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Abstract In real-life applications, mechanical vibra-
tion systems are not linear time invariant. Time-varying
pattern arise, for instance, during deployment, aging,
deformation, load variation, etc. In the absence of a
complete physics-based description of a system, sys-
tem identification (SI) is able to obtain themissed infor-
mation of nonstationary pattern for the unknown sys-
tem. The SI will face difficulty when the time-varying
system involves the nonlinearity, which makes the sys-
tem solution have both the nonlinear and nonstationary
time–frequency patterns. This paper aimed to identify
the systemwith linear and nonlinear time-varying char-
acteristics using parametric time–frequency transform
with spline kernel, which is known for offering great
energy concentration in time–frequency domain and
allows the accurate extraction of model feature. The
efficacy of the proposed method is demonstrated on
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SDOF systems comprised of three types of nonlinear
time-varying stiffness, including time-varying periodic
modulation of stiffness, time-varying piecewise mod-
ulation of nonlinear stiffness and time-varying peri-
odic modulation of nonlinear stiffness. Comparisons
with the conventional time–frequency methods and the
Hilbert transform-based SI validated that the proposed
method is more robust in characterizing the nonlinear
time-varying stiffness of the system with the presence
of noise.
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Abbreviations

SI System identification
TFA Time–frequency analysis
TFR Time–frequency representation
LTI Linear time invariant
NTV Nonlinear time varying
PTFT Parametric time–frequency transform
IF Instantaneous frequency
STFT Short-time Fourier transform
WT Wavelet transform
WVD Wigner–Ville distribution
SDOF Single degree of freedom
MDOF Multiple degree of freedom
PTFT_S Parametric time–frequency transform with

spline kernel

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-016-2786-1&domain=pdf


1680 Y. Yang et al.

IA Instantaneous amplitude
HT Hilbert transform

1 Introduction

System identification (SI) plays an important role in
dynamical analysis for increasingly complicated sys-
tems. As inverse problem of system modeling, the SI
exploits the experimental input and output to iden-
tify the dominant characteristics of the system. In the
absence of a complete physics-based description of a
system, the SI can obtain the missed information of
the system. Outcomes of the SI are to provide an alter-
native solution for the dynamical system modeling, to
offer the proper parameters for system design andmod-
ification, to develop fault diagnosis tools [1,2] and to
estimate system states [3]. A significant amount of the
SI researches has carried out for linear time-invariant
(LTI) dynamical systems; however, mechanical vibra-
tion systems are not linear time invariant in real-life
applications. Many engineering systems demonstrate
both the time-varying and nonlinear behavior [4,5];
e.g., the resonance frequencies of the most vibration
parts of plane are functions of the flight speed and
height; the stiffness of an elbow joint is time varying
during a large voluntary movement [6]. The nonlinear-
ities often arise from nonlinear properties in geometry,
material and structure, as well as from the damaged
structure. Compared to the LTI model, the nonlinear
time-varying (NTV) model is more suitable to charac-
terize real-life dynamical systems. However, the SIwill
face difficulty when the time-varying system involves
nonlinearity, which causes both the nonlinear and non-
stationary patterns in the system solution.

If a systemhas time-varyingmass, stiffness or damp-
ing parameters, its natural frequency or solution ampli-
tude will depend decisively on the variations, which
also reflects in the system responses. The instanta-
neous feature of the system response strongly relates
to the nonlinear and nonstationary characteristics of
the system, which is underlying principle of the signal
processing-based SI. There are two dominant problems
in the signal processing-based SI methods: (1) estab-
lishing the relationship between the model parameters
of system and the instantaneous features of response,
e.g., frequency and amplitude; (2) detecting the fre-
quency and amplitude variations in the response with
the suitable signal processing techniques. An effective

SI based on signal processing relies on the extracted
time–frequency features, i.e., instantaneous amplitude
(IA) and instantaneous frequency (IF), where the IA is
also termed envelope.

To solve the first problem, Feldman [7,8] adopted
Hilbert transform (HT) to construct the relationships
between the instantaneous amplitude and frequency
and between instantaneous amplitude and damping
coefficient. The HT is able to provide effective results
for single degree of freedom (SDOF) yet it is sensitive
to the noise. Based on Krylov–Bogoliubov method,
called also the averaging method, Ta and Lardies [9]
derived the relationship among the nonlinear modal
frequency, the analytic amplitude and the derivatives
of the response under the free vibration. This approach
cannot be applied for all kinds of nonlinear dynamical
systems, but for oscillators with weak nonlinearities on
damping and stiffness. Considering the linear system
with time-varying stiffness, Basu et al. [10] applied
a modified Littlewood–Paley basis function to derive
the explicit relationship between the transfer function
and the wavelet transforms of the input and output.
By assuming the narrow bandwidth system solution,
the developed theory can identify online variation in
nature frequency of a SDOF system and the natural fre-
quency and mode shapes of a multi-degree-of-freedom
(MDOF) system arising out of change in stiffness.
Beyond these studies, there are many methods to con-
struct the relationship between model parameters of
the system and instantaneous features of the response,
e.g., least square technique [11], harmonic balance [12–
14], dissipation energy balancing [15] and experimen-
tal identification.However, thesemethods are restricted
to the LTI systems. The relationship between the sys-
tem and the response parameters depends on the system
characteristics and the input–output condition, which
determines the followed signal processing methods.
No uniform rule exists through, to indicate which one
should be adopted.

For the second problem, the responses of the NTV
system may exhibit strongly nonlinear pattern, which
makes it a good candidate for time–frequency analysis
(TFA). The TFA projects time series into a function of
time and frequency, so it is able to characterize the IF
and IA in time–frequency domain intuitively. Existing
TFAs that havebeen applied in theSI include short-time
Fourier transform (STFT),wavelet transform (WT) and
Wigner–Ville distribution (WVD).

123



Nonlinear time-varying vibration system identification 1681

The STFT andWTare linear transforms. The former
adopts a fixed time–frequency resolution, and the latter
applies a scalable time–frequency resolution. Yang and
Nagarajaiah [16] combined the STFT and the princi-
ple component analysis to identify the model parame-
ters of highly damped LTI systems. Staszewski [17,18]
used time-scale decomposition to identify the system
damping and applied the WT to identify the nonlin-
ear systems. Both of them extract the ridge and skele-
ton of the WT to reconstruct the characteristics of the
system according to [7,8]. Tjahjowidodo et al. [19]
compared the performance of the HT and the WT for
the nonlinear system identification, and they indicated
that the WT outperformed the HT in terms of estima-
tion accuracy. Le and Argoul [20] adopted the WT to
identify the viscous damping and cubic stiffness of a
supporting beam. Ta and Lardies [9] extracted the WT
ridge of the response to estimate the nonlinear stiffness,
the coulomb and the square damping. Considering the
uncertainty of modal parameters, Yan et al. [21] com-
bined theWT and bootstrap to estimate themodal para-
meters and the corresponding confidence zone. Shan
and Burl [22] investigated time–frequency represen-
tation (TFR) of the response of a linear time-varying
system using continuous WT. They formulated the SI
as an optimization problem subjected to minimizing
the difference between TFRs of the measurement and
the predicted model output. Kijewski and Kareem [23]
discussed the selection of wavelet central frequencies,
the role of the WT in the modal separation and the
end-effect errors. Limited by uncertainty principle, the
STFTand theWT fail to generate thewell-concentrated
TFRs leading to the worse estimation for the IF and IA.
To improve the concentration for the linear transforms,
synchrosqueezed technique integrates the coefficients
of a TFR in the vicinity of the ridge to sharpen the
TFR, which increases the gradient around the ridge.
Montejo et al. [24] evaluated synchrosqueezed WT,
continuous WT and Hilbert–Huang transform (HHT)
in extracting instant frequencies and damping values
from the simulated noisy response. The results showed
that the TFR obtained via the synchrosqueezed WT
is sharper than the one obtained with the continuous
WT and it allows the robust extraction of the individ-
ual modal responses than the one with the HHT. The
sharpness of a TFR can be quantified by energy con-
centration, which relies on the fineness of the time–
frequency resolution provided by the time–frequency
transforms.

The bilinear TFAs, e.g., WVD, smoothed pseudo-
WVD (SPWVD) and Cohen’s class were designed to
provide the better energy concentration. Feldman et al.
[25] proposed the WVD-based IF estimation to iden-
tify the characteristic parameters of the nonlinear sys-
tem. Roshan-Ghias et al. [26] used the SPWVD to
estimate the modal parameters based on the response
under the free vibration. However, the WVD suffers
from the interference of the cross-term leading to inac-
curacy system identification. The SPWVD suppresses
the cross-term using the sliding window at the expense
of the concentration, and it cannot remove the inter-
component cross-terms. Cohen’s class applies various
kernels to suppress cross-terms, though most of them
cannot delete the intra-component cross-termsofmulti-
component signals with strong nonlinearity. The key
issues about the linear and nonlinear TFAs concerned
in the SI are to improve the concentration and avoid
cross-terms.

Beyond the time–frequency transforms, theHilbert–
Huang transform (HHT) provides a new method for
analyzing nonstationary and nonlinear time series. It is
consisted of empiricalmodedecomposition (EMD)and
Hilbert spectral analysis (HAS), which decomposes the
signal into a group of intrinsic mode functions (IMF)
and then applies the HAS on the IMF to obtain the
IF. Pai et al. [27] combined the sliding-window fit-
ting and the HHT to identify the nonlinear system in
both nonparametric and parametric ways. The nonlin-
ear pattern and the order of the system are determined
by using the perturbation method. Multi-faceted prob-
lem of the EMD includes: (1) Some undesired low-
amplitude IMFs with pseudo-components will be gen-
erated in the low-frequency region; (2) the first IMF
with a wide frequency range that is often not a mono-
component IMF; (3) the closely spacedmodes interfere
each other and cannot be reliably separated; (4) it is
highly sensitive to the noise. To avoid a fewdeficiencies
of the HHT, Bao et al. [28] proposed an improved HHT
to identify time-varying systemby introducing autocor-
relation function. Nevertheless, the HHT has not been
widely applied for the NTV system mainly due to the
complicity in the responses of nonlinear time-varying
systems and the poor robustness to the noise.

The main usage of the TFA in the SI is to charac-
terize the time variations of the amplitude and spectral
characteristics, IF and IA. The major drawback of the
existing TFAs in the SI is that they cannot provide well-
concentrated and cross-term free TFR that matches
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the instantaneous patterns of the response, prevent-
ing the accurate identification of the system parame-
ters. This paper aims to identify the system with linear
or nonlinear time-varying characteristics using para-
metric time–frequency transform with spline kernel,
which is known for offering the great energy concen-
tration for the TFR and allows the accurate extraction
of the nature frequency. The efficacy of the proposed
method is demonstrated with the SDOF systems com-
prised of three types of nonlinear time-varying stiff-
ness, including time-varying periodic modulation of
stiffness, time-varying piecewise modulation of non-
linear stiffness and time-varying periodic modulation
of nonlinear stiffness. Comparisons with the conven-
tional time–frequency methods and the HT-based SI
validated that the proposed method is more robust in
characterizing the nonlinear time-varying stiffness of
the system with the presence of the noise.

The remainder of the paper is organized as follows.
For the sake of completeness, the parametric time–
frequency transform with spline kernel (PTFT_S) is
briefly introduced in Sect. 2. Section 3 gives the guide-
line of the proposed method based on the PTFT_S.
Section 4 presents the simulation examples to verify
the proposed method. Finally, Sect. 5 concludes the
paper.

2 Background of parametric time–frequency
transform and spline kernel

Parametric time–frequency transform (PTFT) is known
to provide a signal-dependent analysis for nonlinear
and nonstationary signals. The most attracted merits of
PTFT are to highly improve energy concentration by
using the signal-dependent kernel function and avoid
cross-terms [29]. Implementations of PTFT include lin-
ear transform, bilinear transform and sparse decompo-
sition. Among them, the sparse decomposition decom-
poses the signal into a series of atoms sparsely, which
is not suitable for the SI.

In this paper, the formulation based on rotation and
shift operators is applied for the PTFT [30], which was
initially proposed as linear transform and later was fur-
ther developed in the form of bilinear transform. Both
of them embed the kernel function into these two oper-
ators.

For any signal s(t), whose HT is s̃ (t), the linear
PTFT is defined as [30]

TFs (t0, ω;P)

=
∫ +∞

−∞
z (t0, τ ) g∗

σ (τ − t0) exp (− jωτ) dτ , (1)

with⎧⎪⎪⎨
⎪⎪⎩

z (t0, τ ) = s̃ (τ )�R
P (τ ) �S

t0,P
(τ )

�R
P (τ ) = exp

[− j
∫

κP (τ ) dτ
]

�S
t0,P

(τ ) = exp [ jτ · κP (t0)]

, (2)

where ω stands for angular frequency, * denotes conju-
gate. gσ (t) denotes the window function with parame-
ter ofσ .�R

P (τ ) and�S
t0,P

(τ ) are the frequency rotation

and shifting operators, respectively. κP (t) ∈ L2 (R) is
an integrable kernel function, where P is the associ-
ated kernel parameters. Noticed that themodulus of the
PTFT is ignored in Eq. (1). Since the IA is critical for
the SI, it is necessary to investigate the modulus of the
linear PTFT. According to Ref. [31], where provided
explicit STFT for an exponential tone, the STFT of any
arbitrary signal, e.g., s (t) = A (t) exp [ jω (t)], is

Ss (t0, ω)

=
(
πσ 2

h

)−1/4 √
2σ 2

h π · [A (t0) + o
(
A′ (t0)

)]

× exp

[
−σ 2

h

(
ω − ω0 − o

(
ω′ (t0)

))2
2

]

× exp
[− j

(
ω − ω0 − o

(
ω′ (t0)

))
t
]
, (3)

where σh stands for the parameter of Gaussian win-
dow function. The time-varying amplitude and the fre-
quency are expanded in Taylor’s series around the cen-
ter of the complexwindow, t0.o

(
A′ (t0)

)
ando

(
ω′ (t0)

)
are high-order term of the time-varying amplitude and
frequency after Taylor’s expansion, respectively. The
Gaussian window function is defined as,

gσh =
(
πσ 2

h

)−1/4
exp

[
−

(
t2

2σ 2
h

)]
. (4)

When ω − ω0 − o
(
ω′ (t0)

) = 0, the modulus of the
STFT will become

|Ss (t0, ω)| =
(
πσ 2

h

)−1/4 √
2σ 2

h π

× [
A (t0) + o

(
A′ (t0)

)]
. (5)

Assuming that the signal is asymptotic within the
applied window, the high-order term in Eq. (5) is
neglected to yield
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|Ss (t0, ω)| =
(
πσ 2

h

)−1/4 √
2σ 2

h π · A (t0) . (6)

When κP (t) ≡ 0, the linear PTFT will degrade to
the STFT according to Eq. (23). When the window of
Eq. (4) is adopted, the modulus of the PTFT will be

|TFs (t, ω;P)| =
(
πσ 2

h

)−1/4 √
2σ 2

h π · A (t) . (7)

According to Eq. (7), the modulus of the PTFT is
independent to the kernel parameter and only related
to the window width and the IA. In the linear PTFT,
frequency rotation and shift operators have two func-
tionalities: (1) The rotation operator rotates signal with
a degree of arctan κP (τ ) in time–frequency domain;
(2) the shift operator shifts the rotated signal with an
amount of κP (t0) at each time instance. The problem
of the linear PTFT is that it cannot provide the satisfied
energy concentration as the bilinear transform does.

Second, the bilinear PTFT is defined as [32],

TFs (t0, ω;P) =
∫ +∞

−∞
y (t0 − τ) y∗ (t0 − τ)

×�S
t0,P (τ ) exp (− jωτ) dτ, (8)

with

y (t0 − τ) = s̃ (t0 − τ)�R
P (t0 − τ) . (9)

When κP (t) ≡ 0, Eq. (9) will degrade to WVD.
Although it is able to achieve the best concentration
for nonlinear auto-term, it still cannot avoid the cross-
terms between the components. Moreover, the bilinear
PTFT is difficult to estimate the IA accurately since
it is formulated as the global Fourier transform of the
instantaneous autocorrelation function, which makes it
inappropriate for the SI.

In addition, whether the kernel function of the PTFT
matches instantaneous pattern of the signal or not deter-
mines the final performance of the SI. An optimal ker-
nel is required to characterize signal IF accurately.
For the signals with continuous IF, the existing ker-
nels include linear function, polynomial [33,34], spline
[35], trigonometric function, exponential function, log-
arithmic function and Fourier series [36]. In this paper,
the spline kernel is selected considering the highly
nonlinear response of nonlinear time-varying systems,
which is given as,

�R
C (τ ) = exp

[
− j

n∑
i=1

Cl,i

i
(τ − tl)

i + ol

]
, (10)

�S
t0,C (τ ) = exp

[
jτ ·

n∑
i=1

Cl,i (t0 − tl)
i−1

]
, (11)

where C = {
Cl,i

}
, i = 1, . . . , n, l = 1, . . . , N −

1, is parameters of spline function. Ol is integration
constant,

ol − ol+1 =
n∑

i=1

cl+1,i

i
(xl − xl+1)

i , (12)

where o1 = 0, tl is the lth knot of spline, and −∞ =
t0 < t1 < · · · < tN < tN+1 = ∞.

To illustrate the PTFT with spline kernel (PTFT_S),
a signal is considered as,

s (t) = sin
[
20π t + 10π arctan (t − 5)2

]
, (13)

whose IF is 10+10×(t−5)/(1+(t−5)∧4). The signal
is contaminated by white Gaussian noise with signal-
to-noise rate (SNR) of 20dB. Figure 1 shows the IA
and IF extracted by the HT and the PTFT, respectively.
The kernel parameters of the PTFT_S are obtained by
approximating the signal IF with the spline function.
The IA extracted by the HT is further low-pass filtered
so it can approximate the real IA properly. The top plot
shows the real IA and the estimated IAs obtained by the
HT and the PTFT_S (also named spline chirplet trans-
form (SCT) in the literatures) are overlapped, indicat-
ing that both the two methods can estimate the IA with
small errors. On the other hand, the bottom plot shows
that the IF extracted by the HT is far away from the real
IF during 3–6s and oscillates at right end. Compara-
tively, the PTFT_S is capable of extracting the IA and
IF accurately even with the presence of noise.

To compare performances of different TFAs, Fig. 2
shows TFRs obtained by the STFT, synchrosqueezed
STFT, WVD, CWT, synchrosqueezed CWT and the
PTFT_S. According to Fig. 2a, b, d, e, the STFT, CWT
and their synchrosqueezed versions are unable to char-
acterize the accurate IA as the signal IF varies fast with
the time.Due to the nonlinearity of the signal, theWVD
suffers from the cross-terms significantly as shown in
Fig. 2c. Figure 2f shows PTFT_S which characterizes
the IA and the IF for the considered signal accurately.

3 Guideline SI by using PTFT_S

3.1 Nonlinear and time-varying system identification

In this section, we start from a simple case of SDOF
nonlinear system under free vibration,

mẍ + C (ẋ) + K (x) = 0, (14)
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Fig. 1 Comparison of HT and PTFT_S in IA and IF extraction

Fig. 2 Different time–frequency representation. a STFT; b synchrosqueezed STFT; c WVD; d CWT; e synchrosqueezed CWT; f
PTFT_S

where C (ẋ) and K (x) are real odd functions of ẋ and
x , denoting nonlinear damping and restoring force. The
second-order differential equation in Eq. (14) can be
rewritten as the damping system of unit mass as,

ẍ + 2h (ẋ) ẋ + ω2
0x = 0, (15)

where h (ẋ) ẋ = C (ẋ)/2m stands for the damping of
unit mass and ω2

0 is the square of damping-free nature
frequency. Since the nonlinear restoring force varies
with time, it can be converted to themultiplication form
as

ω2
0 (x) x = ω2

0 (t) x (t) , (16)
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whereω2
0 (t) is fast time-varying nature frequency. x(t)

is the system solution with overlapped spectrum. Simi-
larly, nonlinear damping force can also be expressed as
multiplication of the fast instantaneous damping coef-
ficient and the velocity as

h0 (ẋ) ẋ = h0 (t) ẋ (t) , (17)

where h0(t) denotes instantaneous damping coeffi-
cient. Spectrums of h0(t) and ẋ (t) are assumed to be
overlapped. Correspondingly, the instantaneous nature
frequency and the damping coefficient are high-pass
overlapped, so Eq. (15) can be rewritten as,

ẍ + 2h0 (t) ẋ + ω2
0 (t) x = 0. (18)

Equation (18) indicates that a SDOF nonlinear sys-
tem can be characterized by a time-varying systemwith
the fast time-varying instantaneous nature frequency
and the damping coefficient.

Second, we consider the time-varying system in
civil and mechanical engineering characterized by the
motion equation as,

m (t) ẍ + C (t) ẋ + K (t) x = 0, (19)

where m(t), C (t) ẋ and K (t)x are time-varying mass,
frictional force as a function of velocity ẋ and restoring
force as a function of the displacement x . The second-
order differential equation in Eq. (19) can be rewritten
as the damped system of unit mass as,

ẍ + 2h (t) ẋ + ω2
0 (t) x = 0, (20)

where h (t) ẋ = C (t)/2m (t) stands for damping force
for unit mass as a function of the velocity and h(t)
is the instantaneous damping coefficient. ω2

0 (t) =
K (t)/m (t) is the square of damping-free time-varying
nature frequency.

Comparing Eqs. (18) and (20), both the nonlin-
ear and the time-varying system confirm to the simi-
lar motion equation, whose parameters are the time-
varying instantaneous damping coefficient and the
nature frequency. Such similarity provides basis that
these two systems parameters are not only able to rep-
resent nonlinearity, but also able to reveal time-varying
pattern of the system. For example, the instantaneous
damping coefficient and the nature frequency of a non-
linear time-invariant system are modulated by time-
varying pattern in NTV case. In another word, for a
NTV system, its damped system of unit mass holds the
same formulations as in Eqs. (18) and (20), which are
unified as

ẍ + 2hntv (t) ẋ + ω2
ntv (t) x = 0, (21)

The difference is that the instantaneous damp-
ing coefficient hntv (t) is consisted of the nonlinear
function of velocity and the time-varying function,
and instantaneous nature frequency square ω2

ntv (t)
includes the nonlinear function of displacement and
the time-varying function. By involving the analytical
impulse response function, as well as its first and sec-
ond derivatives, the instantaneous damping coefficient
hntv(t) and the instantaneous nature frequencyω2

ntv (t)
can be derived analogous to the nonlinear SI using the
HT [7],

hntv (t) = − Ȧ/A − ω̇/2ω, (22)

ω2
ntv (t) = ω2 − Ä/A + 2 Ȧ/A2 + Aω̇/Aω. (23)

where A and ω denote the IA and the IF of solution,
respectively. Equations (22) and (23) reveal that hntv(t)
and ω2

ntv (t) relate to the IA and the IF of the solution,
as well as their derivatives.

3.2 Instantaneous feature extraction using PTFT_S

3.2.1 IF estimation and kernel parameter

Given the spline kernel, the PTFT_S will be able to
provide the better characterization of IF and IA for the
signal when the kernel parameters are properly esti-
mated in terms of the analyzed signal. Estimation of the
kernel parameters is analogous to the IF estimation in
most cases. The latter can be realized inmanyways, i.e.,
phase difference, zero-crossing, Teager energy opera-
tor, HT,maximum likelihood estimation, optimization-
based estimator, skeleton of time–frequency represen-
tation (TFR), etc. In this paper, the TFR-based IF esti-
mator is applied since it is more robust for nonstation-
ary signals with the presence of noise. Specifically, the
ridge of the TFR is detected to locate corresponding
skeleton, and then, kernel parameters can be obtained
by approximating the skeleton.

In order to improve the estimation accuracy, an iter-
ative procedure is introduced to obtain the kernel para-
meters. In the each iteration, the ridge of the TFR is
detected, and then, the skeleton is located and approx-
imated. The underlying principle of the iterative esti-
mation for the PTFT_S is that the more accurate ker-
nel parameters, the better TFR. The extracted skeleton
ω̄i (t) is obtained as
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σ
[
TFs

(
t, ω; P̄i−1

)]
σω

= 0,

ω :
∣∣∣argmax

ω
TFs

(
t, ω; P̄i−1

)∣∣∣ ≤ �ω/2, (24)

where i denotes the i th iteration. ω̄ and P̄ are estimated
IF and kernel parameters. P̄ can be obtained as,

P̄i = min
Pi

∑[
κ̃P (t) − ωi−1 (t)

]2
. (25)

The loop stops until

|ω̄i+1 (t) − ω̄i (t)| ≤ δ, (26)

where δ is predefined threshold. Finally, the obtained
IF is s spline approximation of detected skeleton after
the last iteration. A reliable recursive TFR-based kernel
parameter estimator for the SI has to cope with several
problems, i.e., TFR initialization, determination of the
time–frequency resolution, feature extraction for the
attenuated noisy signal. Ultimately, these factors will
influence the accuracy of the SI.

(1) TFR initialization

In the iterative procedure of kernel parameter estima-
tion, the initial estimation is of great importance. The
better initialization, the better estimation accuracy. The
error caused by worse initialization could be aggra-
vated in the following cycles. Nonparametric TFAs
are often used to initialize PTFT_S. For the sake of
consistency, the linear nonparametric TFA is applied
for the initialization in this paper. However, the stan-
dard linear nonparametric TFAs, i.e., STFT, WT and
S transform (which combines STFT and WT), cannot
fulfill the task due to their unsatisfied time–frequency
resolution; post-processing methods can be adopted
to improve the TFR quality, e.g., re-assignment, syn-
chrosqueezing, image processing, etc. Re-assignment
is to sharp a TFR by move the amplitude to the time–
frequency coordinate that is gravity of its neighbors.
Synchrosqueezing is to sum the amplitude within pre-
defined frequency neighborhood at every time instant.
Their problem lies in the distortion of the IF trajec-
tory; comparatively, the Synchrosqueezing performs
better to characterize the IF trajectory. Hereinafter,
the STFT, CWT and their synchrosqueezed versions
are considered to initialize the PTFT_S. How well
the initialization affects the IF estimation depends
to on the inherent structure of the signal to be ana-
lyzed.

Fig. 3 TFR tiling of PTFT_S

(2) Time–frequency resolution

The advantage of the PTFT_S is to provide a signal-
dependent analysis. The TFR tiling is illustrated in
Fig. 3, where the bold line is the real IF and the stars
denote the coefficients calculatedwithin one logon, i.e.,
time–frequency cell as shown in Fig. 3.At the each time
instant, the logon is rotated according to the spline ker-
nel function so the calculated coefficient concentrates
at the center of the logon. The maximum coefficients
will align with the signal IF when the spline kernel
approximates the IF accurately. Such layout is able to
match the shape of the real signal. The time–frequency
resolution trade-off is well known as,

�t�f = K (27)

where�t iswidth of timewindow,� f is themeasure of
frequency resolution and K is a constant that depends
on the window shape. Equation (27) suggests that the
time and frequency resolution cannot be the best simul-
taneously. Higher time resolution leads to lower fre-
quency resolution and vice versa. As the PTFT_S con-
centrates the signal energy along the trajectory formed
by the kernel function, it is recommended to use the
longer window while the IF varies fast with the time.
In this case, one can obtain the better IF estimation and
the more accurate kernel parameters.

(3) Noise and spline approximation

The spline kernel uses the piecewise low-order polyno-
mial to avoid the oscillation in high-order polynomial
approximation, which is called “Runge” phenomenon.
To fit a complicated curve accurately, the spline kernel
requires more knots, which leads to the overfitting with
the presence of noise. In another word, the spline with
less knots ismore robust to the noise.On the other hand,
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it is necessary to reduce the noise to improve the estima-
tion performance. Various signal de-noising methods
have be developed, among which the average method
and the band-pass filtering are two simple candidates
in our study. Without special note, 30 noisy responses
are averaged to obtain the de-noised response in this
paper. It is worth mentioning that like the most TFAs,
the PTFT_S assumes the interested signal component
dominants the measured response.

3.2.2 IA estimation

Another time–frequency feature to be extracted is the
IA. Conventionally, the envelope can be obtained using
the HT, but it is very sensitive to the noise and results in
the strongoscillation evenwithout the presence of noise
[7]. The TFA projects a signal into the time–frequency
domain; the IA corresponds to the TFR ridge or modu-
lus. In this paper, the IA is extracted from the concen-
trated TFR. Two aspects related to the TFR-based IA
extraction are: (1) energy leakage due to the window
operation; (2) the IA oscillation with the large window
length.

At first, as suggested in Eq. (7), the modulus of
the PTFT_S is proportional to the real IA and is
related to the parameters of Gaussian window. Since
window spectrum contains sidebands in digital sig-
nal processing, the convolution of window and signal
will inevitably cause the energy leakage in the time–
frequency domain. The signal IA can be recovered
based on the TFR as,

Ã (t) = λ · |TFs (t, ω;P)|(
πσ 2

h

)−1/4
√
2σ 2

h π

, (31)

where λ stands for calibration parameter. The calibra-
tion parameter can be estimated as follows,

λ = 1

/max
ω

|TFŝ (t, ω;P)|
(
πσ 2

h

)−1/4
√
2σ 2

h π

, (32)

where the signal considered for the calibration is
ŝ (t) = exp ( jω0t).

Second, the larger window, the more sidebands. The
more sidebands cause themore energy leakage, leading
to the strongly oscillation in the extracted IA. Figure 4
shows the extracted IA of the signal with deteriorate

Fig. 4 Extracted IA in
terms of different window
length: a 1024; b 512;
c 256; d 128
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Table 1 IA and IF estimation errors

Error in IA and IF
estimation (%)

IA IF

STFT 17.87 0.72

CWT 28.98 2.34

Sychro_STFT 54.97 1.45

Sychro_CWT 19.5 4.21

WVD 70.80 17.43

PTFT_S 3.50 0.38

amplitude, which shows the IA highly oscillates as the
window length increases. To remove the IA oscillation,
two steps are involved: (1) selecting optimal window
length to balance the trade-off between the IA oscilla-
tion and the IF characterization; (2) low-pass filtering
the extracted IA.

Table 1 lists relative errors in the IA and IF estima-
tions using different TFAs for the signal in Eq. (31).
The relative error is calculated as,

rerror = 1

N

N∑
i=1

|ỹ (ti ) − y (ti )|
|y (ti )| , (33)

where y(t) denotes any function of time. It validates
that the PTFT_S outperforms others in both the IA and
IF estimations. The STFT and CWT are able to achieve
the accurate IF estimation, yet they fails to character-
ize the IA accurately due to the smeared TFR. Their
synchrosqueezed versions perform worse than they do
since the former reallocates the energy and distorts the
ridge. The WVD is the worst in this case, which is
highly interfered by the cross-terms. For such com-
plicated signal, the PTFT_S is proved to be the better
choice.Meanwhile, it is fair to use the former fourTFAs
to initialize PTFT_S.

3.3 Reconstruction of backbone and static forces

To illustrate the inherent characteristics of the nonlinear
and time-varying system intuitively, backbone, damp-
ing curve and static force curve are common tools. The
backbone and damping curve display how the nature
frequency and the damping coefficient vary with the
displacement and the velocity, respectively. The static
forces include restoring force and friction force, both
of which vary with the displacement and the velocity
too. For symmetric system, the restoring force, K (x),

can be computed as,

k (x) =
{

ω2
c Ac, x > 0

−ω2
c Ac, x < 0

, (34)

whereωc(t) and Ac are congruent nature frequency and
amplitude, respectively, which are formulated as,

ωc (t) =
N∑
l=1

ω0l (t) cosφl (t), (35)

Ac (t) =
N∑
l=1

Al (t) cosφl (t), (36)

where ω0l(t) and Al(t) denote the IF and the IA of
the lth harmonic. φl is phase difference between the
primary component and the lth harmonic. In real prac-
tice, the IA and IF of the primary component will be
considered to be the congruent frequency and ampli-
tude when the high-order harmonics are small enough
to be neglected. The characteristic parameters of the
nonlinearity can be identified based on the static force
curves.

Specially, when the restoring force is expressed as
power series,

K (x) =
(
α1 + α3x

2 + α5x
4 + · · ·

)

x =
(∑N

n=1
α2n−1x

2n−2
)
x, (37)

where (α1, α3, . . ., α2n−1) are coefficients of the power
series. The average of the instantaneous nature fre-
quency,

〈
ω2 (A)

〉
, is obtained as,

〈
ω2 (A)

〉
= T−1

T∫

0

ω2 (t) dt

= α1 + 3

4
α3A

2 + 5

8
α5A

4 + · · · , (38)

which is exactly the backbone curve. The damping
curve can be derived in the same way.

To sum up, the SI for NVT system mainly includes
five steps:

(1) Performing the TFA on the system response;
(2) Extracting the IF and IA of the response;
(3) Using the derivatives of IF and IA to estimate the

instantaneous modal parameters;
(4) Reconstructing the backbone, damping curve and

static force model;
(5) Identifying the nonlinear and time-varying pattern

and estimating the characteristic parameters.

123



Nonlinear time-varying vibration system identification 1689

Response signal

PTFT_S 
TFR

Reconstruction (Eq. 22 &23)
Instantaneous modal parameters

Backbone and 
damping curves

Static force 

Nonlinear and time-
varying estimation

Feature extraction 
IF&IA

Identification Estimation

Fig. 5 Guideline of output-based SI using PTFT_S

In the nonlinear time-varying system, the stronger
component dominated the system can be identified
at first and others can be obtained by removing the
components one by one. The guideline is shown in
Fig. 5.

4 Linear and nonlinear time-varying system
identification

In this section, the SDOF systems comprised of three
types of nonlinear time-varying stiffness are consid-
ered, including time-varying periodic modulation of
stiffness, time-varying piecewise modulation of non-
linear stiffness and time-varying periodic modulation
of nonlinear stiffness. For all examples, the sampling
frequency is 13Hz and the window length is 256. It
is noticed that the SI under free vibration is consid-
ered only to emphasize the applicability of the proposed
method, while the application in various systems under
different external forces will be investigated in future
works.

Example 1 For a system with time-varying periodic
modulation of stiffness as,

ẍ + 0.05ẋ + [25 + 20 cos(0.1t)] x = 0, x0 = 1,

ẋ0 = 0. (39)

Figure 6 shows the solution of the system for
nonzero initial condition. Eighteen knots were used in
the PTFT_S. In Fig. 6a, the IF and IA variations of
solution reflect the periodic time-varying stiffness. In
Fig. 6b, the twisted backbone curve shows how the dis-
placement varies with the nature frequency, which is in
agreement with the linear and periodic time-varying
behavior of the system. The centerline of backbone is
vertical to the frequency axis, meaning that the system
does not contain the nonlinear stiffness. This is also
verified by left plot of Fig. 6c. The periodical time-
varying pattern of the elastic static force is oscillated
along a centerline whose slope is 25, corresponding to
the initial nonlinear force. In right plot of Fig. 6c, the
approximated slope of the friction force is 0.5, yet it
is modulated slightly because the IA of the velocity
follows the same time-varying pattern.

Example 2 For a system with piecewise time-varying
quasiperiodic modulation of nonlinear stiffness as,

ẍ + 0.04ẋ +
[
15 + 30x2 + 10sign (cos(0.1t))

]

x = 0, x0 = 1, ẋ0 = 0. (40)

Figure 7 shows the solution of the system for
nonzero initial condition. A total of 45 knots were used
in the PTFT_S. In Fig. 7a, the estimated IF and IA
carry the piecewise time-varying patterns. In Fig. 7b,
the twisted backbone curve shows the stepwise nature
frequency varies with the displacement, which is con-
sistent with the cubic nonlinear and the stepwise time-
varying behavior of the system. The centerline of the
backbone curve is slant to the right, meaning that the
system has hard spring characteristics. The left plot of
Fig. 7c shows the piecewise time-varying pattern twists
above the initial nonlinear force characteristic (red dot
line), which is 30*3/4*A2. In top plot of Fig. 7d, the
congruent stiffness is obtained by fitting the square IF.
As the NTV pattern is the sum of the time-varying and
nonlinear part, the time-varying part can be obtained
by removing the fitted curve from the congruent stiff-
ness. The identified stiffness variation reveals the true
time-varying pattern of the system stiffness as shown in
bottom plot of Fig. 7d, though it also shows the errors
increase at falling and rising edges and the oscillation
at stationary region. This is because the PTFT_S uses
the spline kernel with less knots to approximate the

123



1690 Y. Yang et al.

Fig. 6 Identification for example 1: a signal and its IA (top) and IF (bottom), b backbone curve, c static force [left elastic static force
(red line time-invariant stiffness, green line time-varying stiffness) right friction force]. (Color figure online)

response IF. Such oscillation also affects the friction
force with respect to velocity as shown in left plot of
Fig. 7c.

Example 3 For a system with periodic modulation of
nonlinear stiffness as,

ẍ + 0.04ẋ + [1 + 0.6 cos(0.15t)] ·
(
1 + 13x2

)

x = 0, x0 = 1, ẋ0 = 0. (41)

Figure 8 shows the solution of the system for
nonzero initial condition. Twenty-five knots were used
in the PTFT_S. In Fig. 8a, the estimated IF and IA
carry periodic time-varying patterns. In Fig. 8b, the
twisted backbone curve shows the periodic nature fre-
quency varieswith the displacement,which agreeswith

cubic nonlinear and periodic time-varying behavior of
the system. The centerline of backbone curve is slant
to the right, also meaning that the system has hard
spring characteristics. According to Eq. (23), the iden-
tified instantaneous nature frequency squared function
(the instantaneous modal stiffness) agrees with the ini-
tial square wave stiffness (see bottom figure Fig. 8d).
The identified instantaneous modal stiffness allows the
identification of the time-invariant static force charac-
teristic k(A) = 13 ∗ 3/4 ∗ A2 (red dot line in left plot
of Fig. 8c), which the congruent stiffness is divided by
the fitted stiffness to obtain the time-varying pattern of
stiffness (see top plot of Fig. 8d).

In addition, the SI performance for the above three
examples with the presence of noise is compared
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Fig. 7 Identification for example 2: a signal and its IA (top)
and IF (bottom), b backbone curve, c left elastic static force (red
line time-invariant stiffness, green line time-varying stiffness),

right friction force (red line true friction force, green line identi-
fied friction force); d stiffness (top) and its variation estimation
(bottom). (Color figure online)
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Fig. 8 Identification for example 3: a signal and its IA (top)
and IF (bottom); b backbone curve; c left elastic static force (red
line time-invariant stiffness, green line time-varying stiffness);

right friction force (red line true friction force, green line identi-
fied friction force); d stiffness (top) and its variation estimation
(bottom). (Color figure online)
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Table 2 Estimation log
error of time-varying
stiffness

Log error in
time-varying term

Example 1
(SNR = 15dB)

Example 2
(SNR = 15dB)

Example 3
(SNR = 10dB)

STFT 1.21 2.96 3.01

CWT 2.13 2.96 3.04

Sychro_STFT 2.09 3.54 3.05

Sychro_CWT 2.11 4.53 3.05

HT 4.53 5.93 4.66

PTFT_S 0.91 3.57 2.92

using the STFT, continuous wavelet transform (CWT),
synchrosqueezed STFT, synchrosqueezed CWT, HT
and PTFT_S-based methods. Table 2 lists relative log
errors of time-varying stiffness estimation. Compari-
son results validated that the proposed method is more
suitable in characterizing the nonlinear time-varying
stiffness with the presence of noise. Except for exam-
ple 2, the PTFT_S is still able to analyze system with
stepwise time-varying stiffness, but it introduces many
errors in the IF and the IA estimation. The PTFT_S-
based SI depends on the compatibility of the kernel
function. It is expected to obtain the better SI perfor-
mance with the more matched kernels.

5 Conclusion

The applications of the PTFT on the free response of
the systemshowed the significant potential for theTFA-
based SI. The PTFT_S can estimate the IF and the IA
accurately from well-concentrated TFR. The efficacy
of the proposed method was validated with the SDOF
systems comprised of three types of nonlinear time-
varying stiffness. The results showed time-varying pat-
tern modulated nonlinear nature frequencies can be
well characterized, and the nonlinear and time-varying
patterns were properly estimated. Comparisons with
other time–frequency methods and HT-based SI vali-
dated that the proposedmethod ismore suitable in char-
acterizing the nonlinear time-varying stiffness with the
presence of noise. In addition, the performance of the
proposed method is highly related to the fitness of the
kernel function to the response IF. The better-matched
kernel is expected to achieve the better SI performance.
Moreover, the accurate IA and IF estimations based on
the PTFT_S will be the dominant concern in the SI for
NTV system. Future works include applying the PTFT
in the SI for a wide variety of nonlinear time-varying

systems and MDOF systems under different vibration
conditions, on which we are currently working to com-
plete the research.
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