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Abstract In this paper, the composite anti-
disturbance control problem is addressed for a sin-
gle machine bus system with static var compensator.
A finite time disturbance observer is designed to esti-
mate the external disturbances. Then based on distur-
bance estimation value, a continuous finite time anti-
disturbance controller is proposed. It is proved that the
proposed scheme can guarantee that the system outputs
converge to zero in finite time. Finally, a simulation
result is presented to demonstrate the effectiveness of
the developed method.

Keywords Finite time control ·Finite timedisturbance
observer · Mismatched disturbances · Static var
compensator

1 Introduction

In the past decades, static var compensator (SVC)
has been used in power system to regulate the sys-
tem voltage and improve power system stability [1–3].
SVC has many virtues over traditional reactive power
system compensators. Many meaningful results have
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been reported for SVC in the past decades. Based on
exact linearization scheme, the SVC controllers have
been developed in [4,5]. Although these controllers can
guarantee system have good control performance, they
may cause unsatisfactory performances when operat-
ing states are far from given operating points. Further-
more, on the basis of nonlinear system model, some
control approaches have been proposed. In [6], the
adaptive fuzzy controller is presented for SVCs based
on backstepping control methods. The adaptive fault-
tolerant controller is proposed in [7]. When system
subjects to external disturbances, the methods in [6,7]
may obtain unsatisfactory performance. In [8], an adap-
tive backstepping sliding mode H∞ controller is given,
where H∞ control scheme is used to attenuate exter-
nal disturbances. In [9], a nonlinear robust controller
is investigated for the SVC system with external dis-
turbances and parameter uncertainties using modified
adaptive backstepping and minmax scheme.

Although these methods have good control perfor-
mance of the SVC system, the disturbance rejection
and robustness performance of these controllers are
achieved at a price of sacrificing the nominal con-
trol performance. When subjecting to strong distur-
bances, these approaches may lead to poor perfor-
mance, for example, the dynamic process of the closed-
loop system may become sluggish and even unstable.
It is because most of above control schemes reject
disturbances merely via the action of feedback reg-
ulation in a relatively slow way and do not consider
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active and direct disturbance rejection in the controller
design. Disturbance observer based control (DOBC)
is an effective method to reject external disturbances
and improve robustness against uncertainties [10–25].
So far, DOBC method can be used to cope with both
matched disturbances [10–18] and mismatched distur-
bances [22–25].

In order to guarantee system have a faster conver-
gence rate and a stronger disturbance rejection per-
formance of systems with mismatched disturbances,
some finite time composite anti-disturbance control
schemes are proposed. Based on finite time disturbance
observer and non-singular terminal sliding mode con-
trol techniques, a finite time composite controller is
developed for rejecting mismatched disturbances in
[26]. In [27], a continuous finite time composite anti-
disturbance controller is proposed for a class of linear
systemwithmismatched disturbance via finite time dis-
turbance observer and added power integratormethods.
Inspired by the above reference, we devote to inves-
tigating the finite time anti-disturbance control prob-
lem for SVC system with mismatched disturbances.
Because the SVC system is a complex nonlinear sys-
temwithmismatched disturbances, the previous results
are difficult to directly apply. Thismotives us to develop
this study.

In this paper, the problem of finite time compos-
ite anti-disturbance control for SVC system with mis-
matched disturbances is addressed. By using finite time
disturbance observer, the mismatched disturbances
are estimated. Based on disturbance estimation, some
novel virtual control laws are constructed to compen-
sate the mismatched disturbances. Then finite time sta-
bility is established via Lyapunov function theory.With
the proposed composite control method, the system
output can converge to zero in finite time in spite of
mismatched disturbances and the disturbance rejec-
tion ability of system is improved without sacrific-
ing the nominal performance of the original control
strategy. Finally, a simulation result is employed to
demonstrated the effectiveness of the proposed control
scheme.

2 Model and problem formulation

The dynamics of single-machine infinite-bus (SMIB)
electrical power system with SVC can be depicted by
the following nonlinear equation [4]

δ̇ = ω − ω0,

ω̇ = − D

H
(ω − ω0) + ω0

H

(
Pm − E ′

qVs ySVC sin δ
)

+ w2,

ẏSVC = 1

TSVC
(−ySVC + ySVC0 + u) + w3, (1)

where δ and ω represent the angle and speed of the
generator rotor, respectively; H , Pm , D, E ′

q , Vs and
TSVC are the inertia constant, the mechanical power
on the generator shaft, the damping coefficient, the
inner generator voltage and infinite bus voltage, the
time constant of SVC regulator, respectively. ySVC =
1
X1

+ X2 + X1X2(BL + BC ) denotes the susceptance
of the overall system, and ySVC0 is the initial stable
value of ySVC; X1 = X ′

d + XT + XL , X2 = XL , X ′
d

XT , and XL mean the direct axis transient reactance
of the generator, the reactance of the transformer, and
the line reactance, respectively; BL , BC , and BL + BC

show the susceptance of the inductor in SVC, the sus-
ceptance of the capacitor in SVC, and the equivalence
reactance of SVC, respectively; u denotes the equiv-
alence input of SVC regulator; w2 and w3 mean the
external disturbances.

Let (δ0, ω0, ySVC0) denote an operating point of the
power system. Define the system state variables as
x1 = δ − δ0, x2 = ω − ω0, x3 = ySVC − ySVC0.
Furthermore, letting ω0

H Pm = a0, −ω0
H E ′

qVs = k, sys-
tem (1) is rewritten as

ẋ1 = x2

ẋ2 = θx2 + a0 + k(x3 + ySVC0) sin(x1 + δ0) + w2,

ẋ3 = − 1

TSVC
x3 + 1

TSVC
u + w3,

y =
[
q1x1
q2x2

]
, (2)

where y is the regulated output, q1 and q2 are nonneg-
ative weighted coefficients, θ = − D

H .

Assumption 1 The disturbances satisfy the following
condition |...wi (t)| ≤ Li ,where Li are known constants,
i = 2, 3.

According to [28], the following assumption is
required for controller design.

Assumption 2 The angle δ satisfies 0◦ < δ < 180◦.

Remark 1 If sin(x1 + δ0) = 0, then δ = kπ , k =
0, 1, 2, 3, . . ., which implies that the power systems
do not maintain synchronism. Therefore, the normal
region of the power system is 0◦ < δ < 180◦.
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In order to obtain a finite-time composite controller,
some lemmas that will play a key role in the subse-
quent control development and analysis are revisited
as follows.

Lemma 1 [29] If 0 < � = �1
�2

< 1, then |x� − y�| ≤
21−�|x−y|�,where �1 and �2 are positive odd integers.

Lemma 2 [30] The inequality (|x1| + · · · + |xn|)p ≤
|x1|p + · · · + |xn|p holds for xi ∈ R, i = 1, . . . , n,

where p is a real number satisfying 0 < p ≤ 1.

Control object In this paper, the problem of finite time
output regulation is investigated for system (2) under
mismatched disturbances using the finite time distur-
bance observer and finite time control technique. We
aim to design a composite controller such that system
outputs converge to zero in finite time with the mis-
matched disturbances.

3 Composite controller design and stability
analysis

3.1 Composite controller design

The problem of finite time output regulation for system
(2) with mismatched disturbances is investigated by
using a composite finite time controller. The detailed
design method is given step by step as follows.
Part I Finite time disturbance observer design.

Borrowed from [31,32], a finite time disturbance
observer (FTDO) is presented as

ż0 j = ν0 j + x̂ j+1, żi j = νi j , . . . , ż3 j

= −λ3L j sign(z3 j − ν2 j ),

ν0 j = −λ0L
1
4
j |z0 j − x j | 34 sign(z0 j − x j ) + z1 j ,

νi j = −λi L
1/(4−i))
j |zi j − ν(i−1) j | 3−i

4−i sign(zi j

− ν(i−1) j ) + z(i+1) j , (3)

where i = 1, 2, j = 1, 2, 3, x̂2 = x2, x̂3 = θx2 +
a0 + k(x3 + ySVC0) sin(x1 + δ0), x̂4 = − 1

TSVC
x3 +

1
TSVC

u, λ0, λ1, λ2, λ3 are the observer coefficients to
be designed, z0 j , z1 j , z2 j , z3 j are the estimates of
x j , w j , ẇ j , ẅ j , respectively.

Define the observer errors e0 j = z0 j − x j , e1 j =
z1 j −w j , e2 j = z2 j − ẇ j , and e3 j = z3 j − ẅ j , where
w1 = ẇ1 = ẅ1 = 0. The observer error dynamics are
presented as

ė0 j = −λ0L
1
4
j |e0 j |

3
4 sign(e0 j ) + e1 j ,

ėi j = −λi L
1

4−i
j |ei j − ė(i−1) j | 3−i

4−i sign(ei j − ė(i−1) j )

+ e(i+1) j ,

ė3 j = −λ3L j sign(e3 j − ė2 j ) − ...
w j . (4)

It can be obtained from [31,32] that the observer error
system is finite time stable, that is, there exists a finite
time instant t1 such that e0 j ≡ 0, e1 j ≡ 0, e2 j ≡
0, e3 j ≡ 0, j = 1, 2, 3, for t > t1.

Remark 1 According to [31], the parameters λ0, λ1,

λ2, λ3 are selected. The convergence rate of FTDO is
determined by the values of L j , i.e., the faster con-
vergence rate of the FTDO, the larger the parameters
L j required. However, the parameters L j can not be
selected too large to avoid resulting in an excessive
transient peaking.

When t > t1, the system (3) is changed to

ż0 j = z1 j + x̂ j+1, ż1 j = z2 j , ż2 j = z3 j , (5)

where j = 1, 2, 3.
Part II Composite controller design.

Combining disturbance estimation values, system
(2) is rewritten as

ẋ1 = x2
ẋ2 = θx2 + a0 + k(x3 + ySVC0) sin(x1 + δ0) + z12 − e12,

ẋ3 = − 1

TSVC
x3 + 1

TSVC
u + z13 − e13,

y =
[
q1x1
q2x2

]
. (6)

Since the disturbance estimation errors satisfy e12 =
0, e13 = 0 for t > t1, system (6) boils down to

ẋ1 = x2,

ẋ2 = θx2 + a0 + k(x3 + ySVC0) sin(x1 + δ0) + z12,

ẋ3 = − 1

TSVC
x3 + 1

TSVC
u + z13,

y =
[
q1x1
q2x2

]
. (7)

In the next, the composite finite time controller will be
developed for system (7). The stability analysis will be
given in the next subsection.

Step 1 Consider the first equation in (7), i.e.,

ẋ1 = x2. (8)

Choose a Lyapunov function as

V1 =
∫ x1

0
(s

1
r1 )2−r2ds, (9)
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where r1 = 1, r2 = r1 + τ, − 1
4 < τ = − q

p < 0, q
is a positive even integer, p is a positive odd integer.
Computing the first derivative of (9) along system (8),
yields

V̇1 = x
2−r2
r1

1 x2 = x
2−r2
r1

1 x∗
2 + x

2−r2
r1

1 (x2 − x∗
2 ), (10)

where x∗
2 is a virtual control law. The virtual control

law x∗
2 is designed as

x∗
2 = −β1x

r2
1 , (11)

where β1 > β∗
1 = 3. Combining (10) and (11), we

have

V̇1 ≤ −3x21 + x
2−r2
r1

1 (x2 − x∗
2 ). (12)

Step 2 Consider

ẋ2 = θx2 + a0 + k(x3 + ySVC0) sin(x1 + δ0) + z12.

(13)

The Lyapunov function is selected as

V2 = V1 +
∫ x2

x∗
2

(
s

1
r2 − (x∗

2 )
1
r2

)2−r2−τ

ds. (14)

Computing the first derivative of (14), we have

V̇2 ≤ −3x21 + x
2−r2
r1

1 (x2 − x∗
2 ) + ξ

2−r2−τ
2 (θx2

+ a0 + k(x3 + ySVC0) sin(x1 + δ0) + z12)

− (2 − r2 − τ)

∫ x2

x∗
2

(
s

1
r2 − (x∗

2 )
1
r2

)1−r2−τ

× ds
∂x∗

2

1
r2

∂x1
x2, (15)

where ξ2 = x
1
r2
2 − (x∗

2 )
1
r2 .

Note that 0 < r2 ≤ 1, by Lemma 1 and Young’s
inequality, we have

x
2−r2
r1

1 (x2 − x∗
2 ) ≤ 21−r2 |x1|

2−r2
r1 |ξ2|r2 ≤ 1

2
x21 + ĉ21ξ

2
2 ,

− (2 − r2 − τ)

∫ x2

x∗
2

(
s

1
r2 − (x∗

2 )
1
r2

)1−r2−τ

ds
∂x∗

2

1
r2

∂x1
x2

≤ (2 − r2 − τ)

∣∣∣∣∣∣
∂x∗

2

1
r2

∂x1

∣∣∣∣∣∣
|ξ2|1−r2−τ (|x2 − x∗

2 |)(|x2

− x∗
2 | + |x∗

2 |)

≤ (2 − r2 − τ)21−r2

∣∣∣∣∣∣
∂x∗

2

1
r2

∂x1

∣∣∣∣∣∣
|ξ2|1−τ (21−r2 |ξ2|r2

+ β1|x1|r2 )
≤ 1

2
|x1|2 + ĉ22|ξ2|2, (16)

where ĉ21 > 0 and ĉ22 > 0. Combining (15) and (16),
yields

V̇2 ≤ −2x21 + ξ
2−r2−τ
2 (θx2 + a0 + k(x3 + ySVC0)

sin(x1 + δ0) + z12) + (ĉ21 + ĉ22)ξ
2
2

= −2x21 + ξ
2−r2−τ
2 (θx2 + a0 + k(x3 − x∗

3 + x∗
3

+ ySVC0) sin(x1 + δ0) + z12) + (ĉ21 + ĉ22)ξ
2
2 ,

(17)

where x∗
3 is a virtual control law. The virtual control

law x∗
3 is designed as

x∗
3 = 1

k sin(x1 + δ0)
(−θx2 − a0 − kySVC sin(x1 + δ0)

− z12 − β2ξ
r3
2

)
, (18)

where β2 > β∗
2 = 2 + ĉ21 + ĉ22, r3 = r2 + τ. Substi-

tuting (18) into (17), leads to

V̇2 ≤ −2x21 − 2ξ22 + ξ
2−r2−τ
2 k(x3 − x∗

3 ) sin(x1 + δ0).

(19)

Step 3 Consider

ẋ3 = − 1

TSVC
x3 + 1

TSVC
u + z13. (20)

We choose the following Lyapunov function

V3 = V2 +
∫ x̄3

x̄∗
3

(
s

1
r3 − (x̄∗

3 )
1
r3

)2−r3−τ

ds, (21)

where

x̄3 = k sin(x1 + δ0)x3 + θx2 + a0

+ kySVC sin(x1 + δ0) + z12,

x̄∗
3 = k sin(x1 + δ0)x

∗
3 + θx2 + a0

+ kySVC sin(x1 + δ0) + z12 = −β2ξ
r3
2 . (22)

Computing the first derivative of (21) gives rise to

V̇3 ≤ −2x21 − 2ξ22 + ξ
2−r2−τ
2 k(x3 − x∗

3 ) sin(x1 + δ0)

+ ξ
2−r3−τ
3

˙̄x3 − (2 − r3 − τ)

∫ x̄3

x̄∗
3

×
(
s

1
r3 −(x̄∗

3 )
1
r3

)1−r3−τ

ds

⎛
⎜⎝∂ x̄

∗ 1
r3

3
∂x1

ẋ1 + ∂ x̄
∗ 1
r3

3
∂x2

ẋ2

⎞
⎟⎠

= −2x21 − 2ξ22 + ξ
2−r2−τ
2 k(x3 − x∗

3 ) sin(x1 + δ0)

+ ξ
2−r3−τ
3

(
∂ x̄3
∂x1

x2 + ∂ x̄3
∂x2

(k sin(x1 + δ0)x3

+ θx2 + a0 + kySVC sin(x1 + δ0) + z12)

+ ∂ x̄3
∂x3

(
− 1

TSVC
x3 + 1

TSVC
u + z13

)
+ ∂ x̄3

∂z12
z22

)
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− (2 − r3 − τ)

∫ x̄3

x̄∗
3

(
s

1
r3 − (x̄∗

3 )
1
r3

)1−r3−τ

× ds

⎛
⎜⎝∂ x̄

∗ 1
r3

3
∂x1

ẋ1 + ∂ x̄
∗ 1
r3

3
∂x2

ẋ2

⎞
⎟⎠ , (23)

where ξ3 = x̄
1
r3
3 − (x̄∗

3 )
1
r3 , ∂ x̄3

∂x1
= k cos(x1 + δ0)(x3 +

ySVC), ∂ x̄3
∂x2

= θ , ∂ x̄3
∂x3

= k sin(x1 + δ0),
∂ x̄3
∂z12

= 1.
Combining (22) andLemma1 plusYoung’s inequal-

ity, we obtain

ξ
2−r2−τ
2 k(x3 − x∗

3 ) sin(x1 + δ0)

= ξ
2−r2−τ
2 (x̄3 − x̄∗

3 )

≤ 21−r2 |ξ2|2−r2−τ |ξ3|r3 ≤ 1

2
|ξ2|2 + ĉ31|ξ3|2, (24)

where ĉ31 > 0. Now, we estimate the last term on the
right-hand side of (23).

First, it follows Lemma 1 and Young’s inequality
that

−(2 − r3 − τ)

∫ x̄3

x̄∗
3

(
s

1
r3 − (x̄∗

3 )
1
r3

)1−r3−τ

ds
∂ x̄

∗ 1
r3

3

∂x1
ẋ1

≤ (2 − r3 − τ)

∣∣∣∣∣∣∣
∂ x̄

∗ 1
r3

3

∂x1

∣∣∣∣∣∣∣
|ξ3|1−r3−τ |x̄3 − x̄∗

3 ||x2|

≤ (2 − r3 − τ)

∣∣∣∣∣∣∣
∂ x̄

∗ 1
r3

3

∂x1

∣∣∣∣∣∣∣
|ξ3|1−r3−τ |x̄3 − x̄∗

3 |

× (|x2 − x∗
2 | + |x∗

2 |
)

≤ (2 − r3 − τ)

∣∣∣∣∣∣∣
∂ x̄

∗ 1
r3

3

∂x1

∣∣∣∣∣∣∣
|ξ3|1−τ

×
(
21−r2 |ξ2|r2 + β1|x1|r2

)

≤ 1

3
x21 + 1

4
ξ22 + ĉ31ξ

2
3 + ĉ32ξ

2
3 , (25)

where ĉ32 > 0. And

−(2 − r3 − τ)

∫ x̄3

x̄∗
3

(
s

1
r3 − (x̄∗

3 )
1
r3

)1−r3−τ

ds
∂ x̄

∗ 1
r3

3

∂x2
ẋ2

≤ (2 − r3 − τ)

∣∣∣∣∣∣∣
∂ x̄

∗ 1
r3

3

∂x2

∣∣∣∣∣∣∣
|ξ3|1−r3−τ |x̄3 − x̄∗

3 |βr3
2

×|x2|
1
r2

−1|θx2 + a0 + k(x3 + ySVC0) sin(x1 + δ0) + z12|
= β

1
r3
2 β

r3
2 (2 − r3 − τ)|ξ3|1−r3−τ |x̄3 − x̄∗

3 ||x2|
1
r2

−1|x̄3|

= β

1
r3
2 β

r3
2 (2 − r3 − τ)|ξ3|1−r3−τ |x̄3 − x̄∗

3 ||x2|
1
r2

−1

(|x̄3 − x̄∗
3 | + |x̄∗

3 |)

≤ β

1
r3
2 β

r3
2 (2 − r3 − τ)21−r3 |ξ3|1−τ |x2|

1
r2

−1

(
21−r3 |ξ3|r3 + β2|ξ2|r3

)
. (26)

Using Lemmas 1 and 2, we have

|x2|
1
r2

−1 = |x2 − x∗
2 + x∗

2 |
1
r2

−1

≤ |x2 − x∗
2 |

1
r2

−1 + |x∗
2 |

1
r2

−1

≤ 21−r2 |ξ2|1−r2 + β

1
r2

−1

1 |x1|1−r2 . (27)

Substituting (27) into (26) and using Lemma 1 leads to

β

1
r3
2 (2 − r3 − τ)

∫ x̄3

x̄∗
3

(
s

1
r3 − (x̄∗

3 )
1
r3

)1−r3−τ

ds
∂ x̄

∗ 1
r3

3
∂x2

ẋ2

≤ β

1
r3
2 β

r3
2 (2 − r3 − τ)21−r3 |ξ3|1−τ

(
21−r2 |ξ2|1−r2

+β

1
r2

−1

1 |x1|1−r2

) (
21−r3 |ξ3|r3 + β2|ξ2|r3

)

≤ β

1
r3
2 β

r3
2 (2 − r3 − τ)21−r3

(
22−r2−r3 |ξ2|1−r2 |ξ3|1−τ

+ 21−r2 |ξ2|1−r2+r3 |ξ3|1−τ

+ 21−r3β

1
r2

−1

1 |x1|1−r2 |ξ3|1−τ+r3 + β

1
r2

−1

1 β2

× |x1|1−r2 |ξ2|r3 |ξ3|1−τ
)

≤ 1

4
ξ22 + ĉ33ξ

2
3 + 1

4
ξ22 + ĉ34ξ

2
3 + 1

3
x21 + ĉ35ξ

2
3

+ 1

3
x21 + 1

4
ξ22 + ĉ36ξ

2
3 , (28)

where ĉ33, ĉ34, ĉ35, and ĉ36 are positive constants.
Combining (23), (25) and (28), yields

V̇3 ≤ −x21 − ξ22 − lx2−τ
1 − lξ2−τ

2 + ξ
2−r3−τ
3

(
∂ x̄3
∂x1

x2

+ ∂ x̄3
∂x2

x̄3 + ∂ x̄3
∂x3

(
− 1

TSVC
x3 + 1

TSVC
u + z13

)

+ ∂ x̄3
∂z12

z22

)

+ (ĉ31 + ĉ32 + ĉ33 + ĉ34 + ĉ35 + ĉ36)ξ
2
3 . (29)

The controller u is designed as

u = x3 − TSVCz13 − TSVC
∂ x̄3
∂x3

(
∂ x̄3
∂x1

x2 + ∂ x̄3
∂x2

x̄3

+ ∂ x̄3
∂z12

z22 + β3ξ
r4
3

)
, (30)

where β3 ≥ β∗
3 = 1 + ĉ31 + ĉ32 + ĉ33 + ĉ34 + ĉ35 +

ĉ36, r4 = r3 + τ.
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Remark 2 In order to obtain the finite time controller,
the auxiliary state x̄3 and the auxiliary virtual control
law x̄∗

3 in (22) are defined.

3.2 Stability analysis

Theorem 1 Consider system (2). If Assumptions 1
and 2 hold, the composite controller (30) can guar-
antee the closed-loop system (2), (4) and composite
controller (30) is globally finite time stable.

Proof The stability analysis of the closed-loop system
is divided into two parts. First, the finite time stability
of system (7) and (30) is established when t > t1. Next,
we will prove that system states of (3) and (6) will not
escape to the infinity in any time interval [0, t1].

At first step: substituting (30) into (29) gives rise
to

V̇3 ≤ −x21 − ξ22 − ξ23 . (31)

It can be verify that

V3 ≤ 1

c

(
x2−τ
1 + ξ2−τ

2 + ξ2−τ
n

)
, (32)

where c > 0. Let λ1 = 1
2c

2
2−τ . Using Lemma 2, we

can derive from (31) and (32) that

V̇3 + λ1V
2

2−τ

3 ≤ −(x21 + ξ22 + ξ23 ) + λ1

c
2

2−τ

(x21 + ξ22 + ξ23 )

= −1

2
(x21 + ξ22 + ξ23 ). (33)

According to the finite time stability definition [33], we
obtain that system (7) and (30) is finite time stable.

Next, we will prove that system states of (3) and
(6) will not escape to the infinity in any time interval
[0, t1]. By coordinate transform, we obtain the follow-
ing system

ẋ1 = x2 = x2 − x∗
2 + x∗

2 ,

ξ̇2 = x
1
r2

−1

2 (x̄3 − e12) + β

1
r2
1 x2

= x
1
r2

−1

2

(
x̄3 − x̄∗

3 − β2ξ
r3
2 − e12

) + β

1
r2
1 x2,

ξ̇3 = x̄
1
r3

−1

3

(−ρ3ξ
r4
3 − e13

) + β

1
r3

−1

2

(
x

1
r2

−1

2

(
x̄3 − x̄∗

3 − β2ξ
r3
2 − e12

) + β

1
r2
1 x2

)
. (34)

A finite time bounded function is selected as

B(x1, ξ2, ξ3) = 1

2
(x21 + ξ22 + ξ23 ). (35)

Taking the first derivative of (35), we have

Ḃ(x1, ξ2, ξ3)

= x1 ẋ1 + ξ2ξ̇2 + ξ3ξ̇3

= x1(x2 − x∗
2 + x∗

2 ) + ξ2

(
x

1
r2

−1

2 (x̄3 − e12) + β

1
r2
1 x2

)

+ ξ3

(
x̄

1
r3

−1

3

(−β3ξ
r4
3 − e13

) + β

1
r3

−1

2

(
x

1
r2

−1

2 (x̄3

−x̄∗
3 − β2ξ

r3
2 − e12

) + β

1
r2
1 x2

))
. (36)

Using Lemma 1 plus Young’s inequality, the follow-
ing inequalities are true

x1(x2 − x∗
2 )≤21−r2 |x1||ξ2|r2 ≤|x1|2+τ +h11|ξ2|2+τ ,

x1x
∗
2 ≤ |x1||βxr21 | = β1|x1|2+τ ,

ξ2x
1
r2

−1

2

≤ 21−r2 |ξ2|(|ξ2|1−r2 + β

1
r2

−1

1 |x1|1−r2)

≤ 21−r2(|ξ2|2−r2 + β

1
r2

−1

1 |x1|1−r2 |ξ2|)
≤ 21−r2(2|ξ2|2−r2 + h12|x1|2−r2),

ξ2x
1
r2

−1

2 (x̄3 − e12)

≤ 21−r2(2|ξ2|2−r2 + h12|x1|2−r2)(21−r3 |ξ3|r3
+ β3|ξ2|r3 + e12)

≤ x2+τ
1 + h21ξ

2+τ
2 + h22ξ

2+τ
3 + 21−r2(2|ξ2|2−r2

+ h12|x1|2−r2)|e12|,
ξ2β

1
r2
1 x2

≤ β

1
r2
1 |ξ2|(21−r2 |ξ2|r2 + β1|x1|r2)

≤ x2+τ
1 + h23|ξ2|2+τ ,

ξ3 x̄
1
r3

−1

3

≤ 21−r3 |ξ3|(|ξ3|1−r3 + β

1
r3

−1

2 |ξ2|1−r3)

≤ 21−r3(|ξ3|2−r3 + β

1
r3

−1

2 |ξ2|1−r3 |ξ3|)
≤ 21−r3(2|ξ3|2−r3 + h31|ξ2|2−r3),

ξ3 x̄
1
r3

−1

3 (−β3ξ
r4
3 − e13)

≤ |ξ2|2+τ + h32|ξ3|2+τ + 21−r3(2|ξ3|2−r3

+ h31|ξ2|2−r3)|e13|,
ξ3

(
β

1
r3

−1

2 (x
1
r2

−1

2 (x̄3 − x̄∗
3 − β2ξ

r3
2 − e12) + β

1
r2
1 x2)

)
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Fig. 1 Response curves of
system state δ with external
disturbances
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Fig. 2 Response curves of
system state ω with external
disturbances
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Fig. 3 Curves of system
input with external
disturbances
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≤ x2+τ
1 +h41ξ

2+τ
2 +h42ξ

2+τ
3 + (x2−r2

1

+ h43ξ
2−r2
2 + h44ξ

2−r2
3 )|e12|, (37)

where h11, h12, h21, h22, h31, h32, h41, h42, h43, and
h44 are positive numbers. Since w2 and w3 are esti-
mated in finite time, i.e., the estimation errors e12 and
e13 converge to zero in finite time, then e1i is bounded.
We denote e1i ≤ ēi ≤ ē, where ē > 0 is a constant. On
the one hand if

η =
√
x21 + ξ22 + ξ23 ≥ η̂ > 1, (38)

then we obtain |x1|2+τ ≤ η2+τ ≤ η2, |ξ2|2+τ ≤
η2+τ ≤ η2, |ξ3|2+τ ≤ η2+τ ≤ η2, |x1|2−ri ≤ η2,

|ξ2|2−ri ≤ η2, |ξ3|2−ri ≤ η2. With this in mind, we
obtain

Ḃ(x1, ξ2, ξ3) ≤ Kη2 = KB(x1, ξ2, ξ3), (39)

where K = β1 + 4 + h11 + h21 + h23 + h41 + h22 +
h32 + h42 + 2 ∗ 21−r2 ē + 21−r2 ēh12 + 2 ∗ 21−r3 ē +
21−r3 ēh31 + (1 + h43 + h44)ē. On the other hand, if
η < 1, there exists a constant L̄ such that
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Fig. 4 Curves of
disturbances and
disturbance estimation
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Fig. 5 Response curves of
system state δ with model
uncertainties
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Fig. 6 Response curves of
system state ω with model
uncertainties
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Fig. 7 Curves of system
input with model
uncertainties
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Ḃ(x1, ξ2, ξ3) ≤ L̄. (40)

Thus we obtain

Ḃ(x1, ξ2, ξ3) ≤ KB(x1, ξ2, ξ3) + L̄. (41)

Solving the inequality (41), we have B(x1, ξ2, ξ3) ≤
(B(x1(0), ξ2(0), ξ3(0)) + L̄

K )eK t − L̄
K . When t ≤ t1,

the system states x1, ξ2 ξ3 of (34) are bounded.
According to the above analysis and [34], we obtain

that the system consisting of system (6), the estimation
error (4) and the control law (30) is finite time stable.

Remark 3 In the absence of disturbances, it is derived
from (3) and (4) that

ė0 j = −λ0L
1/4
j |e0 j | n

n+1 sign(e0 j ) + z1 j ,

ż1 j = −λ1L
1/3
j |z1 j − ė0 j | 23 sign(z1 j − ė0 j ) + z2 j ,

ż2 j = −λ2L
1/2
j |z2 j − ż1 j | 12 sign(z2 j − ż1 j ) + z3 j ,

ż3 j = −λ3L j sign(z3 j − ż2 j ), j = 1, 2, 3,

which implies that z1, z2, z3 equal to zero all the time.
Then the composite controller (30) degenerates to the
traditional finite time controller, which means that the
proposed method does not sacrifice the nominal per-
formance. This good property will be verified via sim-
ulation results in the next section.

4 Simulation result

The SVC system has the following parameters [8,35]:

H = 5.9 s, D = 1.0, Vs = 1.0 pu,

TSVC = 0.02, X1 = 0.84 pu,

X2 = 0.52 pu, BL + BC = 0.3 pu,

q1 = 0.4, q2 = 0.6.

The controller parameters are chosen as

r1 = 1, τ = − 2

15
, β1 = 5, β2 = 10,

β3 = 25, L1 = L2 = L3 = 10.

The following operating point is considered

δ0 = 57.1 deg, ω0 = 314.159 rad/s,

ySVC0 = 0.4 pu. (42)

Case I External disturbance rejection ability
The external disturbances in the SVC system are

taken as

w1(t) =
⎧⎨
⎩
0, t < 6 and 10 ≤ t < 15,
1.5, 6 ≤ t < 10,
3 sin(t), t > 15,

,

w2(t) =
⎧
⎨
⎩
0, t < 6 and 10 ≤ t < 15,
1, 6 ≤ t < 10,
2.4 cos(t), t > 15.

The simulation results are presented in Figs. 1, 2, 3
and 4. Response curves of system states δ and ω are
shown in Figs. 1 and 2. It can be observed that the sys-
tem outputs can achieve their control object in the pres-
ence of mismatched disturbances. In order to illustrate
the effectiveness of disturbance observer, the curves of
disturbances and disturbance estimation are presented
in Fig. 4. The control input is depicted in Fig. 3.
Case II: Robustness against model uncertainties

The robustness against model uncertainties of the
proposed scheme is verified in this part. To investigate
the performance of robustness, we choose the model
uncertainties as follows. θ has variation of +20%.

Curve of system outputs under the proposed control
method is given in Figs. 5 and 6. It can be seen that the
closed-loop system has a good robustness performance
and the outputs have a satisfactory performance. The
control input is presented in Fig. 7.
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5 Conclusion

In this paper, the problem of finite time composite anti-
disturbance control for SVC system has been investi-
gated. Based on finite time disturbance observer and
finite time control techniques, a finite time composite
controller has been proposed.UsingLyapunov function
theory, the finite time stability of the closed-loop sys-
tem has been analyzed. Finally, the simulation result
has been presented to show the effectiveness of the
developed method.
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