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Abstract This paper presents a robust integral sliding
mode controller for the back-and-forth motion of a two-
wheeled inverted pendulum. The control design of this
nonlinear system is based on the linearized system with
bounded uncertainty and with an input delay taken into
account, where the uncertainty is the integrated effect
of the linearization error and bounded system uncer-
tainties. Firstly, a trajectory tacking target is selected
according to the control task. Secondly, a quadratic
performance criterion with large weight of tilt angle
error for optimal control is introduced to “force” the
tilt angle of inverted pendulum small enough and in
turn to make the linearization error small. Thirdly, a
new integral state transformation is used to convert the
delayed error system with uncertainty into a delay-free
one, and a key relationship between the original state
variable and the new state variable is founded. Finally,
the robust optimal integral sliding mode controller rep-
resented in the form of predictor state is designed by
choosing the optimal state of the nominal error sys-
tem as the integral sliding mode manifold. Numerical
simulation shows that the designed controller not only
works well in implementing the control task, but also
has strong robustness against system uncertainties.
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1 Introduction

Two-wheeled inverted pendulum (TWIP, for short)
robot has been a hot topic in recent years due to its wide
applications as a robotics mobile platform and personal
transporter. Comparing with the three-/four-wheeled
mobile robots, it has some remarkable superiorities,
such as good dexterity, true zero turning radius and
small footprint. Segway human transporter and Seg-
way robotic mobility platform are successful commer-
cial products of TWIP robot. A TWIP is an essential
nonlinear and under-actuated system [1], subjected to
nonholonomic constraints [2]. It is a system of open-
loop unstable; different control strategies are required
for different control tasks under different environments.

When uncertainties are not considered, straightfor-
ward linearization can be used if the stabilization of the
inverted pendulum is addressed only [3], or feedback
linearization if the tilt angle of inverted pendulum can-
not be small [4]. When uncertainties must be consid-
ered, Hy, control [5], adaptive control [6] or adaptive
back-stepping control [7], disturbance observer com-
pensation [8] and adaptive sliding mode control [9] can
be applied. Among these control methods, the sliding
mode control seems having more advantages over the
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other methods: strong robustness, rapid response, no
need for online identification and simple implementa-
tion. However, with perfect robustness on the one hand,
the sliding mode control results in inevitable “chat-
tering” phenomenon on the other hand. Chatter sup-
pression must be considered in applications. The avail-
able techniques for suppressing ““ chattering” include
boundary layer control [10], dynamic sliding mode
control [11], filter method [12], disturbance observer
[13] and integral sliding mode control [14]. The inte-
gral sliding mode control, with the initial state defined
on the sliding mode manifold to have smaller gains
of the discontinuous control, has been shown useful
in some applications [15]. The integral sliding mode
manifold can be chosen according to the control task.

In addition, due to the intensive use of digital con-
trollers and filters, the inevitable input delay, though
very small in many applications, has an important
influence to the system stability and control effect. As
shown in [16], for example, a very small delay in the
active control reduces the flutter velocity of an air wing
dramatically. This implies that the safety of airplane
may become a serious problem if the delay effect is
neglected. A controller with an input delay for sup-
pressing the chatter of air wing can also work better
than that without a delay if the controller is properly
designed [17]. This means that the delay effect can be
intentionally used in control applications, such as using
a time-delayed active control to improve the perfor-
mance of a quasi-zero-stiffness vibration isolator [18],
delayed feedback control to suppress the vibration of
the dynamical system [19] and using delayed feedback
controller to reduce the sway on container cranes [20].
The classical proportional-derivative (PD) feedback
may lead to bad control effect to the human postural
balance problem when input delay is considered, but
the proportional- derivative acceleration (PDA) feed-
back provides better stability properties than the corre-
sponding PD controller if there is noise in the system
or the state is not completely observable [21,22].

A delayed dynamical system is infinite dimensional,
no matter how small the delay is. This usually makes
the controller design complicated, especially when the
delay is an input delay from the controller, rather than
a state delay from the control plant. In [23], the integral
sliding mode control is extended to uncertain systems
with a state delay only, where the controller uses the
current state of an approximated system. No results
have been reported for generalization of the integral
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sliding mode control to systems with an input delay.
Actually, few works about the controller design of
TWIP robots with an input delay have been reported
in the literature [3,24].

This paper aims at designing a robust controller to
implement the back-and-forth motion of a TWIP sys-
tem with both input delay and uncertainties, based on
the combined application of optimal trajectory tracking
control and integral sliding mode control. The model
of the TWIP is described in Sect. 2, the robust control
design for the back-and-forth motion is presented in
Sect. 3, numerical simulation demonstrating the pro-
posed approach is shown in Sect. 4, and finally, some
concluding remarks are made in Sect. 5.

2 Modeling of the TWIP and statement of the
control problem

Back-and-forth motion is a basic motion function of a
TWIP robot; it is required to move forward to pass
some prefixed point and return back to the starting
point, keeping the inverted pendulum stabilized during
the whole process. The back-and-forth motion of the
TWIP is a planar motion, without considering the turn-
ing motion in this paper. Figure 1 shows a 2-DOF (two
degrees of freedom) model of the TWIP moving in the
sagittal plane, which has two parts: two wheels and the
intermediate body. The intermediate body is the cen-
ter portion standing between the left and right wheels,
and it consists of the rod of pendulum and the chassis.
The definitions of the main parameters and variables
are given in Table 1.

7

J\Turning point

Fig.1 The back-and-forth motion of the TWIP, where the inter-
nal control torque generated by the motors acting on the TWIP
works as the control
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Table 1 The parameters and variables of the TWIP

Symbol Description

T The internal control torque generated by the
motors acting on the TWIP

Tilt angle of the pendulum
Displacement of the TWIP in the sagittal plane

S
=

Mass of the wheels and motors together
Radius of the wheel
Mass of the intermediate body

Gravity acceleration

ng\

Distance from the point O to the center of gravity
of the intermediate body

Iy Moment of inertia of the wheel along the wheel
axis direction

Is Moment of inertia of the intermediate body along
the wheel axis direction

The kinetic energy of the wheels and the kinetic
energy of the intermediate body are given by

L5\ 1. .,
Tw=5hv|Z) +3Mui

_l . . 2 . . 2 l .2
Tg _2M (X + lpcosp)” + (Igsing)~ | + 21]3<p

respectively, and the gravitational potential energy of
the system is

P = Mglcosep.

Let L = Ty + T — P be the Lagrangian function, and
let ¢ = (¢, x)T be the generalized coordinates of the
TWIP, and then the Euler—Lagrange equation gives the
dynamic equation of the TWIP as follows

i(%) R % M
ar\aq) aq 1

without taking the input delay and system uncertainties
into accounts, here E(q) = [—1, %]T is the matched
matrix, and E(q)7T can be considered as the control.
More clearly, the dynamics equation of the TWIP reads:

(MI?* + Ig)§ + Mlcospi — Mglsing = —T

. Iy .. 2. T
Mlgcosgp + { My + M + — )i Mlp~sing = —
r r

2)

With T'(¢) = u(t — 7) where 7 is the input delay, the
linearized equation of Eq. (2) reads

. =MIg(Mr? + Iy + Myr?)
¢ = @

A
Mr? + Iy + Myr? + Ml
+ e e L ru(t—t),
A
. Mr2g M2+ Mri® + Ipr
X = ©— u(t — 1),
A A
3)
where

A= —MIP?ly—MI*Myr?—IgMr? —Ig Iy — Myr*Ig.

Let X =[xy, x2, x3, xa]T = [¢, ¢, x, ¥]T, and

0
—MIg(Mr®+Iy+Myr?)
A

0
M202r2g
A

o O o O
S = O O

S OO =

0
Mr2+IW+MWr2+er
A
0 b
_ MIr’ 4+ MrP+1gr
L A

then, Eq. (3) can be rewritten as a standard state equa-
tion as follows

X(1) = AX(7) + Bu(r — 7). )

The delayed control in Eq. (4) takes place only when
t > 1. Taking the linearization error and system uncer-
tainties into account, it is required to introduce w(t)
into the above system

X(t) = AX(?) + Bu(t — 1) + 0(2), )

where w(t) stands for the integrated effect of the lin-
earization error and bounded system uncertainties. The
linearization error depends nonlinearly on the state of
the tilt angle of the pendulum.

The motion control can be converted to a trajec-
tory tracking control problem. Let X := [X], X2,
%3, %417 = [@(1), ¢(1), X(1), ¥(1)]" be the trajectory
tracking target vector according to the control task, and
let Y(¢) := X (1) — X(1), 0 (t) := AX — X, then Eq. (5)
governing the tracking error takes the form

Y1) = AY (1) + Bu(t — 1) + o(t) + 0 (). (6)
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In order to reduce the linearization error, a quadratic
performance criterion with large weight of tilt angle
error is introduced as follows

1 T
J ==Y (tp)MY(ty)
2 p p
- ™
+—/ [YT(t)QY(t)+uT(t—1:)Ru(t—r)] dr,
2 Jo

where M, Q are nonnegative definite symmetric matri-
ces, Ris a positive definite matrix, and 77 (> 27) is the
terminal time of the control. With a large weight of the
tilt angle error in J, the tilt angle error can be “forced”
to be small when an optimal control is applied. This is
very important for designing a reliable controller from
the linearized Eq. (6). In this case, the linearization error
is small and can be considered as bounded. Hence, the
integrated disturbance @(¢) is also bounded, namely,
there is a constant D > 0 such that

lo@®I| < D. (®)

Due to the presence of @(¢), the optimal control of
system (6) does not exist in a strict conventional sense.
However, by properly chosen weight matrices Q, R,
the final optimal quadratic performance criterion value
for both cases w(r) = 0 and @(¢) # 0 can be approxi-
mately the same. In this sense, the concept of “optimal
control” in this paper is acceptable when a bounded
disturbance is taken into account.

Although H, control is very popular in robust con-
trol design, it does not work for the motion control of a
TWIP, because the linearization error as bounded dis-
turbance does not satisfy the strict conditions required
by the Hy, control theory.

3 Motion controller design

The key idea for the controller design is to design the
robust controller in two parts, one is an optimal con-
troller for the nominal error system [26] that minimizes
the quadratic performance criterion, and the other is a
switched control that is based on an integral sliding
manifold for compensating the effect of the integrated
disturbance significantly.

3.1 Simplification of the controlled system

The optimal control design is based on the error system,
namely Eq. (6), which is equivalent to

@ Springer

Y(1) = eAY(0)
t
+/ A=) [Bu(s — 1) + w(s) + o (s)]ds.
0

In order to simplify the control design, let us introduce a
new integral state transformation of the following form

t
Z() = Y() + /

-1
+0o(s+1)]ds &)
to transform Eq. (6) into a delay-free one. This trans-
formation is different from the conventional integral
transformation [25] where (s + 7) + o (s + 7) is not
appeared in the operand, and it changes Eq. (6) into

e AT BY(s) + w(s + T)

Z(t) = AZ()+Bou(t)+e M o(t+1)+e Ao (t+1),
(10)

where By = e ~A7B. Then, the solution Y (7) satisfies

t+t
Y(t+1) =eh? (Y (1) +/ A=)
'
x[Bu(s — 1) 4 @(s) + o (s)]ds)
'
—eAT (Y() + / e AG—1+1)
-t

X [Bu(s) + w(s +7) + 0 (s + 7)]ds)
=eMTZ(r).
(11)

This is a simple but key relationship between the origi-
nal state variable Y (7) and the new state variable Z(z).
Thus, the initial condition Y(0) = Y for system (6)
is changed into Z(0) = eATY (1) for the new system
(10).

By substituting Eq. (11) into Eq. (7), we obtain
J=h+h
where J; = % fOT YT (1)QY(r)dr is fixed because the
control does not take effect when ¢t € [0, t), and

1, i
D =321y = OMZ(t — )
| A T
¥ / [Z OQZ() + u (t)Ru(t)] dr,
2 Jo
(12)

(eAf)T MeA?. Hence,

< Jp =min.

where Q = (eAf)T QeAT, M =
Js=J; + Jo = min
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Therefore, the control design problem of system (6)
with the quadratic performance criterion J given in
Eq. (7) has been transformed into that of system (10)
with the quadratic performance criterion J> given in
Eq. (12).

3.2 Optimal control of the nominal error system

The nominal error system is Eq. (10) withe(t+71) = 0,
namely

Z(t) = AZ(t) + Bou(t) + e A0 (t + 1), (13)

This is the form that can be used to design an opti-
mal controller directly, see for example [26]. More pre-
cisely, by using Pontryagin’s maximum principle, the
optimal control of the nominal system (13) that mini-
mizes quadratic performance criterion J> is given by

u(t) = up(t) = —R7'B[P.(VZ(1) + b, ()],  (14)

where P,(z) € R"*" and b, (¢) € R”" are the solutions
of the following differential equations

[ P, = -PA—-ATP, +P.BoR'B/P, — Q,
N (15)
P.(ty—1)=M,
[ b, = —[A — BoR'BJP.]"b, — P.e A0 (s + 1),
(16)
b.(t; —7) = 0.

Thus, to obtain the optimal trajectory tracking con-
troller, it is required to solve a Riccati equation and a
linear differential equation only. This is a standard and
inevitable step required in optimal controller design.

The key role of b,(¢) in Eq. (14) is to compensate
the impact from e Ao (t 4+ 7). Let (1) = —[A —
BoR™!BIP,(1)]T, and @ (t, 17 — 7) be the state tran-
sition matrix of system é(t) = £2(¢t)&(¢), then solving
Eq. (16) gives

ty—t
b.(1) = — Do (1. 17 — r)/ Bo(t; —7.5)
t

x Po(s)e ™ A%a (s + 7)ds

By substituting the expression of b,(¢) into Eq. (14),
the optimal control quantity ug(z) is reduced when
e ATg (¢ + 1) has the same direction of Z(z); in this
case, the disturbance is beneficial. On the contrary,
the optimal control quantity ug(#) is increased when
e Ay (t+7) isin the opposite direction of Z (). There-
fore, if the disturbance is unknown, the optimal control
does not exist. It is required to find an approximate
optimal control.

3.3 Integral sliding mode control

The optimal controller is designed on the basis of lin-
ear control theory. To make the controller reliable for
the back-and-forth motion of TWIP with strong non-
linearity, the effect of @(f + 7) # 0 must be taken into
accounts. However, weak robustness against uncertain-
ties is a major issue of optimal control. In order to
design a robust optimal controller against the effect of
®(t + t), a switched control based on integral sliding
mode manifold is incorporated with the optimal control
of the nominal system (13).
Let the sliding mode functional be

S(Z(1)) = GIZ(1) — Z%(0)]
— G/Ot[(A —BoR™'BIP,)Z(1) (17)
—BoR ™ 'Bgb.(n) + ¢ 470 (4 + 7)1dn,
where G € R™*" is a constant matrix, and GBy is

assumed nonsingular, Z*(0) is the initial value of the
nominal system (13) described by

Z*(0) = e AT (eA’Y(O) +eAT / ' eASa(s)ds)
0
=Y(0) +/re_Asa(s)ds,
0

S(Z(t)) = 0 is the sliding mode manifold, which is
actually the optimal state of the nominal system (13).
The integral sliding mode control of system (10) is

u(t) =uot) +ui(t), t €[z, tz], (18)

where u(t) given by Eq. (14) is the optimal control of

the nominal system (13), and 1 (¢) is a switched control

which is used to compensate the integrated disturbance,

defined by

ui(t) = —(GBo) ' (u + D[|Ge 7 |)sgn(s(Z(1))).
(19)

Let V(s) = 3s's, then

%V(s) =sTs
=s'[GZ — G(A — BoR'B{P,)Z
+ GBoR™'Blb, — Ge ™A% a (1 + 1)]
= sT[GBou + Ge AT w(r + ) + GBoR™'B{P,Z
+ GBoR™'B{b,]
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=s"[—(u+ D[Ge 7 |sgn(s) + Ge A w(r + 1)]
= —ullslly — DIGe™ 7| - [Isll1 +s"Ge AT w(t + 1)
< —ulsli — DIGe ™ 7| - [Islly +D[IGe™A7|| - |Is|I,

where || e ||; is the 1-norm. Since ||s||{ > [|s||, it holds

dV(s>—sTs< IIsll
ds =8 s =—Hish

Thus, the sliding mode motion exists for all initial con-
ditions, and the sliding mode manifold can be reached
within finite time. Note that Eq. (11) implies the asymp-
totic stability of Z(¢) is equivalent to that of Y(¢), and
the quadratic performance criterion (7) is completely
equal to J1 + J2. Hence, the integral sliding mode con-
trol Eq. (18) is effective to stabilize the error system (6)
and to minimize performance criterion (7).

3.4 The robust delayed optimal controller

By substituting Eq. (11) into Eq. (18), one has
u(t —1)=uo(t — 1) +u1(t — 1), t €1, 17],
where
ug(t — v) = —R7'BY[P.(r — 1)e ™ A7Y (1) + b, (t — 7)1,
ui(t — 1) =— (GBo) ™' (1 + D||Ge™7))
x sgn(s(e"ATY(1))).

Due to the delay effect, it is the delayed feedback state
Y(t — 7), not the current state information Y(z), that
is available timely. Thus, the current state should be
replaced with a predictor state Y(r), which can be
obtained numerically as done in [27]. Therefore, the
final controller for implementing the back-and-forth
motion can be designed as follows:

Theorem 1 Assume that the linear system (6) is com-
pletely measurable and controllable, then the delayed
robust optimal controller is given by

u(t —t)=uot —1)+u1(t — 1), t €7, 7], (20)
where

uo(t —7) = —R'BGIP.(t — 1) ATY (1) + b (1 — 7)),
ui(t —v) = —(GBo) " (1 + D||Ge™"|)
x sgn(s(eATY (1)),

and Y (1) is the predictor state of Y(t) defined by

t
Y(t) = eAfY(z—z)+/ A Bu(s—1)+0 (s)]ds.
1—T
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4 Simulation results

The trajectory tracking target for the back-and-forth
motion can be chosen in different forms, for example,
[@(1), x(O1T = [0, (at — 1*)e~*']T for the simulation
below, where ¢ () = 0 means that the inverted pendu-
lum should be kept stable, and the decaying factor e =%
is introduced to make the TWIP back to the starting
point softly. The numbers a and « are to be determined
by the distance s and the weight matrices in J. Hence,
the trajectory tracking target vector is

X=[0,0, (at — t>)e", (a — 2t)e" " — a(at — t>)e~*"]".

For simplicity, we consider the case of 1y = +00, and
the quadratic performance criterion is in this form

1 [T®ror T
J = _/ [Y ®QY()+u (t —)Ru(r — r)] dr.
2 Jo

With fixed parameter values and initial values: M= 8 kg,
My = 4kg, | =1 m, r = 025m, g=10m/s?,
T =0.0ls,s =32m, Iy =12kg m2, Iy, = %kg m?2,
R=1, M =0, Q= diag(10000,0,5,0), ¢0) =
Orad, ¢(0) = Orad/s, x(0) = Om, x(0) = Om/s. Then,
the matrices A and B in Eq. (6) become

0 100 0
140 23
A_| o0 0| o |-
0 00 1] 0o |
80 11
800 0 I

and By = e A"B = [0.0021, —0.2130, —0.0041,
0.4074]T. Under this parameter combination, the val-
ues of @ and « in X can be chosen carefully to be
a = 20, o = 0.5, in order to meet the requirements of
the control task. The MATLAB command 1qgr returns
the solutions of (15) and (16) as follows

4810.8 1570.3 12533 418.37
p _ | 1570.3 910.00 90.053 330.89
©7 | 12533 90.053  20.233  41.141 |’
418.37 330.89 41.141 148.96
(115.18¢2 — 3003.9¢ + 7208.4)e~0-
(95.057t2 — 2468.5¢ + 5824.0)e 0!
bz(f) =

(8.4867t% — 228.80r + 618.51)e 0!
(42.6041% — 1106.8¢ + 2615.4)e =0

To addresses the special feature of this paper that
uses linear optimal control theory to design a robust
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(a) T T T ,7 U
0.12 4 ¢,=0.1sin(200t)
¢,=0.2sin(200t)
0.09 + ¢,=0.3sin(2001)

Tilt angle of the pendulum

0.12 - ¢,=0.1sin(0.02t)
¢,=0.25in(0.02t) |
¢,=0.3sin(0.02t)

Tilt angle of the pendulum
S o o o o
S 8 8 & 8

-0.06

Fig. 2 The time histories of the tilt angle of the pendulum

controller for systems with strong nonlinearity and an
input delay, @(7) is assumed for simplicity to be

@(t) = [0, w2, 0, w4]"

where wy = ¢19? + 2% + 309, wy = 2.3c19> +
1.3¢2¢% + 1.7¢39¢, and the coefficients ¢q, ¢ and c3
are assumed in the form of ¢; = f;sin(£2¢), (I =
1, 2, 3). Case studies on the effect of the uncertainty
are made for £2 = 200Hz and £2 = 0.02Hz respec-
tively. Moreover, let G = [0, 108/23,0,54/11], u =
0.1, D = 1, used in the switched control, then all
the quantities required in the delayed robust optimal
controller (20) are available in hand. In all simulation
results, the dimension of the tilt angle is rad.

Figures 2 and 3 show that the tilt angle of the
pendulum is less than 0.13rad in the whole motion
process, and the back-and-forth motion can be well
implemented. Moreover, the plots of the actual dis-
placement variables are smooth enough without obvi-

¢,=0.1sin(200t) |
¢,=0.2sin(200t) |
¢,=0.3sin(2001) |

Displacement of the TWIP

0 4 8 12 16 20

¢,=0.1sin(0.02t) |
¢,=0.2sin(0.02t) |
¢,=0.3sin(0.02t) |

Displacement of the TWIP

Time(s)

Fig. 3 The time histories of the displacement of the TWIP

ous chattering, while in Figs. 4 and 5, the plots of the
actual velocity variables have obvious chattering. The
reason for this phenomenon is that the chattering in
velocity item is of high frequency and centralized on the
integral sliding mode manifold, while the displacement
variable is the integration of the velocity. Therefore, the
actual displacement variable is nearly the same as the
optimal displacement of the nominal error system due
to the response characteristics of integral sliding mode
control.

In addition, the influence of §2 on the control effect
is very weak. A possible explanation of this finding
is that the frequency of “chattering” is much larger
than that of disturbance. The larger the gain of the
switched control is, the stronger the robustness of the
control is, and the larger the amplitude of the “chat-
tering” is. The parameters used in the switch control
must be chosen to have a good balance between robust-
ness and chattering. Figure 6 shows that the value of
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0.4 ¢,=0.1sin(200t)
¢,=0.2sin(200¢) |
¢,=0.3sin(200t)

0.34

0.2+

0.1+

0.0+

of the pendulum

o
=
1

Angular velocity of the tilt angle

0 4 8 12 16 20

0.4- ¢,=0.1sin(0.02t)
¢,=0.25in(0.02t) |
¢,=0.25in(0.02t)

(==}
L

S o
1

Angular velocity of the tilt angle
of the pendulum
j=1

o
o

(=}
S~
oo
—_
(38
—_
(=)}

20
Time(s)

Fig.4 The time histories of the angular velocity of the tilt angle
of the pendulum

input delay has a substantial influence on the “chat-
tering.” The larger the input delay is, the stronger the
amplitude of “chattering” becomes, which may lead to
unstable. A possible explanation of this phenomena is
that the error between the predictor state and the actual
state may become large when the input delay is long
enough.

Figure 7 shows the optimal quadratic performance
criterion value of nominal system and uncertainty sys-
tem under the optimal integral sliding mode control
with respect to time ¢, where the difference between the
two curves is small. Moreover, the error approaches to
zero when R tends to zero. Hence, the optimal integral
sliding mode controller not only has strong robustness,
but also keeps the value of the quadratic performance
criterion J(¢) slightly changed, where J (¢) is defined
by
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Fig. 5 The time histories of the velocity of the TWIP

1 t
J0) =3 /0 [Y' QY () + u" (n — DRu(n — 7)] dn.
(1)

In summary, when the dominated uncertainty is
assumed to be a time-variant linear combination of
quadratic terms of tilt angle position and tilt angle
velocity, the optimal integral sliding mode control not
only implements the control task of back-and-forth
motion well, but also has strong robustness against the
uncertainty. Among the amplitude of the disturbance,
the frequency of the disturbance and the input delay,
only the input delay has obvious impact on the “chatter-
ing.” The input delay has a substantial influence on the
system stability and performance. A large input delay
results in large amplitude of chattering, and it may lead
to an unstable state of the TWIP system.
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Fig. 6 a The time history of the angular velocity of the tilt angle
of the pendulum when = 0.015, b the time history of the
velocity of the TWIP when t = 0.015
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Fig.7 Comparison of the quadratic performance criterion value

5 Conclusion

In this paper, a robust delayed controller has been
designed for the back-and-forth motion of a TWIP sys-
tem with an input delay and with disturbance. Analysis
shows that the input delay has a substantial influence
on the control performance, and thus, the delay effect
cannot be neglected in the design phase.

Though a TWIP is essentially an unstable nonlinear
system, the controller design can be carried out by using
linear control theory, where the effect of the lineariza-
tion error is considered as a disturbance of the nominal
linearized error system. The robust controller is com-
posed of two parts: One is the optimal controller that
minimizes the quadratic performance criterion, and the
other is the switched control that makes the controller
robust against the disturbance. The quadratic perfor-
mance criterion with large weight of the tilt angle error
is used to “force” the tilt angle error to be small enough,
so that the linearization error can be very small. As
a result, the controller based on linear control theory
works effectively for the motion control of the TWIP
with strong nonlinearity.
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