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Abstract This paper proposes an image-based visual
servo controller for the quadrotor vertical takeoff and
landing unmanned aerial vehicle (UAV). The controller
utilizes an estimate of flow of image features as the lin-
ear velocity cue and assumes angular velocity and atti-
tude information available for feedback. The image fea-
tures are selected from perspective imagemoments and
projected on a suitably defined image plane, providing
decoupled kinematics for the translational motion. A
nonlinear observer is designed to estimate the flow of
image features using outputs of visual information. The
controller for the translational dynamics is bounded
which helps to keep the target points in the field of
view of the camera. A smooth asymptotic controller,
using the robust integral of the sign of the error method,
is designed for the rotational dynamics in order to
compensate for the unmodeled dynamics and external
disturbances. Furthermore, the proposed approach is
robust with respect to unknown image depth through
an adaptive scheme and also the yaw information of the
UAV is not required. The complete Lyapunov-based
stability analysis is presented to show that all states of
the system are bounded and the error signals converge
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to zero. Simulation examples are provided in both nom-
inal and perturbed conditionswhich show the effective-
ness of the proposed theoretical results.
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1 Introduction

Potential applications of robotic systems have moti-
vated the researchers to design newmodels and develop
robust controllers in order to improve their reliabili-
ties. Among the robotic systems, unmanned aerial vehi-
cles (UAV) have received great attention in the last
decade and many applications are reported, includ-
ing traffic monitoring, search and rescue, fire monitor-
ing [16,38]. The researches generally involve design-
ing reliable controllers, developing efficient actuators
and using the precise sensors. The sensory system for
these vehicles generally includes the global position-
ing systems (GPSs) and the inertial measurement units
(IMUs). This sensory unit provides attitude and angu-
lar velocity information, reliable for a control process.
However, it is difficult to estimate an accurate linear
velocity information [22]. In addition, the GPSs pro-
vide only a course position information and are not
useful in indoor environments.

Many researches have been conducted recently
to provide locomotion and environmental informa-
tion for autonomous UAVs, especially in GPS-denied
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workspaces. In this regard, simultaneous localization
and mapping (SLAM) techniques are developed to
build a map of the environment [26], and different sen-
sory systems are utilized. In the recent years, vision
sensor is considered as a reliable, lightweight and low-
cost system,which in combinationwith an IMU system
can provide useful translational velocity information
and also can be effectively used in localization of a
vehicle with respect to its environment. Many applica-
tions have been reported in using the vision system for
UAVs including obstacle avoidance [34], pose estima-
tion [25], SLAM [7], line tracking [23] and positioning
[28].

Controlling the UAVs using visual data started from
the late 1990s. Direct implementation of visual infor-
mation in the feedback control is called visual servoing
which is mainly classified into two approaches includ-
ing position-based visual servoing (PBVS) and image-
based visual servoing (IBVS). In the first method,
3D pose information of the target is reconstructed
from visual data using estimation algorithms. Gener-
ally these algorithms require a priori information from
the geometric model of the observed target. The appli-
cation of this method on the aerial robots has been
reported in severalworks including [4,5,11]. In the sec-
ond approach, the controller is designed based on the
dynamics of image features in the image plane. This
approach is more attractive since it is robust against
camera calibration errors and does not require 3D infor-
mation of the image, and hence, it is computationally
simple with respect to PBVS. However, this approach
still requires the depth information of the image and
needs more challenge in designing the controller.

Unlike the implementation of visual servo approa-
ches on traditional manipulators, it is recommended to
consider the dynamics of thewhole system in designing
an IBVS approach for UAVs [8]. This is a challenging
problem since these vehicles are generally underactu-
ated. In most of the available works, passivity proper-
ties of spherical imagemoments are exploited to design
a dynamic IBVS controller for UAVs [6,12,14,15].
However, spherical image features do not generally
provide satisfactory behavior for the robot motion in
vertical axis [27]. To overcome this conditioning prob-
lem, the authors have proposed amethod in [18], which
utilizes perspective image moments, and the controller
is designed for their dynamics in a suitably oriented
image plane. This approach is also followed and exper-
imentally validated by the researchers in [9,10,36].

The other difficulty in designing an IBVS controller
for the aerial vehicles is the lack of precise information
of the linear velocity, which is an input for the image
dynamics. Considering the unreliable linear velocity
information obtained from an IMU system, optic flow
of image features is used in [22] as a cue of the trans-
lational velocity and the dynamics of the system are
expressed based on the dynamics of spherical optic
flow.However, the approach does not consider the error
in estimation of the optic flow from low-quality image
information and it has the conditioning problem men-
tioned above. An observer-based method has been pre-
sented in [21], where the method considers a partial
dynamics of the system and provides only a basin of
attraction for it. A method using a nonlinear observer
is also presented in [24], which assumes that the image
depth is known. The full dynamic IBVS approach, pre-
sented in [1], assumes that a geometric model of the
object is known in prior, from which the image depth
information is not required. All of the mentioned con-
trollers require the yaw angle of the UAV where the
estimated value is generally unreliable.

In this paper, an IBVS approach is designed to con-
trol the translational motion of the quadrotor UAV,
considering the full dynamics of the system. Image
features are selected from appropriate combination of
perspective image moments and reprojected on a suit-
ably defined virtual image plane. These features pro-
vide efficient trajectories in both image and Cartesian
space and also do not require a geometric model of
the target. The proposed scheme utilizes a nonlinear
observer to estimate the flow of image features as the
linear velocity cue and only assumes the orientation and
angular velocity available for feedback. The controller
is robust with respect to parametric uncertainty of the
translational dynamics associated with depth informa-
tion of the image. Furthermore, using the robust inte-
gral of the sign of the error (RISE) method [35], the
controller compensates for unmodeled dynamics and
disturbances in the rotational dynamics. The approach
exploits passivity properties of the image dynamics in
the virtual image plane to avoid the use of the yaw
information of the quadrotor. The designed force input
for the translational dynamics is bounded which helps
to keep the target points in the field of view of the cam-
era. Some auxiliary variables are exploited to simplify
the design procedure and the Lyapunov-based stability
analysis guarantees the convergence of system errors
to zero. Simulation results are provided to illustrate the
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effectiveness of the proposed approach. This work is an
extension to the authors’ previous works on observer-
based IBVS control of the quadrotor [17,20] in which
only the translation dynamics of the vehicle are con-
sidered.

The rest of the paper is organized as follows. Sec-
tion 2presents the kinematic anddynamicmodels of the
quadrotor helicopter. In Sect. 3, the image features are
introduced and their dynamics in the new image plane
are presented. The proposed robust IBVS controller is
given in Sect. 4. Simulation results are presented in
Sect. 5. Finally, conclusions are given in Sect. 6.

2 Kinematics and dynamics of the robot

This section describes the kinematics and dynamics of
the quadrotor helicopter. For this purpose, two coor-
dinate frames are considered (Fig. 1). Inertial frame
I = {Oi , Xi ,Yi , Zi } and body-fixed frame B =
{Ob, Xb,Yb, Zb} which is attached to the center of
mass of the robot.

Center of the frame B is located in position ζ =
[x y z]� with respect to the inertial frame and its atti-
tude is given by the rotation matrix R : B → I.
The rotation matrix depends on the three Euler angles
φ, θ and ψ denoting, respectively, the roll, pitch and
yaw. The following property is satisfied for the rotation
matrix:

Property 1 For any vector u ∈ �3 and the rotation
matrix R one has

Rsk (u)R� = sk (Ru) .

bX

bY bZ

bO

iO
iX

iY iZ

Fig. 1 A quadrotor helicopter and coordinate frames

The notation sk (·) is the skew-symmetric matrix such
that for any vectors u1,u2 ∈ �3, sk (u1)u2 = u1×u2,
where × denotes the vector cross-product. A skew-
symmetric matrix has the following property:

Property 2 For a given skew-symmetric matrix Λn×n

and a vectoru ∈ �n , the relationu�Λu = 0 is satisfied.

The kinematics of the quadrotor can be expressed
by [33]

ζ̇ = RV

Ṙ = Rsk (�) . (1)

where V ∈ �3 and � = [Ω1 Ω2 Ω3]� ∈ �3 are,
respectively, the linear and angular velocities of the
quadrotor in the body-fixed frame. Also, the time deriv-
atives of the Euler angles are given by

⎡
⎣

φ̇

θ̇

ψ̇

⎤
⎦ =

⎡
⎣
1 sφ tθ cφ tθ
0 cφ −sφ
0 sφ

cθ
cφ
cθ

⎤
⎦
⎡
⎣

Ω1

Ω2

Ω3

⎤
⎦ (2)

where sφ ≡ sin (φ), ca ≡ cos (a) and tθ ≡ tan (θ).
On the other hand, the dynamics of a general 6DOF

rigid body, with the mass of m and the constant sym-
metric inertia matrix J ∈ �3×3 around the center of
mass, with respect to the frame B, can be written as
follows [14,37]:

V̇ = −� × V + F (3)

J�̇ = −� × J� + Δ + τ (4)

where F ∈ �3 and τ ∈ �3 are, respectively, the force
and torque vectors in the frame B, andΔ is the unmod-
eled dynamics and/or external disturbances. The inertia
matrix is diagonal, i.e., J = diag

(
Jxx , Jyy, Jzz

)
, when

Ob coincides with the body’s principal axis of inertia.
The following assumption is considered for Δ:

Assumption 1 Theunknown timevarying disturbance
Δ (t) and its first two time derivatives are bounded, i.e.,
Δ (t), Δ̇ (t), Δ̈ (t) ∈ L∞.

The quadrotor actuators generate a single actua-
tion of trust force U1, and full actuation of the torque
τ = [U2 U3 U4]�, which demonstrates underactuated
dynamic of the system. The force input F in (3) is as
follows:

F = − 1

m
U1E3 + gR�e3 (5)

123



2038 H. Jabbari Asl, J. Yoon

where E3 = e3 = [0 0 1]� are the unit vectors in the
body-fixed frame and the inertial frame, respectively.
The inputF is an intermediary input for the translational
dynamics (Eq. 3), and to control these dynamics it is
also necessary to control the tilting of the robot through
the rotational dynamics (Eq. 4). However, it is clear
from (5) that the translational dynamics do not depend
on the yaw angle. Therefore, the yaw dynamic can be
controlled independently.

3 Image features and their dynamics

Spherical and perspective projections are usually used
for vision-based control of aerial vehicles. Based on
experimental results reported in [6], image features
obtained from perspective imagemoments provide bet-
ter results comparing to spherical image moments, but
stability problem is not solved for the case of perspec-
tive image moments. To guarantee the stability of the
system, the authors have proposed a method in [18]
in which, using only the roll and pitch angles of the
robot (through the rotation matrix Rφθ which speci-
fies a rotation, respectively, about Xi and Yi axes and
depends on φ and θ angles), perspective image points
are suitably reprojected on an image plane parallel to
the target, called virtual plane. Based on the selected
image features in the new image plane, it is possible
to design a stable full dynamic image-based controller
for the underactuated UAVs while preserving a good
behavior of the robot in Cartesian space. This paper
uses the same imaging method and exploits the image
features presented in [19], which are obtained from a
planar object as follows:

qx = qz
Vug
λ

, qy = qz
Vng
λ

, qz =
√
a∗
a

(6)

where Vug and Vng are the coordinates of the center
of gravity of the target in the oriented image plane, λ

is the focal length of the camera, a is defined as a =
Vμ20+Vμ02,whereVμi j is the centeredmoment of the
target in the virtual image plane, and a∗ is the value of
a in the desired position. Knowing that z

√
a = 1

ρ

√
a∗,

where ρ is the inverse of the normal distance of the
camera from the target in the desired position [32], the
dynamics of the features in the virtual image plane can
be written as follows [19]:

q̇ = −sk
( ˙̄ψ

)
q − ρv (7)

where q = [
qx qy qz

]� is the vector of image features

defined in (6), ˙̄ψ = [
0 0 ψ̇

]�
and v = RφθV is the

linear velocity of the camera (or of the robot if their
frames are coincident) in the virtual frame (a frame
attached toB and rotated byRφθ ). In some works (e.g.,
[27] and [1]), the value of ρ is assumed to be available.
However, to know this parameter, ameasurement of the
area of the object or depth of the image in the desired
position is required which are not available in most
applications. An adaptive scheme is presented in this
paper in order to compensate for the unknown value of
this parameter. In addition, the dynamics (7) possess
the passivity properties mentioned in [14]. These prop-
erties will be exploited in the next section to design an
IBVS controller without using the yaw information of
the UAV.

4 Image-based visual servo controller

In this section, a robust IBVS controller is presented
for the translational motion of the quadrotor. The con-
troller is robust with respect to unknown depth of the
image and external disturbances. Furthermore, the pro-
posed approach requires neither the yaw angle of the
robot nor the linear velocity measurements. The con-
trol objective is to design the thrust U1 and the torque
τ inputs in order to move the camera, attached to the
quadrotor, to match the observed image features with
those obtained from a stationary object in a desired
position. In order to stabilize the yaw dynamic of the
quadrotor, the controller tracks a desired angular veloc-
ity around the vertical axis of the vehicle Zb.

In the designprocedure, it is assumed that the camera
frame (attached to its center of projection) is coincident
with the quadrotor body-fixed frame, B. This assump-
tion can be easily released by using the transformation
between the frames. In order to preserve the passivity
properties of the image dynamics, the desired image
features are considered as follows:

qd = [
qdx qdy qdz

]� = [
0 0 qdz

]�
.

Selecting these desired features is equivalent to have
the barycenter of the target at the center of imagewhich
is common in vision-based control of UAVs. [1,6,14].
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Now, the image error for the translational motion con-
trol of the robot is defined as follows:

δ = q − qd .

Using (7), the dynamics of the image error vector will
be

δ̇ = −sk
( ˙̄ψ

)
δ − ρv. (8)

Now, let define the scaled linear velocity as follows:

ν = ρv. (9)

which is the translational optic flow in the virtual image
plane and can be computed through (8) by measuring
optic flow of image features δ̇ and compensating the

rotational term sk
( ˙̄ψ

)
. Several methods of optic flow

computation is well investigated in the literature [31,
41]. However, the aim of this paper is to estimate it
through a nonlinear observer and consider the error of
the estimation in the stability analysis.

Considering the definition in (9) and using the trans-
lational dynamics of the robot (3), expressed in the vir-
tual frame, equation (8) and the dynamics of ν can be
written as [20]

δ̇ = −sk
( ˙̄ψ

)
δ − ν (10)

ν̇ = −sk
( ˙̄ψ

)
ν − ρf + ρge3 (11)

where f is the input for these dynamics (the translational
dynamics of δ), which is defined as

f = 1

m
RφθU1E3. (12)

Now, inspired from the method in [2,3], the new vari-
ables are defined as follows:

ξ = δ̂ − δ − ς1 (13)

r = ν − ν̂ − ς2 (14)

where δ̂ and ν̂ are, respectively, the estimates of δ and
ν which, together with the auxiliary variables ς1 and
ς2, are defined as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂
δ = −sk

( ˙̄ψ
)

δ̂ − ν̂

˙̂ν = −sk
( ˙̄ψ

)
ν̂ + ρ̂kph

(
δ̂
)

− ρ̂kdh
(
ν̂
)

+ l1ς1 + l2ς2

ς̇1 = −sk
( ˙̄ψ

)
ς1 + ς2

ς̇2 = −sk
( ˙̄ψ

)
ς2 − l1ς1 − l2ς2

+ 2k1ξ + k2ϑ − χ
˙̂ρ = Proj (μ)

(15)

in which kp, kd , k1, k2, l1 and l2 are positive constants,
ρ̂ is the estimate of ρ, the variable χ is an additional
input vector to be defined later, and the operator Proj (·)
is a continuous projection operator, similar to what is
defined in [19], which is used to ensure ρ̂ to be strictly
positive. Also, in (15)

μ = γ (r − ϑ)�
(
kph

(
δ̂
)

− kdh
(
ν̂
)

−U1

m

(
Rφθ − (

Rφθ

)
d

)
E3

)
, (16)

and

h (u) = u√
1 + u�u

. (17)

Furthermore, the auxiliary variable ϑ is given by

ϑ̇ = −sk
( ˙̄ψ

)
ϑ − k1ξ − k2ϑ . (18)

Now, using (10), (11) and (15), the dynamics of ξ and
r can be written as

ξ̇ = −sk
( ˙̄ψ

)
ξ + r (19)

ṙ = −sk
( ˙̄ψ

)
r − ρf + ρge3 − ρ̂kph

(
δ̂
)
+ρ̂kdh

(
ν̂
)

−2k1ξ − k2ϑ + χ . (20)

Since the dynamics of the quadrotor UAV is under-
actuated, the input f cannot provide full actuation for
the translational dynamics of the system. In fact, this
is an intermediary input for the translational dynamics,
and hence, it is also necessary to consider the rotational
dynamics in order to control the translational degrees of
freedom. Therefore, in the sequel, first a desired input
f will be designed for the translational dynamics and
then a controller for the rotational dynamics will be
introduced to track the desired f .
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The desired value of f is proposed as follows:

fd = ge3 − kph
(
δ̂
)

+ kdh
(
ν̂
)
. (21)

Now, using (12) and knowing the fact that for the
Euclidean norm ‖·‖, the relation ∥∥RφθE3

∥∥ = 1 is sat-
isfied, the trust input U1 can be extracted as follows:

U1 = m ‖fd‖ . (22)

Therefore, from (12), one has

fd = U1

m

(
Rφθ

)
d E3 (23)

in which
(
Rφθ

)
d is the desired orientation and should

be tracked to reach the desired position. Using (23),
the desired roll and pitch angles of the robot can be
computed for a given fd = [

fxd fyd fzd
]� as follows:

φd = tan−1

⎛
⎝ − fyd√

f 2xd + f 2zd

⎞
⎠ , θd = tan−1

(
fxd
fzd

)

(24)

provided that U1 �= 0. If fzd satisfies

fzd > 0 (25)

then, according to (22) and (24), U1 is always positive
and the desired angles φd and θd are inside the open
interval

(−π
2 , π

2

)
. It can be discovered from (21) that

the condition (25) is satisfied if

(
kp + kd

)
< g. (26)

Remark 1 It is clear that the bounded nature of (21), as
the primary role, guarantees the extraction of φd and
θd . It is also worth noting that the bounded input for the
translational dynamics limits the tilting of the aircraft
which helps to keep the object in the field of view of
the camera [13].

The error between f and fd can be considered as

f − fd = U1

m

(
Rφθ − (

Rφθ

)
d

)
E3. (27)

At this point, the auxiliary variable χ is defined as

χ = ρ̂
U1

m

(
Rφθ − (

Rφθ

)
d

)
E3,

and (20) and (21) are used to rewrite the dynamics of
r as follows:

ṙ = − sk
( ˙̄ψ

)
r−2k1ξ − k2ϑ+ρ̃

[
kph

(
δ̂
)
−kdh

(
ν̂
)

−U1

m

(
Rφθ − (

Rφθ

)
d

)
E3

]
(28)

with ρ̃ = ρ − ρ̂.
The right-hand side of (27) can be written as

U1

m

(
R̃φθ − I

) (
Rφθ

)
d E3

in which R̃φθ = Rφθ

(
Rφθ

)�
d and I is a 3 × 3 inden-

tity matrix. In fact,
(
R̃φθ − I

)
reflects the attitude

error which has to be minimized through the rotational
dynamics controller, in order to reach the desired posi-
tion. To compensate for this error, the unit-quaternion
representation of attitude is used in this paper.

The unit-quaternion Q0 = [
η0 η�]� is a four-

element vector, composed of a scalar η0 ∈ � and a vec-
tor η ∈ �3, satisfying the unity constraint: η20 +η�η =
1 [29]. In this view, the rotation matrix R defines a
rotation α around the unit vector u ∈ �3 which can be
described by a unit-quaternion Q̄ = [

η̄0 η̄�]� such that
η̄0 = cos (α/2), and η̄ = u sin (α/2). The relation can
be obtained as:R = (

η̄20 − η̄�η̄
)
I+2η̄η̄�+2η̄0sk (η̄).

Multiplication between two unit-quaternions, Q1 =[
η01 η�

1

]�
and Q2 = [

η02 η�
2

]�
is defined as:

Q1 ⊗ Q2 =
[(

η01η02 − η�
1 η2

)
,

(
η01η2 + η02η1 + sk

(
η1
)
η2
)�]�

.

Also, the inverse of a unit-quaternion is defined by

Q−1
0 = [

η0 − η�]�.
With the above definition, R̃φθ can be described by

a unit-quaternion, Q̃ =
[
η̃0 η̃�]�

, defined byQ⊗Q−1
d

which are, respectively, related to Rφθ and
(
Rφθ

)
d .

These quaternions can be obtained through the equiv-
alent Euler angles, where for Qd the relation is as fol-
lows:
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Qd =

⎛
⎜⎜⎝

cos (φd/2) cos (θd/2)
sin (φd/2) cos (θd/2)
cos (φd/2) sin (θd/2)

− sin (φd/2) sin (θd/2)

⎞
⎟⎟⎠ .

Basedon the above development, the attitude control
objective is achieved when η̃ converges to zero, which
is identical to coincidence ofQwithQd . One can easily
conclude that when η̃ is zero, η̃0 will be±1 where both
of these values represent the same physical orientation.
Therefore, to design the controller, the kinematics of Q̃
will be required which can be written as [40]

{ ˙̃η = 1
2 (η̃0I + sk (η̃)) Ω̃

˙̃η0 = − 1
2 η̃

�Ω̃
(29)

where Ω̃ is the angular velocity error which is defined
as follows:

Ω̃ = (
Rφθ

)
d

(
Ωφθ − (

Ωφθ

)
d

)
(30)

inwhichΩφθ and
(
Ωφθ

)
d are, respectively, the angular

velocity and the desired angular velocity corresponding
to the rotation matrices Rφθ and

(
Rφθ

)
d . The velocity

Ωφθ can be computed from the angular velocity of the
quadrotor (available from gyroscopes), through the fol-
lowing relation:

Ωφθ = Ω − R�
φθ

˙̄ψ . (31)

The desired angular velocity for the first two elements
of

(
Ωφθ

)
d = [(

Ωφθ

)
d1

(
Ωφθ

)
d2

(
Ωφθ

)
d3

]� can be
obtained by computing the time derivative of fd . To
obtain a full desired angular velocity information, it
is assumed that a bounded value of

(
Ωφθ

)
d3 is already

defined. Furthermore, the following assumption is con-
sidered:

Assumption 2 Following the assumption considered
in [39], it is assumed that the first three time derivatives
of

(
Ωφθ

)
di , for i = 1, 2, 3, are bounded.

Now, using (1), (4) and Property 1, the time deriva-
tive of Ω̃ can be written as

˙̃
Ω = N + Bτ + (

Rφθ

)
d J

−1Δ − (
Rφθ

)
d

(
Ω̇φθ

)
d (32)

where the vector functionN and the matrix B are given
by

N = sk
((
Rφθ

)
d

(
Ωφθ

)
d

)
Ω̃

+ (
Rφθ

)
d

(
−J−1Ω × JΩ − Ṙ�

φθ
˙̄ψ − R�

φθΓ 1

)

B = (
Rφθ

)
d

(
J−1 − R�

φθΓ 2

)

with Γ 1 and Γ 2 are defined in the “Appendix 1.” It
should be mentioned that, the vector N depends on
available signals, and the matrix B is invertible. It is
also worth mentioning that, for T � 1

2 (η̃0I + sk (η̃)),
‖Tx‖ = ‖x‖ , ∀x ∈ �3, which, according to (29),
means that the convergence of Ω̃ to zero is equivalent
to the convergence of ˙̃η.

Now, to design the attitude tracking controller, the
following auxiliary variables are introduced:

σ 1 = Ω̃ + α1η̃ (33)

σ 2 = σ̇ 1 + α2σ 1 (34)

where α1 and α2 are positive constants. It should be
noted that, the filtered error σ 2 is not measurable, since
it depends on ¨̃η. Using (29) and (32), the open-loop
tracking error system can be obtained as follows:

σ 2 =N + Bτ + (
Rφθ

)
d J

−1Δ − (
Rφθ

)
d

(
Ω̇φθ

)
d

+ α1TΩ̃ + α2σ 1 (35)

For the open-loop dynamics (35), the following con-
troller is proposed:

τ = − B−1
[
N + α1TΩ̃ + (α2 + ks) σ 1

+
t∫

0

[
ksα2σ 1

(
t̄
) + �sgn

(
σ 1

(
t̄
))]

dt̄

⎤
⎦

(36)

where ks and� are positive constants.Now, substituting
(36) in (35) and using (34), the time derivative of (35)
can be computed as

σ̇ 2 = −ksσ 2 − �sgn (σ 1) + Nd (37)

where Nd ∈ �3 is defined as

Nd = (
Ṙφθ

)
d J

−1Δ + (
Rφθ

)
d J

−1Δ̇

− (
Ṙφθ

)
d

(
Ω̇φθ

)
d − (

Rφθ

)
d

(
Ω̈φθ

)
d .

Note that, according to Assumptions 1 and 2, the fol-
lowing inequalities can be considered:
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‖Nd‖ ≤ ζ1,
∥∥Ṅd

∥∥ ≤ ζ2

where ζ1 and ζ2 are positive constants.
Before presenting the main result of this paper, the

following lemmas are presented:

Lemma 1 Let the auxiliary function L (t) ∈ � be
defined as follows:

L � σ�
2 (Nd − �sgn (σ 1)) .

If the control gain � is selected to satisfy the following
sufficient condition:

� > ζ1 + 1

α2
ζ2, (38)

then

∫ t

0
L (

t̄
)
dt̄ ≤ � |σ 1i (0)| − σ 1 (0)� Nd (0)

where the subscript i = 1, 2, 3 denotes the i th element
of the vector.

Proof The proof is given in [35]. ��
Lemma 2 The extended Barbalat lemma [30]. Sup-
pose that x (t) to be a solution for the differential equa-
tion ẋ = a (t) + b (t) where a (t) is a uniformly con-
tinuous function. If x (t) when t → ∞ has a bounded
constant value and lim

t→∞ b (t) = 0, then one will have:

lim
t→∞ ẋ (t) = 0 and lim

t→∞ a (t) = 0.

Lemma 3 Consider a nonlinear system defined by

⎧⎨
⎩
ẋ1 = k1sk (u1) x1 − x2
ẋ2 = k2sk (u2) x2 + l1b (t)h (x1)

− l2b (t)h (x2) + ε

(39)

where h (·) is defined as in (17), u1,u2 ∈ �3 are
bounded signals, x1, x2 ∈ �3 and k1 and k2 are
constant values. Let the continuous scalar function
b (t) to be bounded and positive for all t > 0, i.e.,
bm < b (t) < bM with constants bM > bm > 0
such that 1

bm
<< ∞. In addition, ḃ (t) is bounded

and ḃ (t) → 0. Also, consider l1 and l2 to be positive
constants and let ε to be bounded for all t > 0 and con-
verges to zeros as t → ∞. Then x1 and x2 are bounded
and converge to zero as time goes to infinity.

Proof The proof is given in the “Appendices 2.” ��
Now, the following theorem for IBVS control of the
quadrotor is stated:

Theorem 1 Consider the image and the quadrotor
dynamics defined by (4), (10) and (11)with their inputs
as U1 and τ . Let the inputs to be defined through (22)
and (36) with kp and kd satisfying (26). Then starting
from the initial conditions, all states of the system are
bounded and the error signals converge to zero as time
goes to infinity provided that

α1 >
1

2
, α2 > 1, ks >

1

2
. (40)

Proof Let the auxiliary function P (σ 1, t) ∈ � be
defined as follows:

P � �

3∑
i=1

|σ 1i (0)| − σ 1 (0)� Nd (0) −
∫ t

0
L (

t̄
)
dt̄

(41)

whereL is defined in Lemma 1. It can be easily verified
from Lemma 1 that if the condition for � in (38) is
satisfied, P (t) ≥ 0.

Now, the followingLyapunov function is considered
to proof the theorem:

L = 1

2
k1ξ

�ξ + 1

2
ϑ�ϑ + 1

2
(r − ϑ)� (r − ϑ)

+ 2 (1−η̃0) + 1

2
σ�
1 σ 1 + 1

2
σ�
2 σ 2 + P + 1

2γ
ρ̃2.

(42)

Then, using (18), (19), (28), (29), (34), (37) and (41)
the time derivative of (42) can be written as

L̇ = − k2ϑ
�ϑ − α1η̃

�η̃ − α2σ
�
1 σ 1 − ksσ

�
2 σ 2

+ η̃�σ 1 + σ�
1 σ 2 + ρ̃

[
(r − ϑ)�

(
kph

(
δ̂
)

− kdh
(
ν̂
) − U1

m

(
Rφθ − (

Rφθ

)
d

)
E3

)
−

˙̂ρ
γ

]
.

(43)

Substituting the adaptive law (16) in (43), and using
the fact that,

x�
1 x2 ≤ 1

2
‖x1‖2 + 1

2
‖x2‖2 , ∀x1, x2 ∈ �n,
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an upper bound can be obtained for L̇ as

L̇ ≤ − k2 ‖ϑ‖2 −
(

α1 − 1

2

)
‖η̃‖2 − (α2 − 1) ‖σ 1‖2

−
(
ks − 1

2

)
‖σ 2‖2 . (44)

At this step, it is shown that η̃, σ 1 and σ 2 converge to
zero and ˙̄ψ is bounded. Provided that (40) is satisfied,
(44) can be written as

L̇ ≤ −β1 ‖x3‖2 ≤ 0 (45)

where x3 �
[
η̃� σ�

1 σ�
2

]�
and

β1 = min

{
α1 − 1

2
, α2 − 1, ks − 1

2

}
.

Equation (45) indicates that ξ , ϑ , r, η̃, σ 1, σ 2 and ρ̃ are
bounded and then one has

lim
t→∞ β1

∫ t

t0
x�
3 x3dt̄ ≤ L (t0) − L (∞) < ∞.

In addition, it can be verified from (33) that Ω̃ is
bounded, then ˙̃η is bounded from (29). Also, it can be
seen from (34) and (37) that σ̇ 1 and σ̇ 2 are bounded.
Therefore, x3 is uniformly continuous, and applying
Barbalat lemma indicates that η̃, σ 1 and σ 2 converge
to zero asymptotically. Hence, it can be concluded that
R̃φθ → I and η̃0 → ±1. On the other hand, since
Ω̃ and

(
Ωφθ

)
d3 are bounded, it can be verified from

(30) that the third element of the vector Ωφθ is also
bounded. Therefore, from (31),

(
Ω3 − cosφ cos θψ̇

)
is bounded. By exploiting (2), it can be verified that ψ̇
and hence ˙̄ψ are bounded.

Now, again, (44) can be written as

L̇ ≤ −k2 ‖ϑ‖2 ≤ 0.

From (18), it can be seen that ϑ̇ is bounded. Hence, ϑ is
uniformly continuous, and by applyingBarbalat lemma
it can be concluded that ϑ → 0 and ϑ̇ → 0 from (18).
From (19), ξ̇ is bounded, and hence ξ is continuous.
Therefore, applying Lemma 2 to (18) indicates that ξ

converges to zero.
To simplify the demonstration of the convergence

of ς1 and ς2 to zero, consider the change of variables
ς̄1 = Rψς1 and ς̄2 = Rψς2, where Rψ specifies a

rotation about Zi axis, and hence depends on ψ . Con-
sidering this change of variables and also the above
development, from (15) one has ˙̄ς1 = ς̄2 and

¨̄ς1 = −l1ς̄1 − l2 ˙̄ς1 + ε

which is a linear systemwith an asymptotically vanish-
ing perturbation ε. Therefore, it can be easily verified
that ς̄1 and ς̄2, and hence ς1 and ς2, are bounded and
converge to zero. Based on the above results, one can
write the dynamics of δ̂ and ν̂ as in (39). Thus, from
the result of Lemma 3 one can conclude that δ̂ and
ν̂ are bounded and δ̂ → 0 and ν̂ → 0. It can also
be concluded from (15) that ˙̂

δ and ˙̂ν converge to zero.
Equation (28) implies that ṙ is bounded and then r is
continuous. Therefore, applying Lemma 2 to (19) indi-
cates that ξ̇ → 0 and r → 0. Convergence of δ and ν

to zero can be, respectively, concluded from (13) and
(14). Therefore, (10) and (11) imply that δ̇ → 0 and
ν̇ → 0. Also, from (16) ˙̂ρ converges to zero. From the
above results, it can be easily verified that the torque
input (36) is also bounded and this ends the proof. ��

Remark 2 The adaptation law (16) contains r which
is unavailable. Integrating (16), the projection of the
following equivalent version of it can be obtained in
which all signals are measurable:

ρ̂ =ρ̂ (0) + γ

∫ t

0
(r − ϑ)�

(
kph

(
δ̂
)

− kdh
(
ν̂
)

−U1

m

(
Rφθ − (

Rφθ

)
d

)
E3

)
dt̄

=ρ̂ (0) + γ

∫ δ(t)

δ(0)

(
kph

(
δ̂
)

− kdh
(
ν̂
)

−U1

m

(
Rφθ − (

Rφθ

)
d

)
E3

)�
dδ̄

+ γ

∫ t

0

(
−sk

( ˙̄ψ
)

δ−ν̂−ς2−ϑ
)� (

kph
(
δ̂
)

− kdh
(
ν̂
) − U1

m

(
Rφθ − (

Rφθ

)
d

)
E3

)
dt̄ .

5 Simulation results

In this section, simulations are presented to demon-
strate the effectiveness of the proposed robust visual
servo controller. Simulations are done inMATLABand
SIMULINK environment. Parameters of the dynamic
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Table 1 Simulation parameters

ρ̂ (0) = 0.2, δ̂ (0) = δ (0), ν (0) = 0, ς1 (0) = 0, ς2 (0) = 0,
ϑ (0) = 0, kp = 1, kd = 4, k1 = 3, k2 = 1, l1 = 1, l2 = 1,
α1 = 15, α2 = 15, ks = 60, � = 5
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Fig. 2 Simulation 1:Object point trajectories in the image plane.
u and n represent the horizontal and vertical axes of the image
plane

model of the quadrotor, Eqs. (3) and (4), are con-
sidered as m = 2 kg, g = 9.81 m/s2 and J =
diag (0.0081, 0.0081, 0.0142) kgm2/rad2. Visual
information includes four points related to the four
vertexes of a rectangle, which are used to calcu-
late the image features defined in (6). The ver-
texes of the rectangle are located at (0.25, 0.2, 0) m,
(0.25,−0.2, 0) m, (−0.25, 0.2, 0) m and (−0.25,
−0.2, 0)m with respect to the inertial frame. These
points are projected with perspective projection on a
digital image plane with focal length divided by pixel
size (identical in both horizontal and vertical axes of
the image plane) equal to 213 and the principal point
located at (80,60).

The sampling rate for the visual information is con-
sidered to be 50 Hz, while this rate for the rest of the
system is 100 Hz. The uncertainty Δ (t) in (4) is mod-
eled by a sinusoidal signal with different phases for
each channel and amplitude equal to 0.1. The aircraft
is assumed to start in a hover position with the object in
the field of view of the camera. The initial position of
the quadrotor is considered to be at (−1.5, 0.7,−7) m
with respect to the inertial frame, and the desired image
features are obtained at (0, 0,−5) m. The simulation
parameters for the controller and observers are given
in Table 1.
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Fig. 3 Simulation 1: Time evolution δ and its estimate
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Fig. 4 Simulation 1: Time evolution of ν and its estimate
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Fig. 5 Simulation 1: Time evolution of the auxiliary variables

In the first simulation, the visual and inertial mea-
surements are assumed to be ideal. The results of this
simulation are presented in Figs. 2, 3, 4, 5, 6 and 7.

In order to evaluate the performance of the pro-
posed controller in amore realistic condition, in the sec-
ond simulation, the visual and angular velocity infor-
mation are augmented with noise. The covariance of
noise is 2 × 10−4 and 2 for the angular velocity and
visual information, respectively. Results are presented
in Figs. 8 and 9. The results demonstrate that the pre-
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Fig. 6 Simulation 1: Time evolution of the orientation and angu-
lar velocity errors
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Fig. 7 Simulation 1: Time evolution of the quadrotor Cartesian
coordinates
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Fig. 8 Simulation 2: Object point trajectories in the image plane

sented approach performs well in spite of considerable
amount of measurement noise in the system.

6 Conclusion

In this paper, an IBVS controller has been developed
for translational motion control of the quadrotor heli-
copter. This paper aims to design a bounded-input out-
put feedback controller for the translational dynamics

0 5 10 15 20 25 30 35 40
−0.4
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0
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0.4

Time (sec.)

δ

δ1

δ2

δ3

Fig. 9 Simulation 2: Time evolution of δ = [δ1 δ2 δ3]�

of the quadrotor and a robust controller for the rota-
tional dynamics. The visual features are defined using
perspective image moments, which are projected on a
suitably oriented image plane, in order to have decou-
pled kinematics for the translational motion. The fea-
tures can be obtained from a limited number of visual
landmarks, and hence, the proposed approach has its
interest when a few information is available from the
environment, while a SLAM technique can introduce
an alternative simple controller with rich information
from the workspace. Translational optic flow of the
image features is considered as the linear velocity cue
and estimated through a nonlinear observer. The con-
troller uses an adaptive scheme in order to compen-
sate for the unknown depth information of the image
and utilizes the RISE method to alleviate the effect of
disturbances. Furthermore, the controller exploits the
passivity properties of the dynamics of the translational
optic flow, in order to not to use the yaw information
of the quadrotor. Lyapunov-based stability analysis is
presented to guarantee that the error signals converge to
zero in the presence of disturbances. Simulation exam-
ples illustrate the effectiveness of the proposed IBVS
approach even in the presence of noise corrupting the
inertial and image data.
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Appendix

Appendix 1: The time derivative of ˙̄ψ

From (2), the time derivative of ψ̇ can be written as
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ψ̇ = sφ
cθ

Ω2 + cφ

cθ

Ω3. (46)

Using (4), the time derivative of (46) can be written as

ψ̈ = φ̇cφcθ + θ̇sθ sφ
c2θ

Ω2 + sφ (Jzz − Jxx )

cθ Jyy
Ω1Ω3

+ sφ
cθ Jyy

U3 + θ̇sθcφ − φ̇sφcθ

c2θ
Ω3

+ cφ

(
Jxx − Jyy

)

cθ Jzz
Ω1Ω2 + cφ

cθ Jzz
U4.

Therefore, the time derivative of ˙̄ψ can be obtained as

¨̄ψ = [
0 0 ψ̈

]� = Γ 1 + Γ 2τ

where the vector Γ 1 and the matrix Γ 2 are defined as
in the following:

Γ 1 =
⎡
⎣

0
0

Γ13

⎤
⎦

Γ 2 =
⎡
⎣
0 0 0
0 0 0
0 sφ

cθ
cφ
cθ

⎤
⎦

in which φ̇ and θ̇ are defined in (2) and

Γ13 = φ̇cφcθ + θ̇sθ sφ
c2θ

Ω2 + sφ (Jzz − Jxx )

cθ Jyy
Ω1Ω3

+ θ̇sθcφ − φ̇sφcθ

c2θ
Ω3 + cφ

(
Jxx − Jyy

)
cθ Jzz

Ω1Ω2.

Appendix 2: Proof of Lemma 3

The following Lyapunov function is considered:

L1 = 1

2
x�
2 x2 + l1b (t)

√
1 + x�

1 x1.

Using (39) and Property 2, the time derivative of L1

will be

L̇1 = − l2b (t) x�
2 h (x2) + x�

2 ε + l1ḃ (t)
√
1 + x�

1 x1.

(47)

First it is shown that L1 and hence x1 and x2 do not
have a finite escape time. Since ε and ḃ (t) are bounded
and converge to zero, one will have

L̇1 ≤ a1 ‖x2‖ + a2 ‖x1‖ + a3

where a1, a2 and a3 are positive constants. Since
‖x2‖2 ≤ 2L1 and ‖x1‖ ≤ 1

l1b(t)
L1, then one has

L̇1 ≤ a1
√
2L1+ a2

l1b(t)
L1+a3. Under the condition that

L1 ≥ 1, one has L̇1 ≤
(
a1

√
2 + a2

l1b(t)
+ a3

)
L1 which

can be rewritten as dL1
L1

≤
(
a1

√
2 + a2

l1b(t)
+ a3

)
dt .

Since b (t) is positive and continuous, integrating this
relation in a finite time implies that L1 and therefore x1
and x2 do not have a finite escape time. Now, if L1 < 1,

one will have L̇1 ≤
(
a1

√
2 + a2

l1b(t)
+ a3

)√
L1 and by

applying the same analysis, it can be concluded that L1

and hence x1 and x2 do not have a finite escape time.
Next it is shown that x1 and x2 are bounded and con-
verge to zero. According to (47), under the condition
that

l2b (t)
‖x2‖2√
1 + x�

2 x2
> ‖x2‖ ‖ε‖ + l1

∣∣ḃ (t)
∣∣
√
1 + x�

1 x1

(48)

one has L̇1 < 0. Since ε and ḃ (t) are bounded and
converge to zero, and x1 and x2 do not have a finite
escape time, then there is a finite time t1 such that for
t ≥ t1 the condition (48) is satisfied, and hence x1 and
x2 are bounded. It should be noted that these signals
are also bounded in the interval [0, t1) since they do not
escape in a finite time. Therefore, it can be concluded
that L̇1 is negative for all t ≥ t1 which means that out
of the following set:

Ψ =
⎧⎨
⎩x2| ‖x2‖2√

1 + x�
2 x2

≤ 1

l2b (t)
‖x2‖ ‖ε‖

+ l1
l2b (t)

∣∣ḃ (t)
∣∣
√
1 + x�

1 x1

⎫⎬
⎭

x2 is bounded, and since this region converges to zero,
then x2 will be driven to zero. Consequently, applying
Lemma2 to (39) shows that ẋ2 converges to zero,which
indicates that x1 also converges to zero.
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