 0.015,
ε0 = 0.005, and N0 = 2. Then, we can obtain that the
elasticity number of the impulsive sequence is ς0=1.
It follows that � = −14.7109 < 0. By virtue of
Corollary 2, it can be concluded that the impulsive
delayed dynamical network (44) with the synchroniz-
ing impulses is globally exponential cluster synchro-
nized. The initial values of the system (44) are chosen
randomly for the interval [−6, 6]. Figure 1 shows the
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0 0.2 0.4 0.6 0.8 1
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E i12

(t)
 (6

≤  
i ≤

 1
0)

0 0.2 0.4 0.6 0.8 1

0

2

4

E i22
(t)

 (6
≤ 

i ≤
 1

0)

t

Fig. 3 Time evolutions of E2
i j (t) = |xi j (t)−s2 j (t)| (i ∈ C2, j =

1, 2) for the second cluster of dynamical network (44) with syn-
chronizing impulses d0 = −0.25

synchronizing impulses sequence, and Figs. 2 and 3
depict the time evolutions of the cluster synchroniza-
tion errors of network (44). It can be observed that the
dynamical network quickly achieves cluster synchro-
nization under the synchronizing impulses.

For the impulsive signal shown in Fig. 1, the
upper bound of the impulsive intervals is 0.025, i.e.,
supk∈Z+{tk+1 − tk} = 0.025. If the upper bound of the
impulsive intervals is used to derive the cluster syn-
chronization criterion, then the cluster synchronization
of the impulsive delayed dynamical network (44) can
be realized when the following condition

�sup
�= 2 ln |1 + d0|

supk∈Z+{tk+1 − tk} + p̄ + γ q < 0, (45)

holds. By simple computation, we get �sup = 0.6322,
and so inequality (45) is not satisfied. Hence, for this
example, cluster synchronization criterion (45) derived
by using supk∈Z+{tk+1 − tk} fails to judge whether the
impulsive delayed dynamical network (44) can be clus-
ter synchronized.

Example 2 In this example, we consider cluster syn-
chronization in a directed scale-free network consisting
of 300 nonidentical delayed Chua oscillators (42) with
desynchronizing impulses, and suppose its nodes can
be divided into three clusters: C1 = {1, 2, . . . , 100},
C2 = {101, 102, . . . , 200}, C3 = {201, 202, . . . , 300}.
The state equations of the whole network are described
by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi (t) = Ar xi (t) + g0r (xi (t)) + gτ
r

(
xi (t − τr (t))

)

+αr c1Γ1
(
xi (t − σ1(t)) − xi (t − σ2(t))

)

+ c0

2∑

p=1

∑

j ∈Cp

b(0)
i j Γ0x j (t)

+ c1
2∑

p=1

∑

j ∈Cp

b(1)
i j Γ1x j (t − σ1(t)), t �= tk,

�xi = xi (t
+
k ) − xi (t

−
k ) = dkxi (t

−
k ),

t = tk, k ∈ Z+, i ∈ Cr , t ≥ 0,

(46)

where r ∈ R = {1, 2, 3}, Γ0 = Γ1 = I3, c0 = 9, c1 =
1, σ1(t) = 0.25| sin(t)|, and σ2(t) = 0.5et/(1 + et ).
Here, we select η10 = 10, β 1

0 = 19.53, ω 1
0 = 0.1636

for the cluster C1, η20 = 10.25, β 2
0 = 18.53, ω 2

0 =
0.2636 for the cluster C2 and η30 = 10.50, β 3

0 =
20.53, ω 2

0 = 0.0636 for the cluster C3. For simplic-

ity, here the coupling matrices B(l) = (b(l)
i j )300×300 =

⎛

⎝
B(l)
11 B(l)

12 B(l)
13

B(l)
21 B(l)

22 B(l)
23

B(l)
31 B(l)

32 B(l)
33

⎞

⎠, l = 0, 1, are taken as follows:

B(0)
11 = G1, B(0)

22 = G2, B(0)
33 = G3,

B(0)
13 = B(0)

21 = B(0)
32 = 0100×100,

B(0)
12 = B(0)

23 = B(0)
31

=

⎛

⎜⎜⎜⎜⎜
⎝

−1/2 1/2 0 · · · 0
0 −1/2 1/2 · · · 0
...

...
. . .

. . .
...

0 · · · 0 −1/2 1/2
1/2 0 · · · 0 −1/2

⎞

⎟⎟⎟⎟⎟
⎠

100×100

,

B(1)
11 = F1, B

(1)
22 = F2,

B(1)
33 = F3, B

(1)
13 = B(1)

21 = B(1)
32 = B(1)

12 = B(1)
23

= B(1)
31 = 0100×100,

where 0100×100 denotes the 100 × 100 matrix with all
its elements being zero, G1 = (g1i j )100×100, G2 =
(g2i j )100×100 and G3 = (g3i j )100×100 are the intra-
coupling matrices of the three clusters with scale-
free characteristics [46], Fr = 0.1G̃r with G̃r =
(g̃i j )100×100 =

(
g(r)
i j /

(∑
j=1, j �=i g

(r)
i j

))

100×100
, r ∈

R. Evidently, Assumptions 1 and 2 are satisfied, and
α1 = α2 = α3 = 0.1. Letting κ1

0 = κ2
0 = κ3

0 = 3, then
one has L0

1 = 12.0948, Lτ
1 = 0.3255, L0

2 = 11.7076,
Lτ
2 = 0.3088, L0

3 = 12.7796, and Lτ
3 = 0.3422.

By operating on computer with MATLAB, we obtain
that ω1 = 28.4854, ω2 = 27.711, ω3 = 29.855,
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0 0.75 1.5 2.25 3 3.75 4.5
0

0.1

0.2

0.3

t

d 0

Fig. 4 Desynchronizing impulsive sequence with Ta = 0.20,
ε0 = 0.050, N0 = 3 and d0 = 0.20 in time interval [0 4.5]

Fig. 5 State trajectories of xi1(t) (1 ≤ i ≤ 300) of dynamical
network (46) with desynchronizing impulses d0 = 0.20

q = 0.9802, Θ1 = −52.6121, Θ2 = −35.777,
Θ3 = −34.0486, and so p̄ = −4.1936.

Let the desynchronizing impulsive strengths dk ≡
d0 = 0.20, k ∈ Z+, and the impulsive signal ζ sat-
isfy (43) with average impulsive interval Ta = 0.20,
ε0 = 0.050, and N0 = 3. Then, one has ς0=2, and
so � = −0.3378. According to Corollary 2, globally
exponential cluster synchronization of the impulsive
delayed dynamical network (46) with the desynchro-
nizing impulses can be realized. The initial values of
the system (46) are chosen randomly for the interval
[−25, 25]. Figure 4 depicts the desynchronizing impul-
sive sequence, and corresponding trajectories of the
impulsive delayed dynamical network are displayed in
Figs. 5, 6 and 7. From the figures, it can be seen clearly
that the cluster synchronization is achieved.

Fig. 6 State trajectories of xi2(t) (1 ≤ i ≤ 300) of dynamical
network (46) with desynchronizing impulses d0 = 0.20

Fig. 7 State trajectories of xi3(t) (1 ≤ i ≤ 300) of dynamical
network (46) with desynchronizing impulses d0 = 0.20

For the impulsive signal shown in Fig. 4, the
lower bound of the impulsive interval is 0.050, i.e.,
infk∈Z+{tk+1 − tk} = 0.050. If the lower bound of the
impulsive intervals is utilized to obtain the cluster syn-
chronization criterion, then the cluster synchronization
of the impulsive delayed dynamical network (46) can
be realized when the following condition

�inf
�= 2 ln |1 + d0|

infk∈Z+{tk+1 − tk} + p̄ + γ q < 0, (47)

is satisfied. By simple calculation, we have �inf =
5.1318, and so inequality (47) does not hold. Thus,
for this example, cluster synchronization criterion (47)
cannot be used to judge whether the impulsive delayed
dynamical network (46) can be cluster synchronized if
infk∈Z+{tk+1 − tk} is utilized.
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5 Conclusions

In this paper, a general hybrid-coupled impulsive
dynamical network model with the internal delay and
delay coupling is proposed, and then, the cluster syn-
chronization of such impulsive delayed dynamical net-
work is intensively studied. In our network model, the
delayed coupling term involves different transmission
delay and self-feedback delay, closer to the realistic
situation. In addition, the internal delay, transmission
delay and self-feedback delay are all time-varying and
can be different from each other, and the coupling
matrices are not needed to be symmetric or irreducible.
Based on the average impulsive interval approach and
the analysis technique, some novel globally exponen-
tial cluster synchronization criteria are derived. It is
shown that the derived cluster synchronization crite-
ria are simultaneously effective for synchronizing and
desynchronizing impulses. Numerical examples are
also given to illustrate the effectiveness of the theo-
retical results.
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