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Abstract This paper studies the application of fre-
quency distributed model for finite-time control of a
class of fractional-order nonlinear systems. Firstly, a
class of fractional-order nonlinear systems with model
uncertainties and external disturbances are introduced,
and a new frequency distributed model with theoreti-
cal inference is presented. Secondly, a novel fast termi-
nal sliding surface is proposed and its stability to ori-
gin is proved based on the frequency distributed model
and Lyapunov stability theory. Furthermore, based on
finite-time stability and sliding mode control theory,
a robust control law to ensure the occurrence of the
sliding motion in a finite time is designed for stabiliza-
tion of the fractional-order nonlinear systems. Finally,
two typical examples of three-dimensional nonlinear
fractional-order Lorenz system and four-dimensional
nonlinear fractional-order Chen system are employed
to demonstrate the validity of the proposed method.
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1 Introduction

Fractional-order calculus can date back to the emer-
gence of integer-order calculus. For many years, it has
not been used in actual project. Nevertheless, during
recent decades, fractional-order calculus has attracted
increasing attention in physics and engineering [1,2].
And it was found that many systems could be bet-
ter modeled and elegantly described with the help of
fractional-order calculus compared with integer-order
one, especially for memory and hereditary properties
of various materials and processes [3,4], for instance,
wind turbine generators [5], mechanical system [6],
chemical system [7], oscillation of earthquakes [8], and
so on.

Nonlinearity is universal in actual project, and
nonlinear dynamics and stability control for integer-
order systems have been widely studied [9–14]. How-
ever, fractional-order nonlinear systems have differ-
ent stability regions with integer-order ones. Could
fractional-order nonlinear systems be well controlled?
It is worth studying. Recently, control and synchroniza-
tion of fractional-order nonlinear systems have become
a hot topic [15,16]. Many control methods have been
designed for the control of fractional-order nonlinear
systems such as sliding mode control [17], fuzzy con-
trol [18], pinning control [19], predictive control [20],
among many others.

As we all know, Lyapunov stability theorem is
often used in the analysis of integer-order system sta-
bility. However, it has not yet received satisfactory
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results in fractional systems, specifically in the non-
linear case. Many scholars focus on the stability study
for fractional-order nonlinear systems control recently.
Some researchers introduce theMittag-Leffler stability
to analysis the stability for fractional-order nonlinear
systems. However, the definition of state variables and
state space representation make the method could not
apply widely [21]. Reference [21] proposes applying
the frequency distributed model (FDM) to Lyapunov’s
method for some simple linear and nonlinear frac-
tional differential equations. In [22,23], by using the
FDM, the authors convert the FDE initial conditions
problem into an equivalent ODE initialization prob-
lem. By applying FDM, stability analysis of sliding
mode dynamics systems was studied in [24,25]. Refer-
ence [26] introduces the FDM into the fractional-order
complex dynamic networks, and a robust non-fragile
observer-based controller is designed. Themain advan-
tage using FDM is that the approach provides a ref-
erence for generalization of integer-order system the-
ory to fractional-order ones, which is obvious a bridge
between fractional-order system and integer-order sys-
tem.

Besides, most of the above-mentioned techniques
are concerned about asymptotically stability for
fractional-order nonlinear systems. It is also noted that
the traditional controller could not guarantee the fast
convergence of the system. In practical application,
the finite-time controller is often designed for actual
projects, which exhibits the following advantages [27],
such as high-precision performance, better robustness,
small overshoot and short stabilization time. From the
optimization point of view, finite-time control should
be studied and it has attracted increasing attention.
Until now, some finite-time control techniques such as
terminal sliding mode (TSM) and fast terminal sliding
mode (FTSM) for integer-order and fractional-order
nonlinear systems have been proposed [28–31].

That is, both FDM in analyzing the stability of
fractional-order system and finite-time control in
improving control quality have potential advantages.
However, to the best of our knowledge, there is very
little literature introducing FDM to the finite-time con-
trol of fractional-order nonlinear systems control. Can
finite-time control of fractional-order nonlinear sys-
tems be implemented via FDM? If the hypothesis is
true, what are the specific mathematical derivation and
controller forms? There are no relevant results yet. It is

still an open problem. Research in this area should be
meaningful and challenging.

In light of the above analysis, there are several
advantages which make our study attractive. Firstly,
different with the reference [21], the FDM is proposed
by an auxiliary function and the properties of fractional
calculus, which is easier to implement. Secondly, a
novel fractional FTSM is firstly proposed and its stabil-
ity to origin is guaranteed based on the proposed FDM
and Lyapunov stability theorem. Then, a robust finite-
time control law to ensure the occurrence of the sliding
motion in a finite time is proposed for stabilization of
the fractional-order nonlinear systems regardless the
model uncertainties and external disturbances. Lastly,
two typical examples are implemented to demonstrate
the effectiveness of the theoretic results.

The rest of this paper is organized as follows. In
Sect. 2, some definitions of fractional-order calculus
and relevant properties are presented. The FDM and
controller design are given in Sect. 3. In Sect. 4, sim-
ulation examples are provided. Some conclusions end
this paper in Sect. 5.

2 Preliminaries

In this section, some basic definitions and properties
would be used related to fractional calculus are given.
The two most usually used definitions of fractional
derivative are Riemann–Liouville and Caputo defini-
tions.

Definition 1 [32] The αth fractional-order Riemann–
Liouville integration of function f (t) is defined by:

t0 I
α
t f (t) =t0 D−α

t f (t) = 1

�(α)

∫ t

t0

f (τ )

(t − τ)1−α
dτ ,

(1)

where α ∈ R+ and �(·) is the Gamma function.

It can be known that when α approaches to zero,
fractional integral (1) would change into the identity
operator in the weak sense. In this paper, 0-th fractional
integral is considered to be the identity operator which
is defined as:

I 0 f (t) = f (t). (2)
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Remark 1 �(·) is the well-knownEuler’s gamma func-
tion which is defined as:

�(z) =
∫ ∞

0
e−t t z−1dt (Re(z) > 0) (3)

and the following identity holds:

�(z)�(1 − z) = π

sin π z
(0 < Re(z) < 1) (4)

Definition 2 [32] The Riemann–Liouville fractional
derivative of order α > 0 of a continuous function f (t)
is defined as the nth derivative of fractional integral (1)
of order n − α:

RL
t0 Dα

t f (t) =
(
d

dt

)n

I n−α f (t)

= 1

�(n − α)

dn

dtn

∫ t

t0

f (τ )

(t − τ)α−n+1 dτ ,

(5)

where n is the smallest integer larger than or equal to
α, and �(·) denotes the Gamma function.

Definition 3 [32] The Caputo fractional derivative of
order α > 0 of a continuous function f (t) at time
instant t ≥ 0 is defined as the fractional integral (1) of
order n − α of the nth derivative of f (t):

C
t0D

α
t f (t) = I n−α

(
d

dt

)n

f (t)

= 1

�(n − α)

∫ t

t0

f n(τ )

(t − τ)α−n+1 dτ , (6)

where n is the smallest integer number larger than or
equal to α, and �(·) denotes the Gamma function.

The next are some useful properties of fractional
differential and integral operators which will be used
[33].

Property 1 The fractional integral meets the semi-
group property. Let α > 0 and β > 0, then:

I α I β f (t) = I β I α f (t) = I α+β f (t). (7)

Property 2 For the Caputo fractional derivative, the
following equality holds:

I αC Dα f (t) = f (t) − f (0). (8)

Property 3 The following equality for the Caputo
derivative and the Riemann–Liouville derivative are
established:

RL ,C Dα(RL ,C D−β f (t)) = RL ,C Dα−β f (t) (9)

where α ≥ β ≥ 0.

Remark 2 Compared with Riemann–Liouville frac-
tional derivative, the Laplace transform of the Caputo
definition allows utilization of initial conditions of clas-
sical integer-order derivatives with clear physical inter-
pretations. And the Caputo fractional derivative has the
wide spread application in the actual modeling process.
Therefore in this paper, the Caputo definition of frac-
tional derivative and integral is selected. To simplify the
notation, we denote the Caputo fractional derivative of
order α as Dα instead of Ct0D

α
t .

3 Controller design based on FDM

3.1 System description

Since in the practical applications, systemdynamics are
often affected by model uncertainties and external dis-
turbances. In this paper, the following n-dimensional
fractional-order nonlinear system with model uncer-
tainties and external disturbances is considered:

Dαx(t) = f (x, t) + � f (x, t) + d(t) + u(t), (10)

where α ∈ (0, 1) is the order of the system, x(t) =
[x1, x2, . . . xn]T ∈ Rn denotes the state vector, and
f (x, t) = [ f (x1, t), f (x2, t), . . . , f (xn, t)]T ∈ Rn is
the given nonlinear function, d(t) = [d1(t), d2(t), . . .
dn(t)]T ∈ Rn is the external disturbance term of
the system, � f (x, t) = [� f (x1, t),� f (x2, t), . . . ,
� f (xn, t)] ∈ Rn represents the unknownmodel uncer-
tainty term of the system and u(t) = [u1(t), u2(t), . . .
un(t)]T ∈ Rn is the control input.

Assumption 1 In practice, the exact values of the
bound of the system uncertainties are difficult to know.
However, in most practical examples, the upper bound
of the nonlinear systems uncertainties can be estimated,
and the states of the nonlinear systems are globally
bounded [34]. Therefore, in this paper, the uncertainty
term � f (x, t) and external disturbance d(t) are con-
sidered bounded as follows:
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|� f (x, t)| ≤ ξ1, |d(t)| ≤ ξ2 (11)

where ξ1 and ξ2 are given positive constants.

3.2 Frequency distributed model transformation

To get the main results in this paper, the following
theorem is introduced firstly. For the convenience of
mathematical analysis, noting F(x, t) = f (x, t) +
� f (x, t) + d(t) + u(t).

The fractional-order system (10) is equally written
as:

Dαx(t) = F(x, t). (12)

Inspired by the method of the numerical approxi-
mation of fractional derivatives proposed by Yuan and
Agrawal [35], an auxiliary time and frequency domain
function φ : (0,∞) × [0, X ] → Rn is defined as:

φ(ω, t) =
t∫

0

e−ω2(t−τ)F(x, τ )d(τ ) (13)

Theorem 1 Under the above assumptions, fractional-
order system (12) can be written as:

⎧⎪⎨
⎪⎩

∂φ(ω, t)

∂t
= −w2φ(ω, t) + F(x, t)

X (t) =
∫ ∞

0
u(ω)φ(ω, t)dω

(14)

with u(ω) = 2 sin(πα)
π

ω1−2α, α ∈ (0, 1).

Proof The proof will be divided into two steps.
Step 1: Equation (13) can be transformed into the

following form:

φ(ω, t) = e−ω2t

t∫

0

eω2τ F(x, τ )d(τ ), (15)

Taking its time derivative, there is:

∂φ(ω, t)

∂t
= −ω2e−ω2t

t∫

t0

eω2τ F(x, τ )d(τ )

+ e−ω2t eω2t F(x, t)

= −ω2

t∫

t0

e−ω2(t−τ)F(x, τ )d(τ ) + F(x, t)

= −ω2φ(ω, t) + F(x, t). (16)

Step 2: Using the definition of gamma function (3)
and (1), one obtains:

t0 I
α
t F(x, t) = 1

�(α)�(1 − α)

∫ t

t0

F(x, τ )

(t − τ)1−α
dτ

∫ ∞

0
e−z z−αdz

= 1

�(α)�(1 − α)∫ ∞

0

∫ t

t0

F(x, τ )

(t − τ)1−α
e−z z−αdτdz

= 1

�(α)�(1 − α)

∫ ∞

0

∫ t

t0
F(x, τ )

(
z

t − τ

)−α 1

(t − τ)
e−zdτdz. (17)

Define the variable:

z = ω2(t − τ), (18)

with dz = 2ω(t − τ)dω.
And then, Eq (17) can be written as:

t0 I
α
t F(x, t) = 2

�(α)�(1 − α)∫ ∞

0

∫ t

t0
F(x, τ )ω1−2αe−ω2(t−τ)dτdω

= 2

�(α)�(1 − α)

∫ ∞

0
ω1−2α

∫ t

t0
F(x, τ )e−ω2(t−τ)dτdω. (19)

According to the auxiliary function (13), one gets:

t0 I
α
t F(x, t) = 2

�(α)�(1 − α)

∫ ∞

0
ω1−2αφ(ω, t)dω,

(20)

Note μ(ω) as:

μ(ω) = 2

�(α)�(1 − α)
ω1−2α. (21)

Based on Remark 1, Eq (21) can be written as:

μ(ω) = 2 sin απ

π
ω1−2α, (22)
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Robust finite-time control of fractional-order 2137

Then Eq. (20) can be written as:

t0 I
α
t F(x, t) =

∫ ∞

0
μ(ω)φ(ω, t)dω (23)

Based on the properties 2, 3 and Eq. (23), one gets:

X (t) = D−αF(x, t) =
∫ ∞

0
μ(ω)φ(ω, t)dω (24)

This completes the proof. ��

3.3 Controller design

Definition 4 [36] Consider the n-dimensional
fractional-order system (12) and assume that there
exists a positive constant T = T (X (0)), such that:

lim
t→T

‖X (t)‖ = 0, (25)

and ‖X (t)‖ ≡ 0, if t ≥ T , then the stabilization of
fractional-order nonlinear system (12) is guaranteed in
the finite time T .

In general, the design process of sliding mode con-
trol can be divided into two steps. Firstly, selecting
an appropriate sliding surface which represents the
required system dynamic characteristics. Inspired by
the integer-order FTSMpresented in [37], in this paper,
a novel fractional-order FTSM is defined as follows:

s(t) = Dα−1x + D−1 (
k1x + k2 |x |γ sat(x)

)
(26)

where s(t) = [s1, s2, . . . sn]T ∈ Rn are the sliding sur-
faces, x = [x1, x2, . . . xn]T ∈ Rn are the system states
and k1, k2, γ are the given sliding surface parameters,
with k1 > 0, k2 > 0, 0 < γ < 1. Compared with ref-
erence [38], the sign function is replaced with the satu-
ration function in the sliding mode (26) to weaken the
chattering phenomenon. The saturation function sat(·)
is presented as:

sat(ρ) =
{
sign(ρ/k), |ρ| > k
ρ/k, |ρ| ≤ k

, (27)

where k is a given positive constant.
When the system works on the sliding mode, the

following equation satisfies [39]:

s(t) = 0 (28)

As a result, considering (26) and (28), one obtains:

s(t) = Dα−1x + D−1 (
k1x + k2 |x |γ sat(x)

) = 0

(29)

Then,

Dα−1x = −D−1 (
k1x + k2 |x |γ sat(x)

)
(30)

Based on Property 2 and Property 3, applying the
operator D1 to both sides of Eq. (30), there is:

Dαx = − (
k1x + k2 |x |γ sat(x)

)
(31)

Theorem 2 If the terminal sliding mode is selected in
the form of Eq. (26), then the sliding mode dynamics
system (31) is stable and its state trajectories will con-
verge to zero.

Proof According to Theorem 1, the sliding mode
dynamics system (31) can be expressed as:

⎧⎪⎨
⎪⎩

∂φ(ω, t)

∂t
= −w2φ(ω, t) − (

k1x + k2 |x |γ sat(x)
)

x(t) =
∫ ∞

0
u(ω)φ(ω, t)dω

(32)

Considering the following positive definite Lyapunov
function:

V1(t) = 1

2

∫ ∞

0
μ(ω)φ2(ω, t)dω (33)

Taking its time derivative, one gets:

dV1
dt

=
∫ ∞

0
μ(ω)φ(ω, t)

∂φ(ω, t)

∂t
dω

=
∫ ∞

0
μ(ω)φ(ω, t)(−w2φ(ω, t)

− (
k1x + k2 |x |γ sat(x))

)
dω

= −
∫ ∞

0
μ(ω)ω2φ2(ω, t)dω

−
∫ ∞

0
μ(ω)φ(ω, t)(k1x + k2 |x |γ sat(x))dω

= −
∫ ∞

0
μ(ω)ω2φ2(ω, t)dω
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− (
k1x + k2 |x |γ sat(x)

) ∫ ∞

0
μ(ω)φ(ω, t)dω

= −
∫ ∞

0
μ(ω)ω2φ2(ω, t)dω

− k1x
2 − k2 |x |γ xsat(x) (34)

According to the definition of saturation function sat(·),
there is:

Case 1: |x | > k. In this case, one has:

xsat(x) = xsign(x/k) (35)

Based on x × sign(x) = |x | and k is a given positive
constant, one gets:

xsat(x) = |x | > 0 (36)

Case 2: |x | ≤ k. In this case, one has:

xsat(x) = x2/k > 0 (37)

Based on the above discussion, it is obvious that

dV1
dt

< 0 (38)

According toLyapunov stability theory, the state tra-
jectories of the slidingmode dynamics system (31) will
converge to zero asymptotically. This completes the
proof. ��

Once an appropriate sliding surface is established,
then next part of the slidingmodemethod is to construct
an input signal u(t) to guarantee the state trajectories
reach to the sliding surface s(t) = 0 and stay on it
forever. The sliding mode control law is presented as
follows:

u(t) = −( f (x) + k1x + k2 |x |γ sat(x) + η1s

+ (
ξ1 + ξ2 + L |s|r ) sign(s) + k3sat(s)) (39)

where u = [u1, u2, . . . , un]T ∈ Rn express the slid-
ing mode control laws, s(t) = [s1, s2, . . . sn]T ∈ Rn

present the sliding surfaces, x = [x1, x2, . . . xn]T ∈ Rn

are the system states, η1, r, k3 are given positive con-
stants with η1 > 0, 0 < r < 1, k3 > 0, L > 0.

Theorem 3 Consider fractional-order system (10)
with the conditions in (11) and the sliding surface in
(26). If the system is controlled by the control law (39),
then the states trajectories of the system will converge
to the sliding surface s(t) = 0 in a finite time.

Proof Selecting a Lyapunov function V2(t) = |s| and
taking its time derivative, one obtains:

V̇2(t) = sign(s)ṡ (40)

Taking the time derivative of (26), one has:

ṡ = Dαx + (
k1x + k2 |x |γ sat(x)

)
(41)

Substituting (41) into (40), (40) can be written as:

V̇2(t) = sign(s)(Dαx + (
k1x + k2 |x |γ sat(x))

)
(42)

Considering Dαx = f (x)+� f (x)+d(t)+u(t), (42)
can be written as:

V̇2(t) = sign(s)( f (x) + � f (x) + d(t) + u(t)

+ (
k1x + k2 |x |γ sat(x))

)
= sign(s)( f (x) + u(t) + (

k1x + k2 |x |γ sat(x))
)

+ sign(s)(� f (x) + d(t)) (43)

Based on Assumption 1, there is:

sign(s)(� f (x) + d(t)) ≤ |sign(s)| |� f (x) + d(t)|
≤ |sign(s)| (|� f (x)| + |d(t)|)
≤ ξ1 + ξ2 (44)

Considering (43) and (44), one has:

V̇2(t) ≤ sign(s)( f (x) + u(t) + (k1x

+ k2 |x |γ sat(x))) + ξ1 + ξ2 (45)

Introducing control law (39) to (45), one gets:

V̇2(t) ≤ sign(s)( f (x) − ( f (x) + k1x

+ k2 |x |γ sat(x) + η1s

+ (
ξ1 + ξ2 + L |s|r ) sign(s)

+ k3sat(s)) + (
k1x + k2 |x |γ sat(x))

)
+ ξ1 + ξ2 (46)

After some manipulations, there is:

V̇2(t) ≤ sign(s)(−η1s − (
ξ1 + ξ2 + L |s|r ) sign(s)

− k3sat(s)) + ξ1 + ξ2. (47)

Based on s × sign(s) = |s| and sign(s) × sign(s) = 1,
one has

V̇2(t) ≤ −η1 |s| − L |s|r − k3sat(s)sign(s). (48)

Now considering the third term on the right side of Eq.
(48):
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Robust finite-time control of fractional-order 2139

According to the definition of sat(·) function,
when |s| > k,

sat(s)sign(s) = sign(s/k)sign(s) = 1, (49)

when |s| ≤ k,

sat(s)sign(s) = s/k × sign(s) = |s| /k > 0. (50)

Based on the above discussion, one gets

V̇2(t) < 0. (51)

According to Lyapunov stability theory, the state
trajectories of the uncertain fractional-order nonlinear
system (10) will converge to s(t) = 0 asymptotically.
To show that the motion happens in a finite time, one
can get the reaching time T as follows:

From inequality (48), one gets:

V̇2(t) ≤ −η1 |s| − L |s|r − k3sat(s)sign(s)

≤ −η1 |s| − L |s|r (52)

Then

dV2
dt

= d |s|
dt

≤ −η1 |s| − L |s|r = − (
η1 |s| + L |s|r )

(53)

It is obvious that

dt ≤ −d |s|
η1 |s| + L |s|r

= −d |s|(
η1 |s|1−r + L

) |s|r

= 1(
η1 |s|1−r + L

) −d |s|
|s|r

= 1(
η1 |s|1−r + L

) −d |s|1−r

1 − r
(54)

Taking integral of both sides of (54) from 0 to tr1

∫ tr

0
dt ≤

∫ s(tr )

s(0)
− 1

1 − r
× d |s|1−r

η1 |s|1−r + L
(55)

Then

t
∣∣tr
0 ≤ − 1

η1(1 − r)
ln

(
η1 |s|1−r + L

) ∣∣∣s(tr )s(0) (56)

and let s(tr1) = 0, one gets:

tr ≤ 1

η1(1 − r)
ln

(
η1 |s(0)|1−r + L

)
L

(57)

Based on Definition 3, the states trajectories of the
system (10) will converge to the sliding surface s(t) =
0 in a finite time T = tr ≤ 1

η1(1−r) ln
(η1|s(0)|1−r+L)

L .
This completes the proof. ��

4 Numerical simulations

In this section, the effectiveness of the proposed scheme
is illustrated by applying the method to two typical
fractional-order nonlinear systems.

Example 1 The fractional-order nonlinear Lorenz sys-
tem are presented as follows [38]:

⎧⎨
⎩

Dαx1 = 10(x2 − x1) + � f1(X) + d1(t) + u1(t)
Dαx2 = 28x1 − x2 − x1x3 + � f2(X) + d2(t) + u2(t)
Dαx3 = x1x2 − (8/3)x3 + � f3(X) + d3(t) + u3(t)

,

(58)

For the convenience of comparison, the uncertainty
terms and external disturbances of the system are
selected the same with reference [38]:

� f1(X) + d1(t) = 0.1 cos(2t)x1 − 0.1 sin(t),

� f2(X) + d2(t) = −0.1 cos(5t)x2 − 0.1 sin(4t),

� f3(X) + d3(t) = 0.1 sin(t)x3 + 0.1 cos(t). (59)

The initial conditions of fractional-order Lorenz
nonlinear system are given as: x1(0) = 1, x2(0) =
0, x3(0) = 9. The fractional-order α = 0.98. The time
domain of the uncontrolled Lorenz system is illustrated
in Fig. 1. The system is in nonlinear unstable operation,
which needs to be controlled.

Regarding (26) and (39), select k1 = 30, k2 = 1,
γ = 0.2, η1 = 1, r = 0.4, k3 = 1, L = 1, the sliding
surface and control law are given as follows:

si (t) = D−0.02xi + D−1 (
30xi + |xi |0.2 sat(xi )

)
, i = 1, 2, 3.

(60)

u1(t) = − (
10(x2 − x1) + 30x1 + |x1|0.2 sat(x1) + s1

+ (
0.1 + 0.1 + |s1|0.4

)
sign(s1) + sat(s1)

)
u2(t) = − (

28x1 − x2 − x1x3 + 30x2 + |x2|0.2 sat(x2) + s2

+ (
0.1 + 0.1 + |s2|0.4

)
sign(s2) + sat(s2)

)
u3(t) = − (

x1x2−(8/3)x3+10x1+30x3 + |x3|0.2 sat(x3) + s3

+ (
0.1 + 0.1 + |s3|0.4

)
sign(s3) + sat(s3)

)
(61)
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Fig. 1 Timedomain of nonlinear fractional-order Lorenz system
(58)
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Fig. 2 State trajectories of controlled nonlinear fractional-order
Lorenz system (58)

To compare the performance of the proposed con-
trol scheme, the states of fractional-order nonlinear
Lorenz system (58) under the controller (60) and the
existing controller (58) in reference [38] are shown in
Fig. 2. It is clear that the sliding mode is guaranteed
and the state trajectories converge to zero immediately,
which implies that the nonlinear vibration of the uncer-
tain fractional-order Lorenz system is efficiently sup-
pressed in a finite time, and it is clear that the stabi-
lized time is within 1.00 s. According to (57), the cal-
culated finite time is tr � 1.16 s with initial value
s(0) = [1, 1, 1]T, which shows the validity of the pro-
posed method. Besides, the stable time is shorter of the
proposed control scheme and there is almost no chat-
tering phenomenon, which implies the superiority and
effectiveness of the designed controller in our paper.

0 1 2 3 4 5

-100

-50

0

50

100

t(s)

X

x1 x2 x3 x4

Fig. 3 Time domain of nonlinear fractional-order Chen system
(62)

Example 2 Consider the following fractional-order
uncertain Chen system [38]:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Dαx1 = 35(x2 − x1) + x4 + � f1(X)

+ d1(t) + u1(t)
Dαx2 = 7x1 + 12x2 − x1x3 + � f2(X)

+ d2(t) + u2(t)
Dαx3 = x1x2 − 8x3 + � f3(X) + d3(t) + u3(t)
Dαx4 = x2x3 + 0.3x4 + � f4(X) + d4(t) + u4(t)

(62)

For the convenience of comparison, the uncertainty
term and external disturbance of the system are selected
the same with reference [38]:

� f1(X) + d1(t) = 0.1 cos(t)x1 + 0.1 sin(t)

� f2(X) + d2(t) = 0.1 cos(t)x2 − 0.1 sin(2t)

� f3(X) + d3(t) = −0.1 cos(2t)x3 + 0.1 cos(t)

� f4(X) + d4(t) = −0.1 cos(2t)x4 − 0.1 cos(3t)

(63)

The initial conditions of fractional-order nonlinear
Chen system are given as: x1(0) = 0.2, x2(0) =
−0.1, x3(0) = 0.3, x4(0) = −0.5. The fractional-
order α = 0.98. The time domain of the uncontrolled
Chen system is shown in Fig. 3. It is clear that each
state variable is in nonlinear and irregular movement.
So it is necessary to design a controller to ensure the
stable operation of system (62).

Regarding (26) and (39), select k1 = 30, k2 = 1,
γ = 0.2, η1 = 1, r = 0.4, k3 = 10, L = 1, the sliding
surface and control law are given as follows:
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si (t) = D−0.02xi +D−1
(
30xi +|xi |0.2 sat(xi )

)
, i =1, 2, 3, 4.

(64)

u1(t) = −
(
35(x1 − x2) + x4 + 30x1 + |x1|0.2 sat(x1) + s1

+
(
0.1 + 0.1 + |s1|0.4

)
sign(s1) + 10sat(s1)

)

u2(t) = −
(
7x1 + 12x2 − x1x3 + 30x2 + |x2|0.2 sat(x2) + s2

+
(
0.1 + 0.1 + |s2|0.4

)
sign(s2) + 10sat(s2)

)

u3(t) = −
(
x1x2 − 8x3 + 30x3 + |x3|0.2 sat(x3) + s3

+
(
0.1 + 0.1 + |s3|0.4

)
sign(s3) + 10sat(s3)

)

u4(t) = −
(
x2x3 + 0.3x4 + 30x4 + |x4|0.2 sat(x4) + s4

+
(
0.1 + 0.1 + |s4|0.4

)
sign(s4) + 10sat(s4)

)
(65)

To compare the performance of the designed con-
troller, Fig. 4 shows the state trajectories of the con-
trolled fractional-order nonlinear Chen system (62)
under the controller (65) and the controller (54) in refer-
ence [38]. It is obvious that the nonlinear and irregular
behavior of the system is effectively suppressed and the
state trajectories of the uncertain fractional-order Chen
system can reach the origin in a finite time as well as
within 1.00 s. According to (57), the calculated finite
time is also tr � 1.16 swith s(0) = [1, 1, 1, 1]T, which
verify the effectiveness of the designed controller.
By comparing the proposed scheme and the existing
method in reference [38], it is clear that the control time
is shorter of ourmethod and the chattering phenomenon
is well weakened, which implies the effectiveness and
superiority of the proposed scheme in this paper.
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Fig. 4 State trajectories of controlled nonlinear fractional-order
Chen system (62)

5 Conclusions and discussion

In this paper, a robust FTSM control method for a
class of fractional-order nonlinear systems with model
uncertainties and external disturbances was studied.
An auxiliary time and frequency domain function was
introduced to transform the fractional-order nonlinear
systems into FDM. Then, a novel FTSM is proposed
and its stability to the origin was guaranteed based
on the FDM and Lyapunov stability theory. Further-
more, a robust finite-time control law to ensure the
occurrence of the sliding motion in a finite time was
proposed for stabilization of the fractional-order non-
linear systems regardless of the model uncertainties
and external disturbances. Lastly, two typical examples
including three-dimensional fractional-order nonlinear
Lorenz system and four-dimensional fractional-order
nonlinear Chen system were implemented to demon-
strate the effectiveness with the theoretic results.

The scheme designed is simple and easy to imple-
ment and could be applied to similar fractional-order
nonlinear systems such as mechanical system, electri-
cal system, chemical system, physical system, and so
on. In the future work, we will consider and extend
the application of FDM in the stability control for
fractional-order complex networks and time delay sys-
tems.
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