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Abstract Discontinuous dynamic characteristics in
gear backlash often cause convergence problems when
a nonlinear torsional system is simulated. This
clearance-type nonlinearity can be mathematically
modeledbyusing smoothening functionswhich change
the dynamic responses of the system under discontinu-
ous ranges into continuous ones. However, the effect of
the smoothening functions is not well known and dif-
ficult to anticipate under various nonlinear conditions.
Thus, a new smoothening function is proposed. The
effect and feasibility of the model were investigated
with a practical vehicle driveline system. To examine
the key factors of the smoothening function, the har-
monic balance method was used with an ‘n’th order
polynomial function and compared with hyperbolic-
type smoothening functions. The harmonic balance
method and numerical analysiswere compared for non-
linear system responses that includemuch high order of
the super-harmonic components with respect to impul-
sive contact motions to understand the limits of the
method. The smoothening function is applicable for
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1 Introduction

Clearance-type nonlinearities such as gear backlash
are related to convergence problems when nonlinear
dynamic responses in a practical system are simu-
lated. The clearance itself contains discontinuities due
to contact or non-contact behaviors [1,2]. Much prior
research has been done to develop time-varying stiff-
ness models or clearance-type nonlinear models with
smoothening functions [3–12]. For example, Shen et al.
[3] established a dynamicalmodel of a spur gear pair by
including the backlash, time-varying stiffness, and sta-
tic transmission error. Rao et al. [4] studied the torsional
instabilities in a two-stage gear system by considering
the torsional flexibility of the shafts and the meshing
time-varying stiffness of the gears.

Al-shayyab and Kahraman [5] investigated sub-
harmonic and chaotic motions in a multi-mesh gear
train using a nonlinear time-varying dynamic model.
Raghothama and Narayanan [6] used the incremen-
tal harmonic balance method to obtain the periodic
motions of a 3-degree-of-freedom (DOF) nonlinear
model of a geared rotor system subjected to parametric
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excitation under sinusoidal excitation. Wong et al. [7]
presented the non-linearities in the restoring force by
employing the incremental harmonic balance method.
Kim et al. [8] showed the differences in the nonlin-
ear frequency response characteristics when selected
smoothening functions were employed by different
smoothening factors. Smoothening functions have also
been used to simulate clearance or piecewise nonlinear-
ities of the mechanical systems in many prior studies
[9–12].

The examination by Kim et al. [8] of the effect of
the smoothening functions was limited to a simple tor-
sional model with a single DOF with idealized system
parameters. In general, the parameters from a practi-
cal system can cause more difficulties in estimation,
especially when the dynamic conditions of the sys-
tem are affected by vibro-impacts, such as gear rattle
in the wide-open-throttle (WOT) condition [1,2,9,10].
Under severe gear impact conditions, the gear mesh
stiffness changes abruptly from 0 to 2.7 × 108 N m−1

(or from 2.7 × 108 to 0 N m−1). In addition, the
prior studies focused on specific smoothening func-
tions using hyperbolic tangent or arctangent functions
[1,2,8–12,21,24], which are not enough to overcome
the convergence problems with respect to the gear
impact behaviors in a practical system. Thus, the main
objectives of this study contain: (1) suggesting a new
smoothening functionmodel using annth order polyno-
mial function by comparing with prior models [8]; (2)
examining the key factors of new smoothening function
model along with certain ranges; (3) and investigating
the limits of the simulation based on the harmonic bal-
ance method (HBM) by focusing on gear impact con-
ditions.

2 Modeling of the practical system and
nonlinearity

2.1 Physical system and its parameters

Figure 1a depicts the physical system based on a front-
engine and front-wheel driveline with a manual trans-
mission [10]. Based on the practical system shown in
Fig. 1a, a schematic diagram can be constructed as
shown in Fig. 1b. All of the loaded gears are assumed
to be lumped into the input shaft without changing
the dynamic characteristics of the system, and focus
is centered on only one unloaded gear pair to examine

the vibro-impact phenomenon [1,2]. In addition, the
employed gear pairs are assumed to be geometrically
ideal without any errors under the dynamic conditions.
Thus, the reduced order of the lumped system model
with 4 DOF will be used to investigate the dynamic
behaviors with smoothening functions.

The symbols used and their parameter values shown
in Fig. 1 are described in Tables 1 and 2, where the
given properties are measured and given from the rele-
vant industry with a practical driveline. Here, the drag
torques are assumed to be constant values in the given
engine operating condition, and the damping of the
clutch damper cf and the damping of the drive shaft
cve are estimated based on the 5% modal damping
ratio [1,2,10]. The scope of this study is limited to
the 3rd gear engaged and 5th gear unloaded status
under severe driving conditions such as the wide-open-
throttle (WOT) condition.

2.2 Basic equations and their nonlinearities

Based on the system in Fig. 1, the matrix formulation
of the basic equations is expressed as follows.

Mθ̈ (t) + Cθ̇ (t) + Kθ (t) + fn
(
θ
) = TE (t) , (1a)

M = diag
[
If , Iie, Iou, Ive

]
, (1b)

C =

⎡

⎢⎢
⎣

cf −cf 0 0
−cf cf + cgR2

iu + cve cgRiuRou −cve
0 cgRiuRou cgR2

ou 0
0 −cve 0 cve

⎤

⎥⎥
⎦ ,

K =

⎡

⎢⎢
⎣

kf −kf 0 0
−kf kf + kve 0 −kve
0 0 0 0
0 −kve 0 kve

⎤

⎥⎥
⎦ , (1c,d)

fn
(
θ
) =

⎡

⎢⎢
⎣

0
RiuFgu (ρu) + TDi
RouFgu (ρu) − TDu

TDve

⎤

⎥⎥
⎦ ,

TE (t) =

⎡

⎢⎢
⎣

TE (t)
0
0
0

⎤

⎥⎥
⎦ . (1e,f)

Fgu (ρu) (1g,h)

= kgδ (ρu) , ρu = Riuθie (t) + Rouθou (t) .
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Fig. 1 A torsional system
with a front-engine and
front-wheel layout: a a
practical driveline with a
manual transmission; b a
schematic diagram with
gear mesh force
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Theangular displacementsθ (t)=[
θf θie θou θve

]T

are defined as the absolute motions of the flywheel,
input shaft, unloaded gear, and vehicle, respectively.
Fgu(ρu) is defined as the gear mesh force between the
input shaft and unloaded gear in terms of the transla-
tional relative displacement (ρu) of the unloaded gear
pair. δ(ρu) reflects the discontinuous characteristics of
the gearmotions.To simulate the torsional systemusing
theHBM, non-dimensionalization of the time scalewas
conducted by employing a new variable ψ = ωt and
the time range 0 ≤ t ≤ υτ for one period τ can be
mapped onto 0 ≤ ψ ≤ 2π [9]. Here, υ indicates the
sub-harmonic index [11,12]. Also, when ω is parame-
terized, the normalized value ω̄ (ω/ωN ) is employed
in order to avoid possible convergence problems. Here,

ωN is the natural frequency relevant to vibro-impacts
on the system shown in Fig. 1. In this study, 47.6Hz is
used for ωN . Profound studies with respect to the rela-
tionship of simulation convergence to multiple choices
of non-dimensionalization are beyond the scope of this
research.

To calculate the system response, the input torque
TE(t) is assumed as a sinusoidal excitation as follows.

TE (t) = Tm +
Nmax∑

i=1

Tpi cos
(
iωpt + φpi

)
. (2)

The employed values of the input torques are as fol-
lows: the mean torque is Tm = 168.9 N m; the
alternating torque is Tp1 = 251.53 N m; and the
phase is φp1 = −1.93. The system is assumed to be
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Table 1 Employed parameters of the torsional system

Parameter Value

Inertia (kg m2)

If (flywheel) 1.38 × 10−1

Iie (transmission) 1.49 × 10−2

Iou (unloaded gear) 5.23 × 10−4

Ive (wheels) 8.08 × 10−2

Stiffness (N m rad−1)

kf (clutch damper) 9.20 × 102

kve (drive shaft) 3.95 × 102

Radius (mm)

Riu (unloaded gear on the input shaft) 45.9

Rou (unloaded gear on the output shaft) 35.6

Table 2 Employedproperties for the drag torques on the relevant
sub-system

Drag torque Value (Nm)

TDi (drag torque on the input shaft) 1.22 × 102

TDu (drag torque on the unloaded gear) 2.0

TDve (drag torque on the vehicle) 44.2

under steady state conditions with constant velocity.
Thus, the drag torques of each sub-system shown in
Fig. 1 are estimated by assuming that the summation
of torques is equal to the mean torque value Tm as fol-
lows [1,2,9,10]:

Tm = TDi + TDve + TDu (Riu/Rou) . (3)

Figure 2a illustrates three different conditions of
the gear pair for “contact on the driving side”, “no
contact”, and “contact on the driven side”. When the
dynamic behaviors of the gear pair show repetitive
motions between “contact on the driving side” and “no
contact” (or “contact on the driving side” and “con-
tact on the driven side), the torsional system is severely
affected by vibro-impacts such as gear rattle [1,2]. In
general, this nonlinear dynamic effect is caused by the
clearance between the driving and driven gears called
backlash. The dynamic motions of the gear pairs are
mathematically described as follows.

δ (ρu) =
⎧
⎨

⎩

ρu + b
2 , ρu ≤ − b

2
0, − b

2 < ρu < b
2

ρu − b
2 , ρu ≥ b

2

. (4)

The gear backlash is defined as b with a value of
0.1mm. The backlash is a piecewise nonlinearity
expressed using a unit step functionU (ρu) as follows:

δ (ρu) =
(

ρu + b

2

)
+

[(
ρu − b

2

)
× U

(
ρu − b

2

)

−
(

ρu + b

2

)
×U

(
ρu + b

2

)]
. (5)

Based on a prior study [8] and Eqs. (4, 5), the dynamic
gear mesh forces are estimated using the Model I and
II smoothening functions, which are mathematically
described as follows. Here, the relative motions are
defined as θr1 = ρu − b

2 and θr2 = ρu + b
2 .

Model I

U1 (θr1) ∼= 1

2

[
tanh

(
σgθr1

) + 1
]
, (6a)

U1 (θr2) ∼= 1

2

[
tanh

(
σgθr2

) + 1
]
, (6b)

δgu1 (ρu) (6c,d)

= θr2 + [θr1U1 (θr1) − θr2U1 (θr2)] ,

Fgu1 (ρu) = kgδgu1 (ρu) .

Model II

U2 (θr1) ∼= 1

2

[
2

π
arctan

(
σgθr1

) + 1

]
, (7a)

U2 (θr2) ∼= 1

2

[
2

π
arctan

(
σgθr2

) + 1

]
, (7b)

δgu2 (ρu) (7c,d)

= θr2 + [θr1U2 (θr1) − θr2U2 (θr2)] ,

Fgu2 (ρu) = kgδgu2 (ρu) .

where kg(= 2.7 × 108 N m−1) is the gear mesh stiff-
ness, and b(= 0.1 mm) is the gear backlash. Also,
1×1010 is employed for the value ofσg for bothModels
I and II in order to simulate the sudden change of gear
mesh forces under vibro-impact conditions in a prac-
tical system [1,2]. Figure 3 compares the difference
between two numerical models for unit step functions
using U1 (θr1) and U2 (θr1). When those models are
compared, U1 (θr1) shows steeper change rather than
U2 (θr1). In order to compare two numerical unit step
functions, 1 × 103 is employed for the value of σg.

Figure 2b indicates the expected gear mesh force
with the relationship of Fgu(ρu) versus ρu usingModel
I or II. Based on the expected gear mesh force shown
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Fig. 2 Nonlinear behaviors
of the gear pairs under the
engine excitation condition:
a gear contact conditions
under vibro-impacts; b
expected gear mesh force
along with gear backlash
regime
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Fig. 3 Comparison of two numerical unit step functions. Solid
blue line U1 (θr1); dotted red line U2 (θr1). (Color figure online)

in Fig. 2b, the dynamic conditions of the forces are
abruptly changed at b/2(= 0.05mm) or −b/2, which
causes strong stiffness problems in the simulation
with sudden changes of the values for the gear mesh
force estimation. Differences between the two mod-

els will be explained with a new smoothening function
model.

3 Mathematical model of the smoothening
function for gear mesh force

3.1 Development of the new smoothening function

Based on the prior smoothening function models, it is
not possible to change the smoothened areas and values
on the left (or right) side from the gear backlash b/2.
The smoothening effect from the prior models given
in Eqs. (4)–(7) are only dependent on the value of σg.
Also, several problems have been observed: (1) unreal-
istic gearmesh forces by usingModel I can be expected
contrary to the measured ones which will be explained
later; (2) computational problemsusingModel II can be
caused with respect to the numerical convergence since
fractional functions should be used when the Jacobin
matrix is employed. Thus, the new smoothening func-
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Fig. 4 Smoothening
function Model III for
different orders: a
comparison of Model III
with different orders; b ε1
with different orders. Dotted
red line n = 2; dashed with
dot green line n = 4;
dashed black line n = 6.
(Color figure online)
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tion model should be considered to avoid those prob-
lems observe in the prior studies aswell as to havemore
flexibility to adjust the smoothening areas with asym-
metrical way for both left and right sides from b/2.
For satisfying this conditions, this study employs an
nth order polynomial function since it is easy to adapt
more flexible smoothening effects than the models in
Eqs. (4)–(7). Here, small amounts of the displacements
ε1 and ε2 at b/2 or −b/2 can be defined for gear mesh
force estimation under smoothening conditions. These
factors also lead to the smoothening change of Fgu(ρu)
in the stiff regimes, as illustrated in Fig. 4a. Model III
is mathematically described as follows:

δ (ρu) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρu + b
2 , ρu < −B2

−α (ρu + B1)
n, −B2 ≤ ρu < −B1

0, −B1 ≤ ρu < B1

α (ρu − B1)
n, B1 ≤ ρu < B2

ρu − b
2 , ρu ≥ B2

,

(8a)

B2 = b

2
+ ε2, B1 = B2 − nε2, ε1 = b

2
− B1,

(8b-e)

α = ε2

(B2 − B1)
n .

where ε1 and ε2 are the distances from b/2 or−b/2, as
shown in Fig. 4a. To create the smoothening changes in
the area of b/2 or−b/2, the nth order polynomial func-
tions α (ρu − B1)

n or −α (ρu + B1)
n are used, respec-

tively.
As described in Eq. (8b), B2 is estimated simply by

adding ε2 to b/2, where ε2 can be determined arbitrar-
ily. Thus, if ε2 is small, ε1 becomes small andmakes the
gear contact motions stiff. In Eqs. (8a)–(8e), the prop-
erties B1 and α are determined based on several condi-
tions. For example, the polynomial function should first
contact the linear line of kg

(
ρu − b

2

)
(or kg

(
ρu + b

2

)
) at

the range ofρu ≥ B2 (orρu < −B2) tangentially. Thus,
the derivative value at the contact point is the same as
the slope of tangent line kg, which is the gearmesh stiff-
ness. Second, the polynomial function αρn

u (or −αρn
u )

is shiftedwith the amount of B1 (or−B1) on theρu axis.
Third, the order n must be even, since an odd number
can cause Fgu(ρu) to be estimated below 0N in the area
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Fig. 5 Smoothening
function Model III with ε2:
a comparison of Model III
with different values of ε2;
b ε1 versus ε2. Dotted red
line ε2 = 5 × 10−4; dashed
with dot green line
ε2 = 8 × 10−4; dashed
black line ε2 = 1 × 10−3.
(Color figure online) 2 1 
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between−b/2 and b/2, which does not occur in a prac-
tical system. Thus, from Eqs. (8a)–(8e), the gear mesh
force Fgu(ρu) is derived as follows. Here, the relative
motions are defined as θr1 = ρu − b

2 , θr2 = ρu + b
2 ,

θp1 = ρu − B1, θp2 = ρu − B2, θn1 = ρu + B1 and
θn2 = ρu + B2.

U3 (θn1)

∼= 1

2

[
tanh

(
σgθn1

) + 1
]
,

U3 (θn2)

∼= 1

2

[
tanh

(
σgθn2

) + 1
]
, (9a)

U3
(
θp1

)

∼= 1

2

[
tanh

(
σgθp1

) + 1
]
,

U3
(
θp2

)

∼= 1

2

[
tanh

(
σgθp2

) + 1
]
, (9b)

δgu3 (ρu)

= θr2 + [
θr1 ·U (

θp2
) − θr2 ·U (θn2)

]

−αθnn1 [U (θn2) −U (θn1)] + αθnp1
[
U

(
θp1

)

−U
(
θp2

)]
, (9c)

Fgu3 (ρu)

= kgδgu3 (ρu) . (9d)

Figure 4 compares the smoothening effects with regard
to n. As shown in Fig. 4a, when n is increased to a
certain value such as 6, ε1 becomes large, as shown
with a dashed line in Fig. 4a. This indicates that the
smoothening effect starts more gradually than when
n is reduced to 2, as shown with the dotted line. Thus,
increasing the smoothening factor ε1 leads to improved
numerical convergence conditions by avoiding sudden
changes of the gear mesh stiffness from 0 N m−1 to
2.7 × 108 N m−1.

Accordingly, Fig. 4b shows the relationship between
ε1 and n. When n becomes large, the distance ε1 from
b/2 or −b/2 increases. As explained previously, ε2
also affects the smoothening change of the gear con-
tact motion. Figure 5 illustrates the relationship of ε2 to
the smoothening effect. Figure 5a shows that Fgu(ρu)
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Fig. 6 Comparison of three
smoothening functions: a
comparison of the
smoothening function
Models I, II, and III; b
smoothening effect with
Models I, II, and III in the
area of −b/2; c
smoothening effect with
Models I, II, and III in the
area of the b/2. Dotted blue
line Model I; dashed black
line Model II; dashed with
dot red lineModel III.
(Color figure online)
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becomes stiff, as indicated by 2©, when the value of

the ε2 is reduced, indicated by 1©. When ε2 is a small
value such as 1× 10−5, the dynamic characteristics of
the gear contact are closer to the practical motions than
when ε2 is a large value such as 1 × 10−3. Also, ε1 is
estimated based on ε2 as described in Eqs. (8b)–(8e),
from which the smoothening effect can be mathemati-
cally determined.

3.2 Comparison of the smoothening function models

Figure 6 shows the differences between Models I, II,
and III. First, Model I uses a hyperbolic tangent func-
tion, as described in Eq. (6). This function shows a
negative or positive overshoot in the area of b/2 or
−b/2. Thus, Model I includes severe error since the
gear mesh forces never fall into the negative or pos-
itive values before the gear contact occurs at b/2 or
−b/2. Models II and III do not show the same problem
as Model I, which is shown in Fig. 6. However, Mod-
els II and III slightly differ with respect to the areas
where the smoothening changes of Fgu(ρu) occur. For
example, the smoothened Fgu(ρu) in Model II is deter-
mined only by the factor σg described in Eq. (7), but

it is difficult to anticipate the location of ε1 and ε2. In
contrast, ε1 with Model III is exactly estimated as long
as ε2 is defined by Eq. (8). Moreover, ε1 is determined
based on the order n from Eqs. (8c) and (8d). Thus, the
dynamic characteristics with the smoothening effect in
Model III are more definite than in Models I and II.

HBM was used to investigate the effect of the
smoothening functions with different models [3,5–25].
The development and basic process of the HBM for
systems with one or more DOF have been introduced
in prior studies [9,10]. Figure 7 compares the HBM
results usingModels I, II, and III. The system responses
in the figure were estimated by the maximum number
of harmonics Nmax = 6. The value of σg is 1 × 1010

for all of the models as described in Sect. 2.2, and ε2
and n for Model III are 1 × 10−5 and 20, respectively.
Here, δ2(t) = Riuθie(t) + Rouθou(t) is the relative dis-
placement between the input shaft and unloaded gear,
and δ2(max), δ2(mean), and δ2(min) are the maximum,
mean, and minimum values of δ2(t), respectively, in
one period of time responses, as shown in Fig. 7 with
frequency sweeping conditions.

The results for all the models correlated well with
each other. Also, single-sided and double-sided vibro-
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2(mean)

(mm)

2(max)

(mm) 

2(min)

(mm) 

ω

Fig. 7 Comparison of the HBM (Nmax = 6) using smoothening
function Models I, II, and III. Dotted blue line Model I; dashed
black line Model II; dashed with dot red line Model III. (Color
figure online)

impacts were observed clearly between ω̄ = 0.775 and
ω̄ = 1.175. ω̄ is the frequency normalized using the
natural frequency ωN = 47.6 Hz. When the number
of harmonics is increased, the simulation using HBM
shows many differences between Models I, II, and III.

Table 3 describes the feasibility of the simulation
using each smoothening function model. The nonlin-
ear responses with Nmax = 6 can be successfully
simulated by using HBM. However, when the num-
ber of harmonics increased to more than 6, the sim-
ulation never accomplished calculating the nonlinear
responses using Models I and II with any values of σg,
as indicated in Table 3. However, the simulation with
Model III was successfully conducted with all num-
bers of harmonics with some discrepancies. Based on
the results described in Table 3, the simulation cases of
Model III are more feasible for adaption with different
harmonic conditions thanModels I and II, since Model

Table 3 Feasibility analysis of the smoothening functions with
the number of harmonics

Number of
harmonics

Smoothening function

Model I Model II Model III

6 O O O

8 × × O

10 × × O

12 × × O

III includes more factors to manage the smoothening
conditions, such as ε2, n, and σg based on Eq. (8).

4 Results

4.1 Comparison of the numerical analysis and HBM
using the new smoothening function model

Figure 8 shows the comparison of the simulated results
using numerical analysis (NS) and HBM in the fre-
quency domain. When the computational time is com-
pared, NS needs 2h for both up-(or down-)frequency
sweeping. On the other hand, the calculation time with
the HBM is 20min. Both results reflect the vibro-
impacts well. However, the HBM does not follow the
NS results for the gear impact conditions. When the
system has double-sided impacts between ω̄ = 0.8403
and ω̄ = 1.122, as indicated with a solid line in Fig. 8,
severe differences between NS and HBM at δ2(max) are
observed. This is caused by the limits of theHBM, since
the number of harmonics is 6, which was examined in a
prior study [9]. Since the vibro-impacts contain inher-
ently impulsive responses, they include multiple num-
bers of harmonics and higher super-harmonic compo-
nents than Nmax = 6 or 12 [2]. Also, the limit of the
number of harmonics with HBM causes a discrepancy
of the phase in the Fourier components in compari-
son with the FFT results from NS. These behaviors are
shown in Figs. 9, 10, 11 and 12.

Figure 9 compares the relative displacements from
HBM and NS in the time domain. Figure 9a shows

ω

2(max)

(mm) 

2(min)

(mm) 

2(mean)

(mm)

Fig. 8 Comparison of the HBM and NS results. Solid blue line
HBM with Model III; circled red line NS. (Color figure online)
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Fig. 9 Comparison of the
relative displacements with
HBM and NS under
different excitation
conditions in the time
domain: a time histories of
δ1(t) and δ2(t) at
ω̄ = 0.825; b time histories
of δ1(t) and δ2(t) at
ω̄ = 1.0. Solid blue line NS;
dashed red line HBM.
(Color figure online)

Time (s) 

1(t) 
(rad) 

2(t) 
(mm) 

1(t) 
(rad) 

2(t) 
(mm) 

Time (s) 

(b)(a)

Fig. 10 Comparison of the
gear mesh forces with HBM
and NS under different
excitation conditions in the
time domain: a time
histories of Fgu(t) at
ω̄ = 0.825; b time histories
of Fgu(t) at ω̄ = 1.0. Solid
blue line NS; dashed red
line HBM. (Color figure
online)

Time (s)

Fgu  

(N)

Time (s)

Fgu  

(N)

(a) 

(b) 

the results estimated at the excitation frequency of
ω̄ = 0.825, and Fig. 9b shows the results at ω̄ = 1.
Here, δ1(t) = θf(t)−θie(t) is the relative displacement
between the flywheel and input shaft. Figure 9a shows

the comparisons of time histories under single-sided
impact. The results of δ1(t) from HBM and NS corre-
lated well with each other. However, δ2(t) showsminor
differences, especially when the gear impact occurs

123



Effect and feasibility analysis of the smoothening functions 1661

Fig. 11 Comparison of the
relative displacements with
HBM and NS under
different excitation
conditions in the frequency
domain: a FFT results of
δ2(t) at ω̄ = 0.825; b FFT
results of δ2(t) at ω̄ = 1.0.
Line with square red line
NS; line with circle blue line
HBM. (Color figure online)

Frequency (Hz) 

| 2| 
(mm) 

Phase 
(rad) 

Frequency (Hz) 

| 2| 
(mm) 

Phase 
(rad) 

(b)(a)

Fig. 12 Comparison of the
gear mesh forces with HBM
and NS under different
excitation conditions in the
frequency domain: a FFT
results of Fgu(t) at
ω̄ = 0.825; b FFT results of
Fgu(t) at ω̄ = 1.0. Line with
square red line NS; line
with circle blue line HBM.
(Color figure online)
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|Fgu| 
(N) 

Phase 
(rad) 

Frequency (Hz) 

|Fgu| 
(N) 
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(b)(a)

at b/2, as indicated by the dotted circle. In general,
NS includes the impulsive responses well, since it is
based on time domain analysis. This discrepancy of
HBM is clearly observed when the system has double-
sided impacts, as shown in Fig. 9b. Since the double-
sided impact conditions are worse than the single-sided
impacts, the impulsive responses are more dominant
than the single-sided impacts, as indicated with dotted
lines.

Figure 10 compares the gear mesh forces Fgu(t) at
two different excitation conditions at ω̄ = 0.825 and
ω̄ = 1. Figure 10a, b simulates the single-sided and

double-sided impacts, respectively. For example, the
dynamic behaviors of Fgu(t) shown in Fig. 10a fol-
low the zero values at the first time, and then they go
up to high values around 370N on only the positive
side. However, the NS results show more density of
the impulsive force responses than the HBM results.
The result of Fgu(t) shown in Fig. 10b depicts the
double-sided impacts. In a similarmanner to the single-
sided impacts in Fig. 10b, Fgu(t) from NS shows more
density at the moment when the gear impacts occur.
The dynamic behaviors of Fgu(t) for the double-sided
impacts show repetitive motions on both the positive
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and negative sides.Also, the peak values for the double-
sided impacts are higher than those for the single-sided
impacts. Each local maxima is 1200N, and the min-
ima are −1100 N. Overall, both comparisons between
HBM and NS show that NS results contain more super-
harmonic components than the HBM results. These
discrepancies between the different simulations were
found based on the FFT results as well.

Figures 11 and 12 compare the FFT results of δ2(t)
and Fgu(t) with 6 harmonics. Figure 11 shows the
comparison of the FFT results from δ2(t) based on
HBM and NS. When the single-sided impact occurs,
severe discrepancies between the two simulations are
not observed, as shown in Fig. 11a. However, the phase
values at the 4th, 5th, and 6th harmonics do not corre-
late well. The FFT results for the double-sided impact
show severe differences in the phases between HBM
and NS for all ranges of harmonic components, which
is clearly observed in Fig. 11b.

Figure 12 compares the FFT results of Fgu(t) for
both single- and double-sided impacts. In a similar
manner to the FFT results of δ2(t), the FFT results
of Fgu(t) for the single-sided impact in Fig. 12a show
that the phase of the 4th, 5th, and 6th harmonics from
HBM is not correlated well with those of the NS. Also,
the harmonic spectra of the phases for the double-
sided impact for HBM show severe differences from
the results of the NS, except for the phase component at
the 1st harmonic. Thus, based on the results in Figs. 11
and 12, the limit number of harmonics employed for
HBM causes discrepancies for the time response esti-
mations in which high super-harmonic components
such as those beyond 500Hz are not included [2]. How-
ever, the HBM can still be used to assess the vibro-
impact phenomena in frequency sweeping conditions
in both frequency and time domains, as shown in Figs. 8
and 9.

4.2 Effect of the ε2 values in HBM with respect to
vibro-impacts

In general, clearance nonlinearity inherently contains
discontinuity, which makes gear mesh forces suddenly
change from zero to high stiffness levels, or vice
versa. These dynamic characteristics can cause con-
vergence problems or consume calculation time. Thus,
the smoothening functions are employed to resolve
these problems. Based on Eqs. (8) and (9), smoothen-

ing effects can be adapted using different levels of ε2.
For example, as the level of ε2 is increased, the relative
displacements δ2(t) or gear mesh forces Fgu(ρu) of the
unloaded gear pair are estimated more smoothly than
when ε2 is reduced.

Figure 13 compares the dynamic behaviors of δ2(t)
estimated with different ε2. The simulations with
ε2 = 5 × 10−5 and 1 × 10−4 show discrepan-
cies with the results of ε2 = 1 × 10−5. The HBM
results with ε2 = 1 × 10−5 are assumed to simu-
late the vibro-impacts reasonably except for the impul-
sive responses, as described in Sect. 4.1. As shown in
Fig. 13, the effect of ε2 is observed clearly in both
the δ2(max) and δ2(RMS) results, where δ2(RMS) =
√

1
m

{
δ22 (t0) + δ22 (t1) + · · · + δ22 (tm−1)

}
, and m is the

number of steps in one period of the time history.
As indicated with the solid line in Fig. 13a, b,

the vibro-impacts occur between ω̄ = 0.775 and
ω̄ = 1.175. However, the simulation results with
ε2 = 1 × 10−4 show severe discrepancy, since δ2(max)

has values below b/2 = 0.05 mm in the frequency
ranges with ω̄ < 0.775 and ω̄ > 1.175. The results of
δ2(RMS) with both ε2 = 5 × 10−5 and ε2 = 1 × 10−4

are very different from those with ε2 = 1 × 10−5 at
ω̄ < 0.775 and ω̄ > 1.175. In the simulated result of
δ2(max) with ε2 = 1 × 10−4 shown in Fig. 13a, δ2(max)

levels below b/2 = 0.05 mm reflect that the gear
pairs never contact each other, which is not practically
reasonable for the physical system. Thus, to achieve
reasonable simulation results, ε2 should be determined
within a certain range. For this study, all of the HBM
results are estimated with ε2 = 1 × 10−5.

Figure 14 and Table 4 show the relationship of ε2
values considered with the number of harmonics. Fig-
ure 14a shows the HBM results with different numbers
of harmonics Nmax. As Nmax is increased, the discrep-
ancies become severe compared with the HBM results
with Nmax = 6. The reason why the accuracy of the

Table 4 Employed minimum values of ε2 for the smoothening
function Model III with the number of harmonics

Number of harmonics ε2

6 1 × 10−7

8 1 × 10−3

10 2 × 10−3

12 3 × 10−3
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Fig. 13 Comparison of the
HBM results under different
values of ε2 with the
smoothening function
Model III: a max, mean, and
min values of δ2(t) with ε2;
b RMS values of δ2(t) with
ε2. Solid blue line
ε2 = 1 × 10−5; dotted red
line ε2 = 5 × 10−5; dashed
black line ε2 = 1 × 10−4.
(Color figure online)
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(mm) 

ω
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Fig. 14 Effect of ε2 with
number of harmonics: a
comparison of the max,
mean, and min values of
δ1(t) with different ε2
values and numbers of
harmonics; b number of
harmonics versus available
minimum values of ε2. Solid
blue line Nmax = 6; dotted
red curve Nmax = 8; dashed
black line Nmax = 10;
dashed with dot green line
Nmax = 12. (Color figure
online)
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HBM results dropped is the ε2 value. The ε2 values
versus Nmax are indicated in Fig. 14b and described
in Table 4. To overcome the convergence problems as
Nmax is increased, ε2 must be larger than 1 × 10−5

with Nmax = 6. For example, the minimum value of
ε2 considered for Nmax = 6 is 1 × 10−7. However, ε2
should be equal to or larger than 1× 10−3, when Nmax

is increased to more than 6, as described in Table 4.
Thus, due to the increase in ε2, the convergence prob-
lems are resolved. On the other hand, large ε2 causes
the discrepancies shown in Fig. 14a.

5 Conclusion

New smoothening functions have been suggested and
compared with other models in prior studies [8]. Using
this model, the limits of HBM have been examined
with respect to the impulsive responses in the time his-
tories of δ2(t), Fgu(t), and the FFT results. The spe-
cific contributions of this study are summarized as fol-
lows. First, the new smoothening function model has
been suggested by using an nth order polynomial func-
tion. This model could achieve smoothening changes
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of the gear mesh force in the discontinuous regime,
which leads to solving the convergence problems. Sec-
ond, the feasibility of the smoothening factor ε2 has
been examined. Increasing the value of ε2 assured that
the convergence problems were removed. However, ε2
beyond certain values caused severe errors, especially
in the frequency ranges where the vibro-impacts do
not occur. Third, the limit of the HBM with respect
to the impact phenomena such as gear rattle has been
investigated. In the comparison of the HBM with NS,
the vibro-impact behaviors simulated using HBMwere
still revealed, even though all of the impulsive response
components were not included, which is directly due
to the limited number of harmonics.

Based on the study of Nmax versus ε2, the Model
III smoothening function still has a discrepancy, even
though it successfully overcomes the convergence
problems. Thus, the development of multiple non-
dimensionalizationmethods or the investigation of ana-
lytical formulations for clearance-type nonlinearities
for HBM is the potential subjects for further study.
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