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Abstract This paper focuses on the attitude track-
ing control problem of Mars entry vehicle (MEV) with
time-varying input delay. The original attitude dynam-
ics of MEV is divided into slow subsystem and fast
subsystem. For slow subsystem, the dynamic inversion
method is used to generate the angular velocity com-
mand. For fast subsystem, a T-S fuzzy model is used
to approximate it, and delays-dependent H∞ attitude
tracking control is applied to reduce the effects of delay
on attitude dynamics. Specially, a decomposition coef-
ficient of delay integral inequality is introduced in our
proposed results, which may further reduce the design
algorithmconservatism. Finally, numerical simulations
are used to verify the effectiveness of the proposed
method.
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1 Introduction

Since the human first completed to reach Mars, Mars
landing exploration has been more and more frequent.
Until now, Mars exploration activities have been taken
more than 40 times all around the world [1,2]. Among
many tasks of Mars landing missions, the most dif-
ficult one is entry, descent and landing (EDL) phase
[3,4]. The Mars entry is the longest phase during the
EDL process. For a success of the EDL, the entry phase
should be accurate firstly [5]. Therefore, many control
approaches have been proposed to improve the preci-
sion of Mars entry [6–8].

In order to achieve precise entry, an active guided
entry trajectory is very necessary, which can accu-
rately steer the Mars entry vehicle through the Mar-
tian atmosphere [4]. The guided entry problem includes
two parts, one is guidance design and the other is con-
trol design. The designed guidance system can min-
imize the position error by changing the lift vector
through bank angle commands [9], which is then fed
into the control system as a reference attitude to calcu-
late the desired control torques that the actuators need
to produce [10,11]. Thus, the Mars entry control prob-
lem can be considered as an attitude tracking prob-
lem.

In recent years, theT-S fuzzymodel has been applied
for nonlinear systems widely [12–16]. Some T-S fuzzy
models have beenused in solving the stabilization prob-
lem of the systems successfully [17–19]. The tracking
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controller via T-S fuzzy model has been designed by
some researchers [20,21]. Unfortunately, in the exist-
ing literature forT-S fuzzymodel, research on the track-
ing control of MEV problem is scarce [22], and this
is the main motivation for the work presented in this
paper. Time delay is the property of a physical system
by which the response to an applied force (action) is
delayed in its effect [23,24]. Whenever material, infor-
mation or energy is physically transmitted from one
place to another, there is a delay associated with the
transmission. The presence of delays makes system
analysis and control design much more complex. On
the other hand, in order to get high accuracy and stabil-
ity of MEV, the time delay should be considered in the
high- precision attitude tracking control system. The
similar idea had been considered in synchronization or
state estimation of nonidentical chaotic systems [25]
and complex networks [24,26]. But, to the best of our
knowledge, little attention has been paid toward atti-
tude tracking control for MEVwith time-varying input
delay.

Motivated by the above, in this paper, the MEV
model with time-varying input delay is considered,
the attitude dynamics system of MEV is divided into
slow subsystem and fast subsystem, the slow subsys-
tem consists of the attitude dynamics, and the fast sub-
system consists of the angular velocity dynamics. A
T-S fuzzy model is applied for the fast subsystem. A
delays-dependent H∞ tracking control is designed by
means of Lyapunov stability theory. Finally, numeri-
cal simulations are used to verify the effectiveness of
the proposed method and to show the effects of time
delayboundanddecomposition coefficient on the fuzzy
tracking error system performance. The main contribu-
tion of this paper is listed as follows:

1. Different from the existing T-S systems in the lit-
erature [12–16], the modeling and tracking control
of MEV problem via T-S fuzzy theory is scarce,
which is the main motivation for this paper.

2. Compared with the model of MEV in [22], time
delay is considered in modeling T-S fuzzy system,
which is more real than the original one in [22].

3. A decomposition coefficient of delay integral
inequality is introduced in the process of solv-
ing functional. It can not only provide flexibility
in tracking controller design, but also reduce time
delay influences, which can be seen in subsequent
simulation part.

Notation Throughout this paper, Rn represents the n-
dimensional Euclidean space, Rn×m denotes the n×m
real matrices, for matrix W ∈ Rn×n , W−1 denotes
the inverse of W , and WT denotes the transpose of
W . Zero matrix is 0, unit matrix is I , and the nota-
tion Q > 0 (≥0) means that the matrix Q is posi-
tive definite(semi-definite). The symmetric term in a
matrix is denoted by “*”. For a vector S(t), its norm is
given by ‖S(t)‖22 = ST(t)S(t). diag{. . .} represents a
block diagonal matrix. Matrix, if its dimensions are not
explicitly stated, is assumed to have compatible dimen-
sions.

2 Problem formulation and preliminaries

2.1 Model of Mars entry vehicles

The system model of rotational motion for MEV [22]
can be described as

σ̇ (t) = 1

4
G(σ (t))ω(t) (1)

ω̇(t) = −J−1S(ω(t))Jω(t)

+ J−1u(t − d(t)) + J−1Maero(t) (2)

where σ(t) = [σ1(t) σ2(t) σ3(t)]T ∈ R3 is the modi-
fied Rodrigues parameter (MRP) vector andG(σ (t)) ∈
R3 is the nonlinear transformation matrix

G(σ (t))=
(
1−σT(t)σ (t)

2
I3+σ(t)σT(t)+2S(σ (t))

)

(3)

ω(t) = [ω1(t) ω2(t) ω3(t)]T ∈ R3 is the angular
velocity vector, S(ω(t)) ∈ R3×3 is a skew symmetric
matrix, where the form is defined in [22]. J ∈ R3 is
positive definite symmetric inertia matrix

J =
⎡
⎣ J1 0 0

0 J2 0
0 0 J3

⎤
⎦ =

⎡
⎣ Jxx 0 0

0 Jyy 0
0 0 Jzz

⎤
⎦ (4)

in which Jxx , Jyy and Jzz are the moments of iner-
tia when rotating about three axis of the body ref-
erence frame, respectively. u(t − d(t)) = [u1(t −
d(t) u2(t − d(t) u3(t − d(t)] ∈ R3 is the vec-
tor of control torques exerted on the principal axes.
Maero(t) = [I M N ]T is the aerodynamic moment
vector, where I = q̄ Sref lrefclbβ, M = q̄ Sref lrefcmaα,
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Fig. 1 The structure of
MEVs system

N = q̄ Sref lrefcnbβ, which is supposed Maero(t)
belongs to l2[0,∞) and satisfied ||Maero(t)|| ≤ δ.
It is assumed that time-varying delay d(t) satisfies
0 ≤ d(t) ≤ τ and ḋ(t) ≤ d̄ < 1, τ is the upper
bound for time-varying delay, and d̄ is the upper bound
of time-varying delay derivative.

Remark 1 Time delay exists commonly in dynamic
systems and is frequently a source of instability and
poor performance. However, it is noted that the model
ofMEV in [22] is not considered time delay case. Thus,
in this paper, the model of MEV with time-varying
delay is firstly presented.

In order to reduce the design complexity, the system
(1) and (2) is divided into slow subsystem (1) and fast
subsystem (2). The slow subsystem consists of the atti-
tude dynamics, and the fast subsystem consists of the
angular velocity dynamics. Figure 1 shows the struc-
ture of MEVs system.

2.2 Control design of slow subsystem

The slow subsystem is described as follows:

˙σ(t) = 1

4
G(σ (t))ωd(t) (5)

where ωd(t) is the control-like angular velocity and
needs to be designed in the subsequent part. Letting the
attitude tracking error as eσ(t) = σ(t) − σd(t), where
σd(t) is the givenMRPvector,wemay choose thematri-
ces Ka and Kb to satisfy the following condition

ėσ (t) + Kaeσ (t) + Kb

∫
eσ (t)dt = 0 (6)

Thus, the desired attitude tracking can be obtained. By
using the dynamic inversion [22], ωd(t) is generated
by

ωd(t) = 4G−1(σ (t))[σ̇d(t)−Kaeσ (t)−Kb

∫
eσ (t)dt]

(7)

The above-detailed method can be found in [22]. Our
main work is to track the ωd(t) in the fast subsystem.

2.3 Control design of fast subsystem

Defining xd(t) = ωd(t), x1(t) = ω1(t), x2(t) = ω2(t),
x3(t) = ω3(t), x(t) = [x1(t) x2(t) x3(t)]T, it is noted
that the fast subsystem has direct connection with the
control input u(t − d(t)), so the control u(t − d(t)) is
designed such that lim

t−→∞(x(t) − xd(t)) = 0. For this

purpose, we choose the angular velocity vector as the
output of MEV

⎧⎨
⎩
ẋ(t) = A(x(t))x(t) + B(x(t))u(t − d(t))

+ B(x(t))Maero(t)
y(t) = C(x(t))x(t)

(8)

where y(t) is the reference output and

A(x(t))

⎡
⎣ 0 0 c2x2(t)
c3x3(t) 0 0

0 c1x1(t) 0

⎤
⎦ ,

B(x(t)) = J−1,C(x(t)) = I 3×3

with c1 = J−1
3 (J1 − J2),c2 = J−1

1 (J2 − J3), c3 =
J−1
2 (J3−J1).AT-S fuzzymodel is used to approximate

the nonlinear fast subsystem (8). Moreover, the system
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states xi (t), (i = 1, 2, 3) are chosen as the premise
variables, and xi (t) is assumed to bound during the
wholeMartian atmospheric entry phase, thismeans that

xi (t) ∈ [ri , Ri ] (9)

where ri < 0 is the lower bound of xi (t), Ri > 0 is the
upper bound of xi (t), respectively. For each xi (t), the
correspondingmembership functions are defined in the
following [22]:

MBi1(xi (t))= Ri −xi (t)

Ri −ri
, MBi2(xi (t))= xi (t)−ri

Ri − ri
(10)

Then, the nonlinear fast subsystem (8) can be repre-
sented by the following eight fuzzy rules:

Plant rule i IF x1(t) is MB1n(x1(t)), x2(t) is
MB2k(x2(t)), x3(t) is MB3l(x3(t)), then

{
ẋ(t) = Ai x(t) + Biu(t − d(t)) + Bi Maero(t)
y(t) = Ci x(t)

(11)

where

Ai =
⎡
⎣ 0 0 c2α2k

c3α3l 0 0
0 c1α1n 0

⎤
⎦ ,

Bi = J−1, Ci = I 3×3

and n, k, l = 1, 2, i = l + 2(k − 1) + 4(n − 1), (i =
1, 2, . . . , 8), αm1 = rm, αm2 = Rm, (m = 1, 2, 3).
The overall fuzzy systems can obtained as follows

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ(t) =
8∑

i=1
hi (x(t))[Ai x(t) + Biu(t − d(t))

+ Bi Maero(t)]
y(t) =

8∑
i=1

hi (x(t))Ci x(t)

(12)

where h(x(t)) = μi (x(t))/
∑8

i=1 μi (x(t)), μi (x(t))
= MB1n(x1(t)) · MB2k(x2(t)) · MB3l(x3(t)). Hence,
hi (x(t)) satisfies hi (x(t)) ≥ 0 and

∑8
i=1 hi (x(t)) = 1

for all t . In order to facilitate the description, the system
(12) can be described as follows

{
ẋ(t)= A(x)x(t)+B(x)u(t−d(t))+B(x)Maero(t)
y(t) = C(x)x(t)

(13)

where A(x) = ∑8
i=1 hi (x(t))Ai , B(x) = ∑8

i=1

hi (x(t))Bi , C(x) = ∑8
i=1 hi (x(t))Ci . Define the

angular velocity tracking error as

ex (t) = x(t) − xd(t) (14)

Combingwith (13), the time derivative of ex (t) is given
by

ėx (t) = A(x)ex (t)+B(x)u(t−d(t))+B(x)Maero(t)

+ A(x)xd(t)− ẋd(t) (15)

Next, the controller u(t−d(t)) can be described as [27]

u(t−d(t)) = ū(t−d(t))−B−1(x)[A(x)xd(t)− ẋd(t)]
(16)

where ū(t −d(t)) ∈ R3 is a new vector to be designed.
According to (13), (15) and (16), we have the following
fuzzy error system

{
ėx (t)= A(x)ex (t)+B(x)ū(t−d(t))+B(x)Maero(t)
ȳ(t) = C(x)ex (t)

(17)

2.4 Object of this paper

We consider the following state-feedback controller:

Plant rule i IF x1(t) is MB1n(x1(t)), x2(t) is MB2k

(x2(t)), x3(t) is MB3l(x3(t)), then

ū(t − d(t)) = Kiex (t − d(t)) (18)

where Ki ∈ R3×3 are needed to design controller gain,
ex (t − d(t)) is the state delay error, i = l + 2(k −
1)+4(n−1), (i = 1, 2, . . . , 8). Therefore, the overall
fuzzy can be described as

ū(t − d(t)) =
8∑

i=1

hi (x(t))Kiex (t − d(t)) (19)

Now, combing with system (17), the objective is to
design K j ( j = 1, 2, . . . , 8), such that the following
fuzzy error system is asymptotically stable.

⎧⎨
⎩
ėx (t) = A(x)ex (t) + B(x)K (x)ex (t − d(t))

+B(x)Maero(t)
ȳ(t) = C(x)ex (t)

(20)
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where K (x) = ∑8
j=1 hi (x(t))K j . The objective of this

paper is:

– Designing the controller gains K j makes the fuzzy
error system (20) with Maero(t) = 0 asymptotical,

– In the casewhenMaero(t) �= 0, the H∞ performance
of system (20) satisfies ‖ȳ(t)‖22 < γ 2‖Maero(t)‖22
for any nonzero Maero(t) ∈ l2 [0,∞), where γ > 0
is a prescribed scalar.

To obtain our main results, we need the following lem-
mas.

Lemma 1 [28] Let Z(t) ∈ Rn have continuous
derived function Ż(t) on interval [−τ, 0]. Then for any
n × n − matri x T1 > 0, scalar τ > 0, the following
inequality holds:

−
∫ t

t−τ

ŻT(s)T1 Ż(s)ds

≤ − 2

τ 3

(∫ t

t−τ

Z(s)ds

)T

T1

(∫ t

t−τ

Z(s)ds

)

− 2

τ
ZT(t − τ)T1Z(t − τ)

+ 4

τ 2

(∫ t

t−τ

Z(s)ds

)T

T1Z(t − τ) (21)

Lemma 2 [29] For any matrix T2 > 0, scalars τ1 >

τ2, if there exists a Lebesque vector w(s), then the fol-
lowing inequality holds

−
∫ τ1

τ2

wT(s)T2w(s)ds ≤

− 1

τ1 − τ2

∫ τ1

τ2

wT(s)dsT2

∫ τ1

τ2

w(s)ds (22)

3 Main result

In this section, we will propose the designed method to
the controller gains of the augmented system (20).

Theorem 1 Given scalars γ > 0, τ , a and d̄, if there
exist matrices R > 0, P > 0, Q > 0, M1, M2, M3,
M4, M5, then the following inequalities hold

Λi i < 0, i = 1, 2, . . . , 8 (23)

Λi j + Λ j i < 0, i < j, i, j = 1, 2, . . . , 8 (24)
where

Λi j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δ11 − aQ M1Bi K j + AT
i M

T
4 + aQ M1Bi AT

i M
T
3 AT

i M
T
5

Δ22 − 2aQ M4Bi KT
j B

T
i M

T
3 + aQ KT

j B
T
i M

T
5

∗ −γ 2 I BT
i M

T
3 BT

i M
T
5

∗ ∗ (−2 + a)Q 2
τ
(1 − a)Q

∗ ∗ ∗ − 2
τ 2

(1 − a)Q
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

P − M1 + AT
i M

T
2 CT

i
KT

j B
T
i M

T
2 − M4 0

BT
i M

T
2 0

−M3 0
−M5 0

−M2 − MT
2 + τ 2Q 0

−I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

Δ11 = M1Ai + AT
i M

T
1 + R (25)

Δ22 = −(1 − d̄)R + M4Bi K j + KT
j B

T
i M

T
4 (26)

Then, the system (20) is asymptotically stable and sat-
isfies H∞ performance ‖ȳ(t)‖22 < γ 2‖Maero(t)‖22.

Proof For the system (20), choose the following
Lyapunov–Krasovskii functional:

V (ex (t), t) = eTx (t)Pex (t)

+ τ

∫ 0

−τ

∫ t

t+β

ėTx (s)Qėx (s)dsdβ

+
∫ t

t−d(t)
eTx (s)Rex (s)ds (27)

The time derivative of V (ex (t), t) is given by

V̇ (ex (t), t) = ėTx (t)Pex (t)

+ eTx (t)Pėx (t) + τ 2ėTx (t)Qėx (t)
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− τ

∫ t

t−τ

ėTx (s)Qėx (s)ds + eTx (t)Rex (t)

−[1 − ḋ(t)]eTx (t − d(t))Rex (t − d(t))

(28)

The equivalent decomposition of−τ
∫ t
t−τ

ėTx (s)Qėx (s)
ds can be described as

−τ

∫ t

t−τ

ėTx (s)Qėx (s)ds = Z1 + Z2 (29)

where Z1 = −aτ(
∫ t−d(t)
t−τ

ėTx (s)Qėx (s)ds + ∫ t
t−d(t)

ėTx (s)Qėx (s)ds), Z2=−(1−a)τ (
∫ t
t−τ

ėTx (s)Qėx (s)ds),
where a is called as the decomposition coefficient of
delay integral inequality. It may further reduce the
design algorithm conservatism and a satisfies 0 ≤ a ≤
1. From Lemma 1, then we have

Z1 ≤ Ψ1 (30)

where

Ψ1 =
⎡
⎣ ex (t)
ex (t − d(t))
ex (t − τ)

⎤
⎦
T ⎡

⎣−aQ aQ 0
−2aQ aQ

∗ −aQ

⎤
⎦

×
⎡
⎣ ex (t)
ex (t − d(t))
ex (t − τ)

⎤
⎦

From Lemma 2, then we have

Z2 ≤ Ψ2 (31)

where

Ψ2 = − 2

τ 2
(1−a)

(∫ t

t−τ

ex (s)ds

)T

Q

(∫ t

t−τ

ex (s)ds

)

− 2(1 − a)eTx (t − τ)Qex (t − τ)

+ 4

τ
(1 − a)

(∫ t

t−τ

ex (s)ds

)T

Qex (t − τ)

Therefore,

V̇ (ex (t), t) ≤ ėTx (t)Pex (t) + eTx (t)Pėx (t)

+ τ 2ėTx (t)Qėx (t)+Ψ1

+Ψ2 + eTx (t)Rex (t) − [1 − d̄]eTx
× (t − d(t))Rex (t − d(t)) (32)

First, we consider the stability of system (20) when
Maero(t) = 0. Note that

2[eTx (t)M1 + ėTx (t)M2 + eTx (t − τ)M3

+ eTx (t − d(t))M4 +
∫ t

t−τ

eTx (s)dsM5]
× [−ėx (t) + A(x)ex (t)

+ B(x)K (x)ex (t − d(t))] = 0 (33)

where M1, M2, M3, M4 and M5 are arbitrary matri-
ces with appropriate dimensions. Combing (32) and
(33),we arrive at

V̇ (ex (t), t) ≤ αT
1 (t)Ω(x)α1(t) (34)

where

α1(t) = [eTx (t) eTx (t − d(t)) eTx (t − τ)

∫ t

t−τ

eTx (s)ds ėTx (t)]T

Ω(x) =

⎡
⎢⎢⎢⎢⎣

Δ11(x) − aQ M1B(x)K (x) + AT(x)MT
4 + aQ AT(x)MT

3
Δ22(x) − 2aQ KT(x)BT(x)MT

3 + aQ
∗ (−2 + a)Q
∗ ∗
∗ ∗

AT(x)MT
5 P − M1 + AT(x)MT

2
KT(x)BT(x)MT

5 KT(x)BT(x)MT
2 − M4

2
τ
(1 − a)Q −M3

− 2
τ 2

(1 − a)Q −M5

−M2 − MT
2 + τ 2Q

⎤
⎥⎥⎥⎥⎦

and

Δ11(x) = M1A(x) + AT(x)MT
1 + R

Δ22(x) = −(1−d̄)R+M4B(x)K (x)+KT(x)BT(x)MT
4
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Furthermore,

Ω(x) =
8∑

i=1

8∑
j=1

hi (x(t))h j (x(t))Ωi j =
8∑

i=1

h2i (x(t))Ωi i

+
8∑

i< j

hi (x(t))h j (x(t))(Ωi j + Ω j i ) (35)

By using the Schur complement lemma and from (23)
and (24), we have known that

Ωi i < 0, i = 1, 2, . . . , 8 (36)

Ωi j + Ω j i < 0, i < j, i, j = 1, 2, . . . , 8 (37)

where

Ωi j

=

⎡
⎢⎢⎢⎢⎣

Δ11 − aQ Δ12 + aQ AT
i M

T
3 AT

i M
T
5 P − M1 + AT

i M
T
2

Δ22 − 2aQ KT
j B

T
i M

T
3 + aQ KT

j B
T
i M

T
5 KT

j B
T
i M

T
2 − M4

∗ (−2 + a)Q 2
τ
(1 − a)Q −M3

∗ ∗ − 2
τ 2

(1 − a)Q −M5

∗ ∗ ∗ −M2 − MT
2 + τ 2Q

⎤
⎥⎥⎥⎥⎦

and Δ11, Δ22 are defined in (25), (26), Δ12 =
M1Bi K j + AT

i M
T
4 . Thus, Ω(x) < 0, which means

we have V̇ (ex (t), t) < 0. So the system (20) is asymp-
totically stable. Similar to (33), when Maero(t) �= 0,
the following equality is held.

2Ψ3Ψ4 = 0 (38)

where

Ψ3 = eTx (t)M1 + ėTx (t)M2

+ eTx (t − τ)M3 + eTx (t − d(t))M4

+
∫ t

t−τ

eTx (s)dsM5

Ψ4 = −ėx (t) + A(x)ex (t) + B(x)K (x)ex (t − d(t))

+ B(x)Maero(t)

Combing (32) and (38), we arrive at

V̇ (ex (t), t) ≤ αT(t)Υ (x)α(t) (39)

where

α(t) = [eTx (t) eTx (t − d(t)) MT
aero(t) eTx (t − τ)

∫ t

t−τ

eTx (s)ds ėTx (t)]T

Υ (x)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

Δ11(x) − aQ Δ12(x) + aQ M1B(x) AT(x)MT
3

Δ22(x) − 2aQ M4B(x) KT(x)BT(x)MT
3 + aQ

∗ 0 BT(x)MT
3

∗ ∗ (−2 + a)Q
∗ ∗ ∗
∗ ∗ ∗

AT(x)MT
5 P − M1 + AT(x)MT

2
KT(x)BT(x)MT

5 KT(x)BT(x)MT
2 − M4

BT(x)MT
5 BT(x)MT

2
2
τ
(1 − a)Q −M3

− 2
τ 2

(1 − a)Q −M5

−M2 − MT
2 + τ 2Q

⎤
⎥⎥⎥⎥⎥⎥⎦

and Δ11 and Δ22 are defined in (34), Δ12(x) =
M1B(x)K (x) + AT(x)MT

4 . By using the Schur com-
plement lemma, we have known that Υ (x) ≤ 0 from
(23) and (24). Next, wewill prove the H∞ performance
of the system. The following auxiliary function is con-
sidered
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J (ex (t)) =
∫ t

0
(‖ȳ(s)‖22 − γ 2‖Maero(s)‖22)ds (40)

Therefore,

J (ex (t)) ≤
∫ t

0
(‖ȳ(s)‖22 − γ 2‖Maero(s)‖22

+ V̇ (ex (s), s))ds (41)

It is noted that ‖ȳ(s)‖22−γ 2‖Maero(s)‖22+ V̇ (ex (s), s)
≤ αT(s)(Υ (x) + Υ1(x))α(s), where

Υ1(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

CT(x)C(x) 0 0 0 0 0
0 0 0 0 0
∗ −γ 2 I 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Then, we can have that

Υ (x) + Υ1(x)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δ11(x) − aQ + CT(x)C(x) Δ12(x) + aQ M1B(x)

Δ22(x) − 2aQ M4B(x)

∗ −γ 2 I

∗ ∗
∗ ∗
∗ ∗

AT(x)MT
3 AT(x)MT

5 P − M1 + AT(x)MT
2

KT(x)BT(x)MT
3 + aQ KT(x)BT(x)MT

5 KT(x)BT(x)MT
2 − M4

BT(x)MT
3 BT(x)MT

5 BT(x)MT
2

(−2 + a)Q 2
τ
(1 − a)Q −M3

− 2
τ 2

(1 − a)Q −M5

∗ −M2 − MT
2 + τ 2Q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

According to the Schur complement lemma, we have
known Υ (x) + Υ1(x) is equivalent to
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Λ(x)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δ11(x) − aQ Δ12(x) + aQ M1B(x) AT(x)MT
3

Δ22(x) − 2aQ M4B(x) KT(x)BT(x)MT
3 + aQ

∗ −γ 2 I BT(x)MT
3

∗ ∗ (−2 + a)Q

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

AT(x)MT
5 P − M1 + AT(x)MT

2 CT(x)

KT(x)BT(x)MT
5 KT(x)BT(x)MT

2 − M4 0

BT(x)MT
5 BT(x)MT

2 0
2
τ
(1 − a)Q −M3 0

− 2
τ 2

(1 − a)Q −M5 0

−M2 − MT
2 + τ 2Q 0

∗ I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(42)

Furthermore,

Λ(x) =
8∑

i=1

8∑
j=1

hi (x(t))h j (x(t))Λi j

=
8∑

i=1

h2i (x(t))Λi i +
8∑

i< j

× hi (x(t))h j (x(t))(Λi j + Λ j i ) (43)

From (23) and (24), we have known that Λ(x) < 0,
whichmeansΥ (x)+Υ1(x) < 0. Therefore, ‖ȳ(t)‖22 <

γ 2‖Maero(t)‖22. So the system is asymptotically stable,
the proof is thus completed.

In Theorem 1, a decomposition coefficient of delay
integral inequality a is introduced, which can adjust
the ratio between Lemmas 1 and 2. When a = 1
or a = 0, it is obvious that they are two special
cases. The following corollaries are given for these two
cases.

Corollary 1 (a = 1 case) Given scalars γ > 0, d̄ and
τ , if there exist matrices R > 0, P > 0, Q > 0, M1,
M2, M3, M4, then the following inequalities hold

Φ̄i i < 0, i = 1, 2, . . . , 8 (44)

Φ̄i j + Φ̄ j i < 0, i < j, i, j = 1, 2, . . . , 8 (45)

where

Φ̄i j =

⎡
⎢⎢⎢⎢⎢⎢⎣

Δ11 − Q Δ12 + Q M1Bi AT
i M

T
3 P − M1 + AT

i M
T
2 CT

i
Δ22 − 2Q M4Bi KT

j B
T
i M

T
3 + Q KT

j B
T
i M

T
2 − M4 0

∗ −γ 2 I BT
i M

T
3 BT

i M
T
2 0

∗ ∗ −Q −M3 0
∗ ∗ ∗ −M2 − MT

2 + τ 2Q 0
∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎦

and Δ11, Δ12 are defined in Theorem 1. Then, the sys-
tem (20) is asymptotically stable, and satisfies H∞ per-
formance ‖ȳ(t)‖22 < γ 2‖Maero(t)‖22.

Corollary 2 (a = 0 case) Given scalars γ > 0, d̄ and
τ , if there exist matrices R > 0, P > 0, Q > 0, M1,
M2, M3, M4 and M5, then the following inequalities
hold

Φ̃i i < 0, i = 1, 2, . . . , 8 (46)
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Φ̃i j + Φ̃ j i < 0, i < j, i, j = 1, 2, . . . , 8 (47)

where

Φ̃i j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δ11 Δ12 M1Bi AT
i M

T
3 AT

i M
T
5 P − M1 + AT

i M
T
2 CT

i
Δ22 M4Bi KT

j B
T
i M

T
3 KT

j B
T
i M

T
5 KT

j B
T
i M

T
2 − M4 0

∗ −γ 2 I BT
i M

T
3 BT

i M
T
5 BT

i M
T
2 0

∗ ∗ −2Q 2
τ
Q −M3 0

∗ ∗ ∗ − 2
τ 2
Q −M5 0

∗ ∗ ∗ ∗ −M2 − MT
2 + τ 2Q 0

∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Then, the system (20) is asymptotically stable and sat-
isfies H∞ performance ‖ȳ(t)‖22 < γ 2‖Maero(t)‖22.

Because the Theorem 1 is unable to solve the gain
of the controller K j , on the basis of Theorem 1, we can
further obtain the following theorem.

Theorem 2 Given scalars γ > 0, d̄ , τ , ε1, ε2, ε3 and
ε4, if there exist matrices T > 0, G > 0, H > 0 and a
nonsingular matrix X, then the following LMIs hold

Λ̄i i < 0, i = 1, 2, . . . , 8 (48)

Λ̄i j + Λ̄ j i < 0, i < j, i, j = 1, 2, . . . , 8 (49)

where

Λ̄i j

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δ̄11 − aG Δ̄12 + aG Bi ε2X AT
i ε4X AT

i
Δ̄22 − 2aG ε3Bi ε2STj B

T
i + aG ε4STj B

T
i

∗ −γ 2 I ε2BT
i ε4BT

i
∗ ∗ (−2 + a)G 2

τ
(1 − a)G

∗ ∗ ∗ − 2
τ 2

(1 − a)G
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

H − XT + ε1X AT
i XCT

i
ε1STj B

T
i − ε3XT 0

ε1BT
i 0

−ε2XT 0
−ε4XT 0

−ε1XT − ε1X + τ 2G 0
∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

Δ̄11 = Ai X
T + X AT

i + T (50)

Δ̄12 = Bi S j + ε3X AT
i (51)

Δ̄22 = −(1 − d̄)T + ε3Bi S j + ε3S
T
j B

T
i (52)

When the controller K j = S j X−T , the system (20)
is asymptotically stable and satisfies H∞ performance
‖ȳ(t)‖22 < γ 2‖Maero(t)‖22.

Proof The proof is based on the conditions of Theo-
rem 1. M1 is nonsingular. Letting X = M−1

1 , M2 =
ε1M1, M3 = ε2M1, M4 = ε3M1, M5 = ε4M1, then
pre- and post-multiplying both sides of (48) and (49)
with diag{X−1, X−1, I X−1, X−1, X−1, I } and its
transpose, and defining some matrices as follows:

T = XRXT, G = XQXT, H = X PXT,

S j = K j X
T( j = 1, 2, . . . , 8)

we can arrive at (23) and (24). According to Theo-
rem 1, we have known that the system (20) is asymptot-
ically stable and satisfies H∞ performance ‖ȳ(t)‖22 <

γ 2‖Maero(t)‖22. This completes the proof.

Corresponding with Corollaries 1 and 2, we can
obtain the following corollaries by using the similar
methods of Theorem 2.

Corollary 3 (a = 1 case) Given scalars γ > 0, d̄, τ ,
ε1, ε2 and ε3, if there exist matrices T > 0, G > 0,
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H > 0 and a nonsingular matrix X, then the following
LMIs hold

Ξ̄i i < 0, i = 1, 2, . . . , 8 (53)

Ξ̄i j + Ξ̄ j i < 0, i < j, i, j = 1, 2, . . . , 8 (54)

where

Ξ̄i j

=

⎡
⎢⎢⎢⎢⎢⎢⎣

Δ̄11 − G Δ̄12 + G Bi ε2X AT
i H − XT + ε1X AT

i XCT
i

Δ̄22 − 2G ε3Bi ε2STj B
T
i + G ε1STj B

T
i − ε3XT 0

∗ −γ 2 I ε2BT
i ε1BT

i 0
∗ ∗ −G −ε2XT 0
∗ ∗ ∗ −ε1XT − ε1X + τ 2G 0
∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎦

and Δ̄11, Δ̄12 and Δ̄22 are defined in 50, 51 and 52.
When the controller K j = S j X−T , the system (20)
is asymptotically stable and satisfies H∞ performance
‖ȳ(t)‖22 < γ 2‖Maero(t)‖22.
Corollary 4 (a = 0 case) Given scalars γ > 0, d̄ , τ ,
ε1, ε2, ε3 and ε4, if there exist matrices T > 0, G > 0,
H > 0 and a nonsingular matrix X, then the following
LMIs hold

Ξ̃i i < 0, i = 1, 2, . . . , 8 (55)

Ξ̃i j + Ξ̃ j i < 0, i < j, i, j = 1, 2, . . . , 8 (56)

where

Ξ̃i j

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Δ̄11 Δ̄12 Bi ε2X AT
i ε4X AT

i H − XT + ε1X AT
i XCT

i
Δ̄22 ε3Bi ε2STj B

T
i ε4STj B

T
i ε1STj B

T
i − ε3XT 0

∗ −γ 2 I ε2BT
i ε4BT

i ε1BT
i 0

∗ ∗ −2G 2
τ
G −ε2XT 0

∗ ∗ ∗ − 2
τ 2
G −ε4XT 0

∗ ∗ ∗ ∗ −ε1XT − ε1X + τ 2G 0
∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

When the controller K j = S j X−T , the system (20) is
asymptotically stable and satisfies H∞ performance
‖ȳ(t)‖22 < γ 2‖Maero(t)‖22.
Remark 2 In Theorem 2, a tracking control design
algorithm is firstly proposed for MEV with time-
varying delay. In order to provide flexibility in track-
ing controller design and reduce time delay influences,

a decomposition coefficient a is introduced. Corollar-
ies 3 and 4 are two special cases of decomposition coef-
ficient a. In the next section, we will further show a
decomposition coefficient a is helpful in the reduction
of conservatism.

4 Numerical simulation

In this section, we will show the effectiveness of our
proposed attitude tracking control method for MEV
and will analyze the effects of decomposition coef-
ficient and time delay bound on the fuzzy error sys-
tem performance. The reference attitude trajectory and
Mars atmospheric density model are the same as [30].
The parameters are chosen as Jxx = 2983 kgm2,
Jyy = 4909 kgm2, Jzz = 5683 kgm2, lref = 6.323m,
Sref = 11.045m2, cnβ = 0.015, cmα = 0, clβ =
−2.414, d̄ = 0.1.

The initial attitude conditions are set to ω(0) =
[0.1000 0.2000 − 0.1000]T (rad/s), σ(0) = [0.3670
0.1480 − 0.1493]T, the design matrices Ka and Kb

in (6) for the slow subsystem are Ka = diag{2, 2, 2},
Kb = diag{0.0100, 0.0100, 0.0100}. Theupper bounds
for angular velocity on each axis are R1 = R2 = R3 =
5 (rad/s), The lower bounds for angular velocity on each
axis are r1 = r2 = r3 = −5 (rad/s). In order to verify
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Fig. 2 Attitude tracking
errors
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Fig. 3 Angular velocity
tracking errors
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the effectiveness of the proposedmethod, by usingThe-
orem 2, simulation research on attitude tracking error
control under MATLAB environment.

Firstly, given γ = 18.8531, ε1 = ε3 = 10, ε2 =
ε4 = 0.1, letting the decomposition coefficient a =
0.1, τ = 100ms, the controller gains can be obtained
as

K1 =
⎡
⎢⎣

−18.0010 −0.0273 −17.8809

64.3439 −30.9517 0.0437

0.1638 −44.5357 −36.0293

⎤
⎥⎦ ,

K2 =
⎡
⎢⎣

−18.0611 0.0491 17.9082

64.3057 −31.0172 −0.0382

−0.0437 −44.5466 −36.1058

⎤
⎥⎦ ,

K3 =
⎡
⎣−18.0611 −0.0491 −17.9082

−64.3057 −44.5466 −0.0382
0.0437 −44.5466 −36.1058

⎤
⎦ ,

K4 =
⎡
⎣−18.0010 0.0273 17.8809

−64.3439 −30.9517 0.0437
−0.1638 −44.5357 −36.1058

⎤
⎦ ,

K5 =
⎡
⎣−18.0611 0.0491 −17.9082

64.3057 −31.0172 0.0382
0.0437 44.5466 −36.1058

⎤
⎦ ,

K6 =
⎡
⎣−18.0010 0.0273 −17.8809

−64.3439 −30.9517 −0.0437
0.1638 44.5357 −36.0293

⎤
⎦ ,

K7 =
⎡
⎣−18.0010 −0.0273 17.8809

64.3439 −30.9517 −0.0437
−0.1638 44.5357 −36.0293

⎤
⎦ ,

K8 =
⎡
⎣−18.0611 −0.0491 17.9082

−64.3057 −31.0172 0.0382
−0.0437 44.5466 −36.1058

⎤
⎦ .

Figure 2 shows the attitude tracking errors of slow
subsystem, and Fig. 3 shows the angular velocity track-
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Fig. 4 ex1 under different
time delay bounds
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Fig. 5 ex2 under different
time delay bounds
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Fig. 6 ex3 under different
time delay bounds
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ing errors of fast subsystem. From Figs. 2 and 3 we can
clearly see that the attitude tracking errors and the angu-
lar velocity tracking errors are tending to zero gradu-
ally, which means they are asymptotically stable.

4.1 The effect of time delay on fast subsystem

When the decomposition coefficient a = 0.1, Figs. 4, 5
and 6 show ex1, ex2 and ex3 under different time delay
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Fig. 7 ex1 under different
decomposition coefficients
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Fig. 8 ex2 under different
decomposition coefficients
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Fig. 9 ex3 under different
decomposition coefficients
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bounds, respectively. From Figs. 4, 5 and 6, we can see
that time delay is passive for attitude tracking control.

4.2 The effect of decomposition coefficient on fast
subsystem

When the time delay τ = 100ms, Figs. 7, 8 and 9 show
ex1, ex2 and ex3 under different decomposition coeffi-
cients, respectively. According to Figs. 7, 8 and 9,it is
clear that the decomposition coefficient is influential
for the angular velocity. For two special cases (a = 1
case, a = 0 case), a = 0 case is infeasible, a = 1
case is not the worst case, which means the decom-
position coefficient is an important role of reducing
conservatism.

5 Conclusion

This paper considered the attitude tracking control
of MEV with time-varying input delay. Firstly, T-S
fuzzy method was applied for modeling the fast sys-
tem of MEV. Secondly, the decomposition coefficient
of delay integral inequality was introduced to reduce
the delay effect about tracking control. Finally, numer-
ical simulations were used to show the effects of time
delayboundanddecomposition coefficient on the fuzzy
tracking error systemperformance. It is noted that some
disturbances coming from the Martian atmosphere and
modeling errors were not deeply considered in this
paper. However, they are unavoidable in practical sys-
tem, which should be considered to improve the track-
ing control precision of MEV. Thus, robust tracking
control of MEVwith multi-source disturbances will be
studied in future work.
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