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Abstract Nonlinear random vibration of the cables
with small sag-to-span ratio and excited by in-plane
transverse uniformly distributed Gaussian white noise
is studied by a nonlinear multi-degree-of-freedom sys-
tem which is formulated with Galerkin’s method. The
stationary probabilistic solutions of the nonlinear sys-
tem are analyzed with the state-space-split method in
conjunction with the exponential polynomial closure
method. Effectiveness of this approach about the cable
randomvibration is examined through comparisonwith
Monte Carlo simulation and equivalent linearization
method. The probabilistic solutions of the cable ran-
dom vibrations are also studied by modeling the cable
as single-degree-of-freedom system and multi-degree-
of-freedom system.
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1 Introduction

Use of cables is quite common in the structures, moor-
ing systems, and the power transmission system. Non-
linear vibration of cables has been studied by many
researchers. However, there are few studies on non-
linear random vibration of cables modeled by multi-
degree-of-freedom (MDOF) system [1]. Moment clo-
sure method andMonte Carlo simulation were adopted
to investigate the responses of the cables excited by ran-
dom noise [2–4]. In general, cable systems and many
other nonlinear systems in science and engineering can
be modeled as nonlinear stochastic dynamical (NSD)
systems with multiple degrees of freedom excited by
random noise [5–7]. In case of white noise or fil-
tered white noise, the probabilistic solution of the sys-
tem is governed by the Fokker–Planck–Kolmogorov
(FPK) equation [5–9]. It is known that the analysis on
the probabilistic solutions of MDOF–NSD systems or
high-dimensional FPK equation has been a challenge
for almost a century because of the so-called curse of
dimensionality [10,11], especially for the systems with
strongly coupled state variables, strong nonlinearity, or
many nonlinear terms.

Instead of solving the high-dimensional FPK equa-
tions for the probability density function (PDF) of the
responses, responses or response moments are deter-
mined numerically. There are three methods widely
employed to study the MDOF–NSD systems in the
past decades. One is the equivalent linearization (EQL)
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method which was first proposed by Booton [12] in
the research on nonlinear random vibration of circuit
and further investigated by many other researchers
thereafter [13–16]. The second is the Monte Carlo
simulation (MCS) method which was first proposed
by Metropolis and Ulam [17] in their researches on
the problems in nuclear physics and further inves-
tigated by many other researchers in science, engi-
neering, and mathematics [18–22]. It is well known
that the EQL method is only suitable for the weakly
nonlinear systems for obtaining the first and second
moments of system responses. There are some chal-
lenges with MCS method in analyzing the strongly
nonlinear stochastic dynamical systems being of mul-
tiple degree of freedoms, such as the problems of
round-off error, numerical stability, convergence, and
requirement for huge sample size. The third is the
cumulant-neglect closure method. With this method,
themoment equations derived from Ito’s derivative rule
were solved to obtain statistical moments by introduc-
ing the cumulant-neglect closure to moment equations
to make the hierarchy of moment equations closed to a
desired level [23–26]. The moments obtained with this
method are exact for linear systems excited by additive
and multiplicative Gaussian white noises and appear to
be accurate for weakly nonlinear systems excited by
additive Gaussian white noises.

On the other hand, some methods were developed
or extended for obtaining the approximate probabilis-
tic solutions of NSD systems, such as the path integral
method [27,28], stochastic average method [29], per-
turbation method [30], A-type Gram–Charlier series
or Hermite-polynomial closure method [31], C-type
Gram–Charlier series method [32], finite difference
method [33], finite element method [34], and exponen-
tial polynomial closure (EPC) method [35]. It is known
that most of these methods only work for analyzing
the single-degree-of-freedom (SDOF) systems or solv-
ing the two-dimensional FPK equations in steady state
under some conditions. Some of the methods may also
suffer from the loss of accuracy of the PDF in the tail
regions which play an important role in system relia-
bility analysis.

In order to solve the high-dimensional FPK equa-
tions corresponding to MDOF–NSD systems, some
methods were proposed in the last decades. One of
the methods is EPC method [35,36], which works
for the systems with few degrees of freedom or low-
dimensional FPK equations. Various two-dimensional

and four-dimensional FPK equations corresponding to
SDOF and 2-DOF systems with polynomial type of
nonlinearity were analyzed accurately with the EPC
method. The precision of tails of the PDFs obtained
withEPCmethodwas examinedwithMCS.High-order
finite difference scheme was used to solve FPK equa-
tion corresponding to the 2-DOF spring system when
the Gaussian white noise in one equation of motion
is independent of the Gaussian white noise in another
equation of motion [37]. The weighted orthogonal
Hermite-polynomial functions were used to formulate
the approximate PDF in solving the high-dimensional
FPK equations [38,39]. A 2-DOF nonlinear system
and a 3-DOF nonlinear system were analyzed with
this method. The method of tensor decomposition was
extended to solve the high-dimensional FPK equations
[11]. With this method, the FPK equations correspond-
ing to 1-DOD to 5-DOF nonlinear systems were solved
when the Gaussian white noise in one equation of
motion is independent of the Gaussian white noises
in other equations of motion. It seems that the com-
putational time needed by the tensor decomposition
method for analyzing the 4-DOF or 5-DOF systems is
larger than that needed by MCS. Since the tails of the
PDFs of system responses have major contribution to
system reliability analysis, the precision of tails of the
PDFs of system responses obtained with various meth-
ods is much concerned. Therefore, it can be desirable
to compare the values of logarithmic PDFs obtained
with a given method to that obtained with MCS so
that the tail behavior of the PDFs of system responses
obtained with a givenmethod can be revealed. It is well
known that improving the precision of tails of the PDFs
of system responses has been a challenge in the area
of nonlinear random vibration for decades. Recently,
a new method named state-space-split (SSS) method
was proposed for the probabilistic solutions of some
large MDOF–NSD systems which are solvable with
EQL method or for solving the relevant FPK equa-
tions in high dimensionality [40,41]. It was extended
thereafter for analyzing the systems excited by Pois-
sonian white noise [42] and colored noise being filtered
Gaussian white noise [43]. With the SSS method, the
high-dimensional FPK equation can be reduced to the
low-dimensional FPK equation which is solvable with
the EPC method.

In this paper, the SSS–EPC method is further
adopted to analyze the probabilistic solutions of the in-
plane transverse vibration of the cable with small sag-
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to-span ratio and excited by Gaussian white noise uni-
formly distributed on the cable. The excitation applied
on the cable is assumed to be Gaussian white noise
in this paper. It is only an idealization of the real-life
colored noise. The equation of motion of the cable is
a nonlinear partial differential equation in time and
space [44,45]. The nonlinear partial differential equa-
tion governing the motion of the cable is reduced
to MDOF–NSD system by Galerkin’s method. The
results obtained with the SSS–EPC method are com-
pared with those obtained with EQL method and MCS
to show the effectiveness of the SSS–EPC method in
this case and the advantage of the SSS–EPC method
over the EQL method and MCS in analyzing the prob-
abilistic solutions of the formulated MDOF–NSD sys-
tems with large number of nonlinear terms including
both even and odd terms being of strong nonlinear-
ity.

2 Nonlinear stochastic dynamical system of
in-plane cable with small sag

Consider a uniform inclined cable hanging between
two supports as shown in Fig. 1. The analysis of the
nonlinear random vibration of the cable is based on
the following assumptions. (1) The flexural rigidity,
torsional rigidity, and shear stiffness of the cable are
neglected. (2) The sag-to-span ratio is small. (3) The
component of the cable weight and dynamical force
parallel to the chord line of the cable are so small that
they can be neglected compared to the pretension in
the cable. The static curve of the cable with initial sag
is approximately expressed as parabolic curve. (4) The
constitutive relation of the cable satisfies the Hooke’
s law, and the stress on the cross section of the cable

θ

( )

Fig. 1 Inclined cable

is uniform. The initial static sag of the inclined cable
is caused by the self-weight of cable, but the sag-to-
span ratio is small due to the high pretension applied
in the cable ends such as the cables in some catenary
structures. If the distributed stochastic dynamical force
fy(x, t) is perpendicular to the chord line of the cable
and in view that the stiffness in the chord-line direc-
tion is much larger than that in the transverse direction,
the displacement component in chord-line direction is
small compared to that in transverse direction. Then the
displacement in the chord-line direction is neglected
and only the in-plane transverse displacement of the
cable is considered. Under the action of uniformly dis-
tributed load, the equation of transverse motion of the
cable with small sag-to-span ratio can be written as
follows [44].

ρwt t − Hwxx − E A

Le

(
wxx − 8d

l2

) ∫ l

0

×
[
4d

l

(
1 − 2x

l

)
wx + 1

2
w2
x

]
dx = fy(x, t) (1)

wherew is the in-plane dynamical transverse displace-
ment of the cable, E is Young’s modulus, ρ is the mass
of the cable per unit length, A is the area of the cable
cross section, l is the total length of the cable and it
approximately equals the distance between two sup-
ports when the sag-to-span ratio is small, d is the static
sag in the middle span of the cable and it is given by

d = ρgl2 cos θ
8H , H is the x-axis component of the static

tensile force in the cable, g is gravitational accelera-
tion, θ is the inclined angle of the cable chord with
respect to the horizontal plane, Le = [1 + 8( dl )

2],
fy(x, t) = q0W (t),q0 is constant, andW (t) is assumed
to be Gaussian white noise which power spectral den-
sity is denoted as S.

3 Multi-degree-of-freedom nonlinear stochastic
dynamical system of the cable

The symmetric mode functions of the linear cable
with small sag-to-span ratio and boundary conditions
w(0) = w(l) = 0 are given to be Φi (x) = ki (1 −
tan ωi

2 sin ωi x
l − cos ωi x

l ), (i = 1, 2, . . .), in which ωi

is the i th natural frequency of the linear cable and ki
is normalization constant [44,45]. For small sag-to-
span ratio, these mode functions can be approximately
expressed by
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φi (x) = sin
(2i − 1)πx

l
i = 1, 2, . . . (2)

which are used as shape functions in formulating the
MDOF systems of the cable with Galerkin method in
the following. Under the action of transverse uniformly
distributed excitation, the deflection of the cable with
small sag-to-span ratio is expressed by

w(x, t) =
N∑
i=1

qi (t)φi (x) (3)

With Galerkin’s method and φi (x) being used as
shape functions and weight functions, the following
nonlinear stochastic dynamical system is formulated
from Eq. (1) if the damping ratio ξ for each mode is
the same.

q̈m(t) + 2ξωmq̇m(t) + ω2
mqm(t)

+
N∑
i=1

N∑
j=1

bi jmqi (t)q j (t)

+
N∑
i=1

N∑
j=1

N∑
k=1

ci jkmqi (t)q j (t)qk(t) = gmW (t)

(m = 1, 2, . . . , N ) (4)

where ωm is the mth natural frequency of the linear
cable, and

gm = q0
am

∫ l

0
φm(x)dx (5)

am = ρ

∫ l

0
φ2
m(x)dx (6)

bi jm = 1

am

∫ l

0
Bi j (x)φm(x)dx (7)

Bi j (x) = 4E Ad

Lel2

[
− 2φ′′

i (x)
∫ l

0
φ j (x)dx

+
∫ l

0
φ′
i (x)φ

′
j (x)dx

]
(8)

ci jkm = 1

am

∫ l

0
Ci jk(x)φm(x)dx (9)

Ci jk(x) = − E A

2Le
φ′′
i (x)

∫ l

0
φ′
j (x)φ

′
k(x)dx (10)

If the joint PDF of the deflection w0(t) = w(x0, t) and
velocity ẇ0(t) = ẇ(x0, t) is interested, the following
system can be formulated with Eqs. (3) and (4).

ẅ0(t) + 2ξ
N∑

m=1

φm(x0)ωmq̇m(t)

+
N∑

m=1

φm(x0)ω
2
mqm(t)

+
N∑

m=1

N∑
i=1

N∑
j=1

φm(x0)bi jmqi (t)q j (t)

+
N∑

m=1

N∑
i=1

N∑
j=1

N∑
k=1

φm(x0)ci jkmqi (t)q j (t)qk(t)

= W (t)
N∑

m=1

φm(x0)gm (11)

q̈m(t) + 2ξωmq̇m(t) + ω2
mqm(t)

+
N∑
i=1

N∑
j=1

bi jmqi (t)q j (t)

+
N∑
i=1

N∑
j=1

N∑
k=1

ci jkmqi (t)q j (t)qk(t) = gmW (t)

(m = 2, 3, . . . , N ) (12)

Equation (11) is given in order to analyze the joint
PDF of w0 and ẇ0 with SSS–EPC method in the fol-
lowing. With Eq. (3), the amplitude q1(t) of the first
mode is expressed in terms of w0, q2, q3, . . . , qN , so
Eqs. (11)–(12) in which q1(t) = φ−1

1 (x0)[w0(t) −∑N
i=2 qi (t)φi (x0)] and q̇1(t) = φ−1

1 (x0)[ẇ0(t) −∑N
i=2 q̇i (t)φi (x0)] formulate a complete NSD sys-

tem with N degrees of freedom about w0, q2, q3,
. . . , qN , or 2N -dimensional system about state vari-
ables w0, q2, q3, . . . , qN and ẇ0, q̇2, q̇3, . . . , q̇N .

4 Dimensionality reduction with state-space-split
method

In the following discussion, the summation convention
applies unless stated otherwise. The random state vari-
able or vector is denoted with capital letter, and the
corresponding deterministic state variable or vector is
denoted with the same letter in lowercase.

The system governed by Eqs. (11) and (12) can be
generally expressed by the followingMDOF–NSDsys-
tem or generalized Langevin equations.

Ÿi + ci j Ẏ j + hio(Y) = hiW (t)

i, j = 1, 2, . . . , ny (13)
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where Yi ∈ R, (i = 1, 2, . . . , ny), are the compo-
nents of the vector process Y ∈ R

ny ; hi0(Y) are
the polynomial type of nonlinear functions of Y and
hi0(Y) : R

ny → R; hi and ci j are constants; W (t)
is the excitation which is assumed to be the Gaussian
white noise with zero mean and correlation

E[W (t)W (t + τ)] = Sδ(τ ) (14)

where δ(τ ) is Dirac delta function and S is the constant
representing the power spectral density of W (t).

Setting Yi = X2i−1, Ẏi = X2i , f2i−1 = X2i ,
f2i = −ci j X2 j − hio(X), g2i−1 = 0, g2i = hi
(i = 1, 2, . . . , ny), and nx = 2ny, then Eq. (13) can be
written as follows.

d

dt
Xi = fi (X) + giW (t) i = 1, 2, . . . , nx (15)

where X ∈ R
nx ; Xi (i = 1, 2, . . . , nx), are the compo-

nents of the state vector process X; fi (X) : Rnx → R.
The state vector process X is Markovian, and the

PDF p(x, t) of the Markovian vector is governed by
the FPK equation. In the case that the white noiseW (t)
is Gaussian, the stationary PDF p(x) of the Markov-
ian vector is governed by the following reduced FPK
equation [5]:

∂

∂x j

[
f j (x)p(x)

] − 1

2

∂2

∂xi∂x j

[
Gi j p(x)

] = 0 (16)

where x is the deterministic state vector, x ∈ R
nx , and

Gi j = gi g j S.
It is assumed that the solution to Eq. (16) fulfills the

following conditions:

lim
xi→±∞ fi (x)p(x) = 0 and lim

xi→±∞
∂p(x)
∂xi

= 0

i = 1, 2, . . . , nx (17)

which can be fulfilled by the deflection and the velocity
of the cable presented above.

Separate the state vector X into two parts as X1 ∈
R
nx1 and X2 ∈ R

nx2 , i.e., X = {X1,X2} ∈ R
nx =

R
nx1 × R

nx2 . In analyzing the above cable system,
define the vector X1 such that it contains the deflection
w(x0, t) and the corresponding velocity ẇ(x0, t) of the
cable. The joint PDF of X1 or w(x0, t) and ẇ(x0, t) is
analyzed in the following with the SSS–EPC method
[40,41].

Denote the PDF of X1 as p1(x1). In order to obtain
p1(x1), integrating both sides of Eq. (16) over Rnx2

gives∫
R
nx2

∂

∂x j

[
f j (x)p(x)

]
dx2

− 1

2

∫
R
nx2

∂2

∂xi∂x j

[
Gi j p(x)

]
dx2 = 0 (18)

Because of the conditions in Eq. (17), we have

∫
R
nx2

∂

∂x j

[
f j (x)p(x)

]
dx2 = 0 x j ∈ R

nx2 (19)

and

∫
R
nx2

∂2

∂xi∂x j

[
Gi j p(x)

]
dx2 = 0 xi or x j ∈ R

nx2

(20)

Equation (18) can then be written after integration by
part as∫
R
nx2

∂

∂x j

[
f j (x)p(x)

]
dx2

− 1

2

∫
R
nx2

∂2

∂xi∂x j

[
Gi j p(x)

]
dx2 = 0

xi , x j ∈ R
nx1 (21)

which can be equivalently written as

∂

∂x j

[∫
R
nx2

f j (x)p(x)dx2

]

− 1

2

∂2

∂xi∂x j

[∫
R
nx2

Gi j p(x)dx2

]
= 0

xi , x j ∈ R
nx1 (22)

Cluster the terms purely in x1 in one part and the other
terms in the other part. Then f j (x) is expressed in terms
of two parts as

f j (x) = f Ij (x1) + f IIj (x) (23)

Substituting Eq. (23) in Eq. (22) gives

∂

∂x j

[
f Ij (x1)p1(x1) +

∫
R
nx2

f IIj (x)p(x)dx2

]

− 1

2

∂2[Gi j p1(x1)]
∂xi∂x j

= 0 xi , x j ∈ R
nx1 (24)

Express f IIj (x) as
∑

k f IIj (x1, zk) inwhich zk ∈ R
nzk ⊂

R
nx2 and nzk denotes the number of the state variables
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in zk . Then Eq. (24) can be written as

∂

∂x j

[
f Ij (x1)p1(x1) +

∑
k

∫
R
nzk

f IIj (x1, zk)

pk(x1, zk)dzk

]
− 1

2

∂2[Gi j p1(x1)]
∂xi∂x j

= 0

xi , x j ∈ R
nx1 (25)

in which pk(x1, zk) denotes the joint PDF of {X1,Zk}.
The summation convention not applies for the indexes
k in Eq. (25) and in the following discussions.

From Eq. (25), it is seen that the coupling of X1 and
X2 comes from f IIj (x1, zk)pk(x1, zk). Because

pk(x1, zk) = p1(x1)qk(zk; x1) (26)

where qk(zk; x1) is the conditional PDF ofZk for given
X1 = x1, substituting Eq. (26) in Eq. (25) gives

∂

∂x j

{[
f Ij (x1) +

∑
k

∫
R
nzk

f IIj (x1, zk)qk(zk; x1)dzk
]

p1(x1)
}

− 1

2

∂2[Gi j p1(x1)]
∂xi∂x j

= 0 xi , x j ∈ R
nx1

(27)

Approximately replacing the conditional PDFqk(zk; x1)
by that obtained with EQL, then Eq. (27) is written as

∂

∂x j

{[
f Ij (x1) +

∑
k

∫
R
nzk

f IIj (x1, zk)qk(zk; x1)dzk
]

p̃1(x1)
}

− 1

2

∂2[Gi j p̃1(x1)]
∂xi∂x j

= 0 xi , x j ∈ R
nx1

(28)

whereqk(zk; x1) is the approximate conditional PDFof
Zk obtained with EQL for given X1 = x1 and p̃1(x1)
is then the approximate PDF of X1. It is noted that
the approximate conditional PDF qk(zk; x1) leads to
the difference between the approximate solution p̃1(x1)
and exact solution p1(x1). Denote

f̃ j (x1) = f Ij (x1) +
∑
k

∫
R
nzk

f IIj (x1, zk)q(zk; x1)dzk,

(29)

Then Eq. (28) can be finally written as

∂

∂x j

[
f̃ j (x1) p̃1(x1)

]
− 1

2

∂2

∂xi∂x j

[
Gi j p̃1(x1)

] = 0

xi , x j ∈ R
nx1 (30)

which is the approximate FPK equation for the joint
PDF of the state variables in the subspace Rnx1 or the
deflection w0 and velocity ẇ0 of the cable at x = x0.

It is seen that X1 only contains two state variables,
i.e., X1 = {w0, ẇ0}. Hence, the resulting approximate
FPK equation is two-dimensional. The EPC method is
employed to solve Eq. (30) in the following numerical
analysis [35].

5 Solution procedure of exponential polynomial
closure method

Consider the following reduced low-dimensional FPK
equation.

∂

∂x j

[
f j (x)p(x)

] − 1

2

∂2

∂xi∂x j

[
Gi j (x)p(x)

] = 0 (31)

where X ∈ R
nx with the assumption that nx is small or

nx = 1 ∼ 4.

The approximate solution
∼
p (x; a) of Eq. (31) is

assumed to be

∼
p (x; a) = c expQn(x;a) (32)

wherea is unknownparameter vector,a = {a1, a2, . . . ,
aNp }, Np is the total number of unknown parameters,
and Qn(x; a) is a n-degree polynomial in x ∈ R

nx .
This replacement may cause some error in the approxi-
mate solution and hence some residual error in the FPK
equation.

Equation (31) can also be written in the following
form:
∂ f j
∂x j

p + f j
∂p

∂x j
− 1

2

(
∂2Gi j

∂xi∂x j
p + ∂Gi j

∂x j

∂p

∂xi

+ ∂Gi j

∂xi

∂p

∂x j
+ Gi j

∂2 p

∂xi∂x j

)
= 0 (33)

Generally, Eq. (33) can not be satisfied exactly with
∼
p (x; a) because ∼

p (x; a) is only an approximation of
p(x) and the number Np of the unknown parameters

is limited in practice. Substituting
∼
p (x; a) for p(x) in

Eq. (33) leads to the following residual error.

Δ(x; a) = ∂ f j
∂x j

∼
p + f j

∂
∼
p

∂x j
− 1

2

(
∂2Gi j

∂xi∂x j

∼
p

+ ∂Gi j

∂x j

∂
∼
p

∂xi
+ ∂Gi j

∂xi

∂
∼
p

∂x j
+ Gi j

∂2
∼
p

∂xi∂x j

)
(34)
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Substituting
∼
p (x; a) = c expQn(x;a) in Eq. (34)

gives

Δ(x; a) = δ(x; a) ∼
p (x; a) (35)

where

δ(x; a) = f j
∂Qn

∂x j
− 1

2

(
∂Gi j

∂x j

∂Qn

∂xi
+ ∂Gi j

∂xi

∂Qn

∂x j

+Gi j
∂2Qn

∂xi∂x j
+ Gi j

∂Qn

∂xi

∂Qn

∂x j

)
+ ∂ f j

∂x j

− 1

2

∂2Gi j

∂xi∂x j
(36)

Because
∼
p (x; a) �= 0, therefore, the only possibility

for
∼
p (x; a) to satisfy Eq. (33) is δ(x; a) = 0. How-

ever, usually δ(x; a) �= 0 because
∼
p (x; a) is only an

approximation of p(x). In this case, a set of mutually
independent functions hk(x)which span spaceRNp are
introduced to make the projection of δ(x; a) on R

Np

vanish, which leads to

∫
Rnx

δ(x; a) hk(x)dx = 0, k = 1, 2, . . . , Np (37)

or∫
Rnx

{
f j

∂Qn

∂x j
− 1

2

(
∂Gi j

∂x j

∂Qn

∂xi
+ ∂Gi j

∂xi

∂Qn

∂x j

+Gi j
∂2Qn

∂xi∂x j
+ Gi j

∂Qn

∂xi

∂Qn

∂x j

)
+ ∂ f j

∂x j

− 1

2

∂2Gi j

∂xi∂x j

}
hk(x)dx = 0

k = 1, 2, . . . , Np (38)

The above equation (38)means that the reducedFPK

equation is satisfied with
∼
p (x; a) in the weak sense of

integration if δ(x; a) hk(x) is integrable in Rnx .

By selecting hk(x) as x
k1
1 xk22 . . . xknn fN (x), being k1,

k2, . . . , kn = 0, 1, 2, . . . , Np and k = k1+k2+· · ·+kn
such that δ(x; a) hk(x) is integrable inRnx , Np nonlin-
ear algebraic equations in terms of Np undetermined
parameters can be obtained from Eq. (38). The alge-
braic equations can be solved to determine the para-
meters. Numerical experience shows that a convenient
and effective choice for the function fN (x) is the PDF
obtained from EQL or Gaussian closure procedure.
Hence, it is a normal PDF.

6 Probabilistic solutions of the cable system excited
by uniformly distributed Gaussian white noise

6.1 Example 1

Consider the steel cable with Young’s modulus E =
2.1 × 1011 N/m2, damping ratio for each mode ξ =
0.01, cable length l = 120m, diameter of the
cable cross section 0.1m, material density ρ/A =
7850 kg/m3, sag-to-span ratio 1/250, and the inclined
angle θ = 30◦. The cable is excited by uniformly
distributed force with density 100W (t)N/m in which
W (t) is Gaussian white noise with power spectral
density being 1. The PDF of the deflection and
the velocity at the center of the cable with x =
0.5l is analyzed. In this case, the X1 is given by
X1 = {w(0.5l, t), ẇ(0.5l, t)} in the SSS dimension-
reduction procedure.

Modeling the cable by one shape function, the result-
ing equation of motion is a SDOF oscillator. The PDFs
of the deflection at the center of the cable are obtained
with the EPC method, EQLmethod, and MCS, respec-
tively. It is known that the exact PDF of the response of
this SDOF oscillator is obtainable. Actually, the PDF
of the response obtained with EPC method is the same
as the exact solution for this SDOF oscillator. They are
shown and compared in Fig. 2. The symbol n appear-
ing in Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and
15 denotes the polynomial degree of the polynomial
function adopted in the EPC procedure. It is known
that the tails of the PDF of deflection play an impor-
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Fig. 2 The PDFs of the deflection in the middle of the cable
modeled as SDOF system in Example 1
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Fig. 3 Logarithm of PDFs of the deflection in the middle of the
cable modeled as SDOF system in Example 1
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Fig. 4 The PDFs of the deflection in the middle of the cable
modeled as 5-DOF system in Example 1

tant role in system reliability analysis. The tails of the
PDFs of the deflection obtained with various methods
are also shown and compared in Fig. 3. In these fig-
ures, σw denotes the standard deviation of the deflec-
tion obtained with EQL at the center of the cable. It is
observed in Figs. 2 and 3 that the result obtained with
EPC is the same as exact solution or MCS while the
result obtainedwith EQLdeviates a lot from exact solu-
tion.When the number of the shape functions increases
to 5, the 5-DOF system is formulated. The exact proba-
bilistic solution of this 5-DOF system is not obtainable.
The PDFs of the deflection at the center of the cable are
obtained with the SSS–EPC method, MCS, and EQL,
respectively. They are shown and compared in Fig. 4.
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Fig. 5 Logarithm of PDFs of the deflection in the middle of the
cable modeled as 5-DOF system in Example 1
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Fig. 6 The MCRs of the deflection in the middle of the cable
modeled as SDOF system in Example 1

The tails of the PDFs obtained with various methods
are also compared in Fig. 5. The sample size in MCS
is 108. The simulation about this 5-DOF system was
conducted on the original 5-DOF system rather than
on the SDOF system resulted from the SSS dimension-
reduction procedure.

It is observed in Figs. 4 and 5 that the result obtained
with SSS–EPC is close to MCS while the result corre-
sponding to EQL deviates a lot from MCS. Numeri-
cal experience showed that further increasing the num-
ber of mode functions to be greater than five can not
make the solution further changed obviously. Hence,
the solution of this 5-DOF system can be considered
as the converged solution in the sense of analysis with
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Fig. 7 Logarithm ofMCRs of the deflection in the middle of the
cable modeled as SDOF system in Example 1
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Fig. 8 Logarithm ofMCRs of the deflection in the middle of the
cable modeled as 5-DOF system in Example 1

Galerkin method. The polynomial degree used in the
EPC solution procedure is four.

Further increasing the number of response samples
to be greater than 108 in analyzing the 5-DOF system
with MCS can make the computational effort huge due
to the huge number of nonlinear terms in the system.
There are about 250 nonlinear terms in the formulated
5-DOF system. It is one of the challenges inherent in
MCS. The computational time spent with SSS–EPC
solution procedure is about 5 s which are mainly spent
on the linearization procedure because all the nonlin-
ear terms need to be linearized in the linearization pro-
cedure and the result from equivalent linearization is
needed in the SSS–EPC solution procedure. The com-
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Fig. 9 The PDFs of the deflection in the middle of the cable
modeled as SDOF system in Example 2
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Fig. 10 Logarithm of PDFs of the deflection in the middle of
the cable modeled as SDOF system in Example 2

putational time spent byMCSwith 108 samples is about
2.5h for this 5-DOF system in the same computer with
Inter(R) CPU B950@2.10 GHz, and 3.16 GB RAM,
and the same running environment. From Figs. 3 and 5
it is observed that there is some difference between the
PDF of the deflection obtained by modeling the system
as a SDOF system and that obtained by modeling the
system as a 5-DOF system. The PDF of the deflection
obtained from the 5-DOF system is about 1.03–1.44
times of that obtained from the SDOF system when the
deflection changes from −3.136σw to −4.136σw and
about 1.19–2.19 times of that obtained from the SDOF
system when the deflection changes from 2.864σw to
3.864σw , where σw = 0.865m obtained with EQL
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Fig. 11 The PDFs of the deflection in the middle of the cable
modeled as 5-DOF system in Example 2
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Fig. 12 Logarithm of PDFs of the deflection in the middle of
the cable modeled as 5-DOF system in Example 2

is the standard deviation of the deflection in the mid-
dle of the cable. The difference of the values of σw of
the SDOF system and the 5-DOF system is less than
1%. For either the SDOF system or the 5-DOF system,
the result obtained with EQL is far from being accept-
able. Numerical results show that the PDF of velocity
at midspan is close to Gaussian or close to that obtained
from EQL. Hence, they are not given here. The similar
behavior was observed on the PDF of velocity in the
following Example 2.

The mean up-crossing rate (MCR) at thresholdw =
a, denoted as ν+(a), is a quantity that is frequently used
in system reliability analysis. It is calculated by
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Fig. 13 The MCRs of the deflection in the middle of the cable
modeled as SDOF system in Example 2
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Fig. 14 Logarithm of MCRs of the deflection in the middle of
the cable modeled as SDOF system in Example 2

ν+(a) =
∫ +∞

0
ẇp(a, ẇ)dẇ (39)

In order to show the difference of the MCRs obtained
with various methods, the MCRs obtained with vari-
ous methods are shown and compared in Fig. 6 when
the cable is modeled as SDOF system. Since the figure
about the MCRs obtained with various methods when
the cable is modeled as 5-DOF system looks very close
to Fig. 6, it is not presented here. In order to show the
difference of the tail behavior of the MCRs obtained
with various methods, the MCRs in logarithmic scale
are shown and compared in Figs. 7 and 8when the cable
is modeled as SDOF and 5-DOF system, respectively.
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Fig. 15 Logarithm of MCRs of the deflection in the middle of
the cable modeled as 5-DOF system in Example 2

From these figures it is seen that the MCRs obtained
with SSS–EPC are close to those obtained with MCS
even in the tails of theMCRs and the error in theMCRs
obtained with EQL is too large to be acceptable. The
MCR of the deflection obtained from the 5-DOF sys-
tem is about 1.07–1.55 times of that obtained from
the SDOF system when the deflection changes from
−3.136σw to −4.136σw and about 1.24–2.37 times of
that obtained from the SDOF system when the deflec-
tion changes from 2.864σw to 3.864σw .

6.2 Example 2

All the parameter values are the same as those in Exam-
ple 1 except the cable length l equals 240m and the
sag-to-span ratio is 1/125. The PDF of the deflec-
tion and the velocity at the center of the cable with
x = 0.5l is analyzed. In this case, the X1 is still given
byX1 = {w(0.5l, t), ẇ(0.5l, t)} in the SSSdimension-
reduction procedure.

The observations and discussions about the results
in Example 2 are the same as those in Example 1
except that the nonlinearity of the cable in Example 2 is
stronger than that in Example 1, which can be reflected
by the results shown in Figs. 9, 10, 11, 12, 13, 14, and
15. In this case, about 1010 response samples are needed
if the PDF of the deflection of the 5-DOF system is to
be simulated to the tail end at w = 4σw, which means
that the computer needs to run about 250h or 10 days
with the Monte Carlo simulation. The results obtained

from the 5-DOF system is about 0.91–1.18 times of
the solution of the SDOF system when the deflection
changes from−3.278σw to−4.278σw and about 1.19–
2.54 times of the solution of the SDOF systemwhen the
deflection changes from 2.722σw to 3.722σw, where
σw = 2.16m obtained with EQL is the standard devi-
ation of the deflection in the middle of the cable. The
difference of the values of σw of the SDOF system and
the 5-DOF system is less than 1%. For either the SDOF
system or the 5-DOF system, the result obtained with
EQL is far from being acceptable.

TheMCRsobtainedwith variousmethods are shown
and compared in Fig. 13 when the cable is modeled
as SDOF system. Since the figure about the MCRs
obtained with various methods when the cable is mod-
eled as 5-DOF system looks very close to Fig. 13, it
is not shown here. In order to show the difference of
the tail behavior of the MCRs obtained with various
methods, theMCRs in logarithmic scale are shown and
compared in Figs. 14 and 15 when the cable is mod-
eled as SDOF and 5-DOF system, respectively. From
these figures it is observed that theMCRs obtainedwith
SSS–EPC are also close to those obtained with MCS
and the error in the MCRs obtained with EQL is also
too large to be acceptable. The MCR of the deflection
obtained from the 5-DOF system is about 0.94–1.28
times of that obtained from the SDOF system when the
deflection changes from −3.278σw to −4.278σw and
about 1.66–2.78 times of that obtained from the SDOF
system when the deflection changes from 2.822σw to
3.722σw.

7 Conclusions

The MDOF–NSD system is formulated for the cables
with small sag and excited by uniformly distributed
Gaussian white noise. The dimension-reduction pro-
cedure of the state-space-split method is adopted to
reduce the problem from solving high-dimensional
FPK equation to two-dimensional FPK equation. Then
the exponential polynomial closure method is adopted
to solve the two-dimensional FPK equation. The
numerical results and comparison with Monte Carlo
simulation and equivalent linearization method show
that the SSS–EPC method gives accurate results for
the PDF of the cable deflection. Cables modeled
as a SDOF system and 5-DOF system are studied.
The values in the tails of the PDF of middle deflection
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of the cable described by the 5-DOF system are big-
ger than those from the SDOF system. It is observed
that the computational time with Monte Carlo simula-
tion and sample size being 108 for the 5-DOF system
is a thousand times more than that with the SSS–EPC
method for the studied cables and that equivalent lin-
earization method does not give acceptable results in
the tail regions of the PDFs and MCRs of cable deflec-
tion.
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