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Abstract The escape dynamics in a two-dimensional
multiwell potential is explored. A thorough numeri-
cal investigation is conducted in several types of two-
dimensional planes and also in a three-dimensional
subspace of the entire four-dimensional phase space
in order to distinguish between non-escaping (ordered
and chaotic) and escaping orbits. The determination
of the location of the basins of escape toward the dif-
ferent escape channels and their correlations with the
corresponding escape time of the orbits is undoubtedly
an issue of paramount importance. It was found that
in all examined cases regions of non-escaping motion
coexist with several basins of escape. Furthermore,
we monitor how the percentages of all types of orbits
evolve when the total orbital energy varies. The larger
escape periods have been measured for orbits with ini-
tial conditions in the fractal basin boundaries, while the
lowest escape rates belong to orbits with initial condi-
tions inside the basins of escape. TheNewton–Raphson
basins of attraction of the equilibrium points of the
system have also been determined. We hope that our
numerical analysis will be useful for a further under-
standing of the escape mechanism of orbits in open
Hamiltonian systems with two degrees of freedom.
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1 Introduction

Particlesmoving in escaping orbits in Hamiltonian sys-
tems is, without any doubt, one of the most interest-
ing topics in nonlinear dynamics (e.g., [13,15,16,21,
22,36]). Hamiltonian systems with escapes are also
known as open or leaking Hamiltonian systems, in
which there is a finite energy of escape. When the
value of the energy is higher than the energy of escape,
the equipotential surfaces open and escape channels
emerge through which the test particle can escape to
infinity. It should emphasize that if a test particle has
energy larger than the escape value, this does not nec-
essarily mean that it will certainly escape from the sys-
tem and even if escape does occur, the time required for
the escape to occur may be very long compared with
the natural crossing time. The literature is replete with
research studies on the field of leaking Hamiltonian
systems (e.g., [4,8,20,28,33,42,44,47,48,50]).

The problem of escaping orbits in open Hamil-
tonian systems is, however, less explored than the
related problem of chaotic scattering. The viewpoint of
chaos theory has been used in order to investigate and
interpret the phenomenon of chaotic scattering (e.g.,
[5,6,10,24–26,38,39]). At this point, we would like
to emphasize that all the above-mentioned references
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on the issues of open Hamiltonian systems and chaotic
scattering are exemplary rather than exhaustive.

In leaking Hamiltonian systems an issue of para-
mount importance is the determination of the basins
of escape, similar to basins of attraction in dissipa-
tive systems or even theNewton–Raphson fractal struc-
tures. An escape basin is defined as a local set of ini-
tial conditions of orbits for which the test particles
escape through a certain exit in the equipotential sur-
face for energies above the escape value. Basins of
escape have been studied in many earlier papers (e.g.,
[9,14,29,34,43]). The reader can find more details
regarding basins of escape in [14], while the review
[48] provides useful information about the escape prop-
erties of orbits in a multichannel dynamical system of
a two-dimensional perturbed harmonic oscillator. The
boundaries between the escape basins may be frac-
tal (e.g., [2,9,18]) or even respect the more restrictive
Wada property (e.g., [1]), in the case where three or
more escape channels coexist in the equipotential sur-
face.

In two recent papers [48,50] we investigated the
escape dynamics in multichannel potentials composed
of perturbed harmonic oscillators. In this paper, we
shall use the same computational methods in order to
reveal the escape mechanism of orbits in the umbili-
cal catastrophe potential D5 which has two wells (e.g.,
[7,11]). The dynamics of transition between differ-
ent equilibrium states, such as nuclear fission, chem-
ical reactions and phase transitions, can be realisti-
cally modeled by Hamiltonian systems with multiwell
potentials. Catastrophe theory analyses degenerate crit-
ical points of the potential function, which means that
points where not just the first derivative, but one or
more higher derivatives of the potential function are
also zero. Umbilic catastrophes are examples of rank
2 catastrophes, and there are three main categories:
(1) the hyperbolic umbilic catastrophe, (2) the ellip-
tic umbilic catastrophe and (3) the parabolic umbilic
catastrophe. The D5 potential belongs to the third cat-
egory.

The structure of the paper is as follows: In Sect. 2,
we present in detail the properties of the Hamiltonian
system. The next section is devoted on the Newton–
Raphson basins of attraction, while all the computa-
tional methods we used in order to explore the escape
dynamics of the orbits are described in Sect. 4. In the
following section, we conduct a thorough and system-
atic numerical investigation revealing the escapemech-

anism of the D5 potential. Our paper ends with Sect. 6
where the discussion of our research is given.

2 Presentation of the model potential

We shall investigate the escape dynamics in a charac-
teristic example of a two-dimensional (2D) multiwell
potential which is the lower umbilical catastrophe D5

VD5(x, y) = 2αy2 − x2 + xy2 + 1

4
x4. (1)

Without the loss of generality, we can assume that α =
1. However, it should be underlined that by fixing the
value of α the conclusions drawn are specific of the
considered system and they cannot be generalized.

The equations of motion governing the motion of a
test particle with a unit mass (m = 1) are

Vx = ẍ = −∂VD5

∂x
, Vy = ÿ = −∂VD5

∂y
, (2)

where, as usual, the dot indicates derivativewith respect
to the time. Furthermore, the variational equations
needed for the computation of standard chaos indica-
tors (the SALI1 in our case, as better explained in the
following section) are given by

˙(δx) = δ ẋ, ˙(δy) = δ ẏ,

( ˙δ ẋ) = −∂2VD5

∂x2
δx − ∂2VD5

∂x∂y
δy,

( ˙δ ẏ) = −∂2VD5

∂y∂x
δx − ∂2VD5

∂y2
δy. (3)

The Hamiltonian to potential (1) reads

H(x, y, ẋ, ẏ) = 1

2

(
ẋ2 + ẏ2

)
+ VD5(x, y) = E, (4)

where ẋ and ẏ are the velocities, while E is the numeri-
cal value of theHamiltonian, which is conserved. Thus,

1 The SALI method was chosen over more classical dynamical
indicators (e.g., the positive Lyapunov exponent, the fast Fourier
transform) for distinguishing between order and chaos because it
can automatically classify initial conditions of orbits using only
the final numerical value of SALI at the end of the numerical
integration. On the other hand, for all other classical methods we
need to plot either the time evolution of the indicator (e.g., the
positive Lyapunov exponent) or the shape of the spectrum (e.g.,
the fast Fourier transform) in order to determine the character of
an orbit. Obviously, this is not possible when we have to classify
large sets of initial conditions of orbits. In this case, the ideal
solution is a “one-number index” such as the SALI.
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Fig. 1 Isoline contours of the effective potential VD5 in the con-
figuration (x, y) space. The isoline contour corresponding to the
critical energy of escape Eesc is shown in red. Included are the
five equilibrium points the positions of which are represented by
blue dots

an orbit with a given value of energy is restricted in its
motion to regions in which E ≤ VD5(x, y), while all
other regions are energetically forbidden to the test par-
ticle.

The D5 potential has five equilibrium points at
which

∂VD5

∂x
= ∂VD5

∂y
= 0. (5)

Two local minima located at (±√
2, 0) and three sad-

dles at (0, 0), and (−2,±2). Potential (1) has a finite
energy of escape which is Eesc = 0. In Fig. 1, we
present the isoline contours of the effective potential
in the configuration (x, y) space. The isoline contour
corresponding to the critical energy of escape Eesc is
shown in red, while the positions of the five equilibrium
points are pinpointed by blue dots. Looking at Fig. 1
we see that the central region of the potential is com-
posed of two lobes. A transport channel between the
two lobes is present only when E>0.

3 Newton–Raphson basins of attraction

In the previous section, we found that the D5 potential
has five equilibrium points which are the solutions of
the system of algebraic equations (5). We decided to

use the multivariate Newton–Raphson method, a sim-
ple yet a very accurate computational tool, in order to
determine to which of the five equilibrium points each
initial point on the configuration (x, y) plane leads to.
The multivariate Newton–Raphson method takes the
form

xn+1 = xn −
(
VxVyy − VyVxy

VyyVxx − V 2
xy

)

(xn ,yn)

,

yn+1 = yn +
(
VxVyx − VyVxx

VyyVxx − V 2
xy

)

(xn ,yn)

, (6)

where xn , yn are the values of the x and y variables
at the n-th step of the iterative process, while the sub-
scripts of V denote the corresponding partial deriva-
tives. The reader can find more information regarding
the derivation of Eq. (6) in the “Appendix.” The multi-
variate Newton–Raphson method has also been used to
obtain the basins of attraction in other dynamical sys-
tems, such as the restricted three-body problem (e.g.,
[27]), or the four-body problem (e.g., [30]).

The Newton–Raphson algorithm is activated when
an initial condition (x0, y0) on the configuration plane
is given, while it stops when the positions of the equi-
librium points are reached, with some predefined accu-
racy. All the initial conditions that lead to a specific
equilibrium point compose a basin of attraction or an
attracting region. Here we would like to clarify that
the Newton–Raphson basins of attraction should not be
mistaken with the classical basins of attraction in dissi-
pative systems. We observe that the iterative formulae
(6) include both the first and the second derivatives
of the D5 potential and therefore we may claim that
the obtained numerical results directly reflect some of
the basic qualitative characteristics of the Hamiltonian
system. The major advantage of knowing the Newton–
Raphson basins of attraction in a dynamical system is
the fact that we can select the most favorable initial
conditions, with respect to required computation time,
when searching for an equilibrium point.

For obtaining the Newton–Raphson basins of attrac-
tion we worked as follows: First we defined a dense
uniform grid of 1024 × 1024 initial conditions regu-
larly distributed on the configuration space. The itera-
tive process was terminated when an accuracy of 10−15

has been reached, while we classified all the (x, y) ini-
tial conditions that lead to a particular solution (equi-
librium point). At the same time, for each initial point,
we recorded the number (N ) of iterations required
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Fig. 2 (a-upper left): Newton–Raphson basins of attraction of
the D5 potential on the configuration (x, y) plane. The posi-
tions of the five equilibrium points are indicated by black dots.

(b-upper right): the corresponding number (N ) of required iter-
ations. (c-lower right): a magnification of panel (a). (d-lower
right): the corresponding number (N ) of required iterations

to obtain the aforementioned accuracy. Logically, the
required number of iterations for locating an equilib-
rium point strongly depends on the value of the pre-
defined accuracy. In Fig. 2a, we present the Newton–
Raphson basins of attractions for the D5 potential,
while in Fig. 2b we provide the corresponding num-
ber (N ) of required iterations. We observe that several
areas of the configuration plane is covered by broad
well-defined basins of attractions, while there are also
regions in which it is impossible to predict to which

equilibrium point each initial condition leads to. In
Fig. 2c, where a magnification of a specific area on
the (x, y) plane is depicted, we can observe the fractal
boundaries between the several basins of attraction.

4 Computational methods

In order to explore the escape dynamics of the D5 mul-
tiwell potential, we need to define sets of initial condi-
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tions of orbits. For this task, we define for each value
of the energy integral of motion (all tested energy lev-
els are above the escape energy), dense uniform grids
of 1024 × 1024 initial conditions regularly distributed
in the area allowed by the value of the energy E . Our
investigation takes place in several types of planes in
order to obtain a spherical and a more complete view
of the escape process of the D5 potential.

An issue of paramount importance is the determina-
tion of the position as well as the time at which an orbit
escapes. When the value of the total orbital energy E is
smaller than the escape energy, the zero velocity curves
(ZVCs) are closed. On the other hand, when E>Eesc

the ZVCs are open and extend to infinity. An open ZVC
consists of several branches forming channels through
which an orbit can escape to infinity. At every opening
there is a highly unstable periodic orbit close to the line
of maximum potential [12] which is called a Lyapunov
orbit [32]. Such an orbit reaches the ZVC, on both
sides of the opening and returns along the same path,
thus connecting two opposite branches of the ZVC.
Usually, the Lyapunov orbits are used to determine the
escapes of orbits. In particular, an orbit is considered as
an escaping one when it intersects one of the Lyapunov
orbits with velocity pointing outwards. However, their
use has a disadvantage since it can be used only for
orbits with initial conditions inside the central region
of the potential. But what about orbits with initial con-
ditions outside the Lyapunov orbits? Do all these orbits
escape? Could some of these orbits move inside the
central region? In order to give answers to these ques-
tions, we shall apply the geometrical escape criterion
used successfully in [40]. According to this criterion,
an orbit is considered to escape when x2 + y2 > R2,
where R = 10. This allows us to correctly determine
the escape of orbits with initial conditions inside a scat-
tering region of a limit circle with radius R = 10.
Figure 3 shows how an orbit with initial conditions:
x0 = −0.43, y0 = ẋ0 = 0, ẏ0 > 0 when E = 1 inter-
sects the limiting circle and escapes from exit channel
1 after about 54 time units of numerical integration.

In Hamiltonian systems, the configuration as well as
the phase space is divided into the escaping and non-
escaping (trapped) regions. Usually, the vast majority
of the non-escaping space is occupied by initial condi-
tions of regular orbits forming stability islands where a
third adelphic integral of motion is present. In many
systems, however, trapped chaotic orbits have also
been observed (e.g., [49]). Therefore, we decided to
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Fig. 3 Isoline contour (black) of the D5 potential when E = 1.
The orbit intersects the limiting circle (red) and escapes from
exit channel 1

distinguish between regular non-escaping and trapped
chaotic orbits. Over the years, several chaos indicators
have been developed in order to determine the charac-
ter of orbits. In our case, we chose to use the Smaller
ALingment Index (SALI) method. The SALI [41] has
been proved a very fast, reliable and effective tool. The
value of the SALI indicates the character of an orbit. In
particular, if SALI >10−4 the orbit if regular, while if
SALI <10−8 the orbit is chaotic. When 10−4 ≤ SALI
≤ 10−8 we have the case of a “sticky orbit” and further
numerical integration is needed so as the true nature
of the orbit to be fully revealed. Sticky orbits initially
behave as regular ones, while their true chaotic charac-
ter is revealed only after a long time interval of numer-
ical integration.

For the numerical integration, we set a maximum
time equal to 104 time units. Our previous experience in
this subject indicates that usually orbits need consider-
able less time to find one of the exits in the equipotential
surface and eventually escape from the system (obvi-
ously, the numerical integration is effectively ended
when an orbit passes through one of the escape chan-
nels and intersects the limit circle). Nevertheless, we
decided to use such a vast integration time just to be
sure that all orbits have enough time in order to escape.
Here we should clarify that orbits which do not escape
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after a numerical integration of 104 time units are con-
sidered as non-escaping or trapped.

A double-precision Bulirsch–Stoer FORTRAN 77
algorithm (e.g., [35]) was used in order to forward inte-
grate the equations of motion (2) as well as the varia-
tional Eq. (3) for all the initial conditions of the orbits.
Throughout all our computations, the energy integral
of motion of Eq. (4) was conserved better than one part
in 10−12, although for most orbits it was better than
one part in 10−13. All graphics presented in this work
have been created using version 10.3 ofMathematica�
[46].

5 Escape dynamics

Our main target in this section will be to distinguish
between escaping and non-escaping orbits for values of
energy larger than the escape energy where the ZVCs
are open and two channels of escape are present. Fur-
thermore, two important properties of the orbits will
be investigated: (1) the directions or channels through
which the test particles escape and (2) the timescale of
the escapes (we shall also use the term escape period).
In particular, we will examine these dynamical quanti-
ties for various values of the total orbital energy E .

Our initial numerical calculations indicate that apart
from the escaping orbits there is also an amount of
non-escaping orbits. In general terms, the majority of
non-escaping regions corresponds to initial conditions
of regular orbits, where a third integral of motion is
present, restricting their accessible phase space and
therefore hinders their escape. However, there are also
chaotic orbits which do not escape within the prede-
fined time interval and remain trapped for vast periods
until they eventually escape to infinity. At this point, it
should be emphasized and clarified that these trapped
chaotic orbits cannot be considered, by no means, nei-
ther as stickyorbits nor as super stickyorbitswith sticky
periods larger than 104 time units. Sticky orbits are
thosewhobehave regularly for long timeperiods before
their true chaotic nature is fully revealed. In our case on
the other hand, this type of orbits exhibit chaoticity very
quickly as it takes nomore than about 100 time units for
the SALI to cross the threshold value (SALI � 10−8),
thus identifying beyond any doubt their chaotic char-
acter. Therefore, we decided to classify the initial con-
ditions of orbits into three main categories: (1) orbits
that escape through one of the two escape channels,

(2) non-escaping regular orbits and (3) trapped chaotic
orbits.

5.1 Results for the configuration (x, y) space

Our exploration begins in the configuration (x, y)
space, and in Fig. 4 we present the orbital structure
of the (x, y) plane for values of energy in the set
E ={0.05, 0.5, 1, 2, 3, 4, 5, 6, 7}. The sets of the
initial conditions of the orbits are defined as follows:
In polar coordinates (r, φ), the condition ṙ = 0 defines
a two-dimensional surface of section, with two disjoint
parts φ̇ < 0 and φ̇ > 0. Each of these two parts has a
unique projection onto the configuration (x, y) space.
We chose to work on the φ̇ > 0 part. The conditions
φ̇ > 0 and ṙ = 0 along with the existence of the inte-
gral ofmotion (4) suggest that the four initial conditions
of orbits in cartesian coordinates are

x = x0,

y = y0,

ẋ0 = − y0
r

√
2(E − VD5(x0, y0)),

ẏ0 = x0
r

√
2(E − VD5(x0, y0)), (7)

where r =
√
x20 + y20 . Each initial condition is col-

ored according to the escape channel through which
the particular orbit escapes. The blue regions, on the
other hand, denote initial conditions where the test
particles move in regular orbits and do not escape,
while trapped chaotic orbits are indicated in yellow.
The outermost solid line is the ZVC which is defined
as VD5(x, y) = E .

It is seen that for E = 0.05, that is an energy level
just above the energy of escape, inside the left lobe of
the central region of the potential there is a highly sen-
sitive dependence of the escape process on the initial
conditions. Indeed, a slight change in the initial condi-
tions makes the test particle escape through the oppo-
site channel, which is of course a classical indication
of chaos. The right lobe, on the other hand, is covered
almost entirely by initial conditions of non-escaping
regular orbits. As we proceed to higher energy levels,
two important phenomena take place: (1) The amount
of non-escaping regular orbits is reduced and for E ≥ 6
there is no indication of bounded motion or whatso-
ever, (2) the fractal regions in the central region are
also reduced and several basins of escape emerge. By
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Fractal basin boundaries and escape dynamics 1619

Fig. 4 Orbital structure of the configuration (x, y) plane for several values of the energy E . The color code is as follows: Escape
through channel 1 (red); escape through channel 2 (green); non-escaping regular (blue); trapped chaotic (yellow)

the term basin of escape, we refer to a local set of initial
conditions that corresponds to a certain escape chan-
nel. Here we would like to emphasize that when we
state that an area is fractal we simply mean that it has a
fractal-like geometry without conducting any specific

calculations as in [2]. The fractality is strongly related
with the unpredictability in the evolution of a Hamil-
tonian system. In our case, it can be interpreted that
for high enough energy levels the test particles escape
very fast from the scattering region and therefore the
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Fig. 5 Distribution of the escape time tesc of the orbits on the configuration (x, y) plane. The bluer the color, the larger the escape time.
Trapped chaotic and non-escaping regular orbits are shown in white

predictability of the dynamical system increases. Look-
ing at Fig. 4 we see that in all cases (energy levels) the
boundaries between the escape basins are fractal. The
existence of fractal basin boundaries is a very com-
mon phenomenon observed in leaking Hamiltonian
systems (e.g., [9,18,19,31,36,37,45]). However, with
increasing energy the basin boundaries become more
more smooth which means that the degree of fractality
reduces.

The distribution of the escape time tesc of orbits on
the configuration (x, y) space is given in Fig. 5, where
light reddish colors correspond to fast escaping orbits,
dark blue, purple colors indicate large escape periods,

while white color denote both trapped chaotic and non-
escaping regular orbits. It is observed that for h = 0.05,
that is a value of energy just above the escape energy,
the escape periods of the majority of orbits with ini-
tial conditions in the central regions of the potential
are huge corresponding to tens of thousands of time
units. This, however, is anticipated because in this case
the width of the two escape channels is very small and
therefore the orbits should spend much time inside the
ZVC until they find one of the two openings and even-
tually escape to infinity. As the value of the energy
increases, however, the escape channels become more
and more wide leading to faster escaping orbits, which
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Fig. 6 Evolution of the percentages of escaping and non-
escaping orbits with initial conditions on the configuration (x, y)
space when varying the total orbital energy E

means that the escape period decreases rapidly. We
found that the longest escape rates correspond to initial
conditions near the vicinity of the fractal regions. On
the other hand, the shortest escape periods have been
measured for the regions without sensitive dependence
on the initial conditions (basins of escape), that is, those
far away from the fractal basin boundaries.

It would be very informative to monitor the evo-
lution of the percentages of all types of orbits as a
function of the total orbital energy E . In the follow-
ing Fig. 6, we present such a diagram. At this point, we
would like to point out that we decided not to include
the percentage of trapped chaotic orbits because our
computations indicate that always the rate of trapped
chaotic orbits is extremely small (less than 0.1%) and
therefore it does not contribute to the overall orbital
structure of the Hamiltonian system. We observe that
for E = 0.05 the escaping orbits share about 80% of
the configuration space. This is anticipated because at
low energy levels the degree of fractality is high and
therefore both channels are equiprobable. However, as
the value of the energy increases the percentages of
escaping orbits start to diverge. In particular, the rate
of escaping orbits through exit 1 is reduced, while on
the other hand the amount of escaping orbits through
exit 2 grows and at relatively high energy levels (E > 8)
it seems to saturate at about 70%. The percentage of

non-escaping regular orbits starts at 20%, just above
the energy of escape and then it drops as we proceed
to higher energy levels. Our calculations reveal that
non-escaping regular orbits disappear for E > 6. Tak-
ing into consideration all the above-mentioned analy-
sis, we may conclude that in the configuration (x, y)
space exit channel 2 seems to be much more preferable
at high energy levels with respect to exit channel 1.

5.2 Results for the phase (x, ẋ) space

For the phase (x, ẋ) space, we consider orbits with ini-
tial conditions (x0, ẋ0) with y0 = 0, while the initial
value of ẏ is obtained from the Hamiltonian (4). The
orbital structure of the phase plane for the same set
of values of the energy is shown in Fig. 7. A similar
behavior to that discussed for the configuration (x, y)
plane can be seen. The outermost black solid line is the
limiting curve which is defined as

f (x, ẋ) = 1

2
ẋ2 + VD5(x, y = 0) = E . (8)

Here we must clarify that this (x, ẋ) phase plane is not
a classical Poincaré surface of section (PSS), simply
because escaping orbits in general, do not intersect the
y = 0 axis after a certain time, thus preventing us from
defying a recurrent time.Aclassical Poincaré surface of
section exists only if orbits intersect an axis, like y = 0,
at least once within a certain time interval. Neverthe-
less, in the case of escaping orbits we can still define
local surfaces of section which help us to understand
the orbital behavior of the dynamical system.

Looking at Fig. 7, we see that the limiting curve is
closed. This, however, does not mean that the test par-
ticles cannot escape. It simply means that the escape
channels are not visible in the phase space.Again, in the
(x, ẋ) plane we can distinguish fractal regions where
we cannot predict the particular channel of escape and
regions occupied by escape basins. These basins are
either broad well-defined regions or elongated bands
of complicated structure spiraling around the center.
We see, once more, that for values of energy close to
the escape energy there is a considerable amount of
non-escaping orbits, occupying almost the entire right
lobe, and the degree of fractalization of the phase plane
is high. As we proceed to higher energy levels, how-
ever, the rate of non-escaping regular orbits reduces,
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Fig. 7 Orbital structure of the phase (x, ẋ) plane for several values of the energy E . The color code is the same as in Fig. 4

the phase plane becomes less and less fractal and well-
defined basins of escape dominate. With a closer look
in Fig. 7, we can identify for E = 0.05 a thin filament
around the main stability island which is composed of
initial conditions of trapped chaotic orbits. The distri-
bution of the escape time tesc of orbits on the phase
(x, ẋ) plane is shown in Fig. 8. It is evident that orbits
with initial conditions inside the exit basins escape from

the system very quickly, or in other words, they pos-
sess extremely low escape periods. On the contrary,
orbits with initial conditions located in the fractal basin
boundaries need a considerable amount of time in order
to escape.

Another interesting way of measuring the escape
rate of an orbit is by counting how many intersection
the orbit has with the axis y = 0 before it escapes. The
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Fractal basin boundaries and escape dynamics 1623

Fig. 8 Distribution of the escape time tesc of the orbits on the phase (x, ẋ) plane. The darker the color, the larger the escape time.
Trapped chaotic and non-escaping regular orbits are shown in white

regions in Fig. 9 are colored according to the number
of intersections with the axis y = 0 upwards (ẏ > 0).
We observe that orbits with initial conditions inside
most of the basins escape directly without any inter-
section with the y = 0 axis. Furthermore, as the value
of the energy increases, these green regions grow in
relative size (proportion of the total area on the phase
plane) and for high enough energy levels they occupy
more than 50% of the phase plane.We should also note
that orbits with initial conditions located at the fractal
boundaries of the stability islands perform numerous
intersections with the y = 0 axis before they eventu-
ally escape to infinity. On the other hand, orbits with

initial conditions in the elongated spiral bands need
only a couple of intersection until they escape. Similar
types of plots showing the number of intersections can
also be constructed for orbits with initial conditions in
the configuration space.

It would be of particular interest to conduct a statis-
tical analysis of the escape process in the case of the
phase (x, ẋ) space. For this purpose,we shall follow the
numerical approach used recently in [17]. Our results
are shown in Fig. 10a–d where curve fit approximation
versus results from numerical integration is presented
in the four panels. To begin with, Fig. 10a shows the
proportion of escaping orbits Ne/N0 as a function of
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Fig. 9 Color scale of the escape regions as a function of the
number of intersections N with the y = 0 axis upwards (ẏ > 0).
The color code is as follows: 0 intersections (green); 1 intersec-

tion (yellow); 2–10 intersections (cyan); N > 10 (red). The gray
regions represent initial conditions of non-escaping regular and
trapped chaotic orbits

the total orbital energy E . For large values of energy,
E > 6, all the integrated orbits escape from the system.
According to our numerical calculation, the evolution
of the proportion of escaping orbits can be approxi-
mated by the formula

Ne

N0
(E) = 0.5 [1 + tanh (0.423667E + 0.153542)] .

(9)

In Fig. 10b we present the evolution of the direct escap-
ing orbits Nde/N0 (by the term direct escaping orbits
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Fig. 10 (a-upper left): Evolution of the proportion of escaping
orbits Ne/N0 as a function of the total orbital energy E , (b-
upper right): Evolution of the proportion of directly escaping
orbits Nde/N0 as a function of the energy E , (c-lower left): Evo-

lution of the logarithmic proportion dNn/N0 as a function of the
number of the intersections n, for various values of the energy
and (d-lower right): Evolution of the probability pn of escapes
as a function of n for several energy levels

we refer to orbits that escape to infinity immediately
without any intersection with the x = 0 axis) as a func-
tion of the energy E . We see that the amount of direct
escaping orbits grows rapidly with increasing E and
for high energy levels they populate more than 50% of

the phase plane. The proportion of direct escapes can
be given by the approximate formula

Nde

N0
(E) = 0.046 + 0.153E − 0.019E2 + 0.001E3.

(10)
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Fig. 11 Evolution of the percentages of escaping and non-
escaping orbits with initial conditions on the phase (x, ẋ) space
when varying the total orbital energy E

Moreover, Fig. 10c depicts the logarithm of the pro-
portion of escaping orbits dNn/N0, where dNn corre-
sponds to the number of escaping orbits after the nth
intersection with the x = 0 axis upwards (ẋ > 0). It
is seen that the escape time of orbits decreases with
increasing n. In particular, the escape rates are high for
relatively small n, while they drop rapidly for larger
n. Last but not least, we computed the probability of
escape as a function of the number of intersections for
various values of the energy. Specifically, the probabil-
ity is defined as

pn = dNn

Nn
, (11)

where Nn is the number of orbits that have not yet
escaped before the nth intersection. The evolution of
pn as a function of n for various energy levels is given
in Fig. 10d.

In Fig. 11a we see the evolution of the percent-
ages of escaping and non-escaping orbits on the phase
(x, ẋ) planewhen the value of the total orbital energy E
varies. Again the evolution of the percentage of trapped
chaotic orbits was not included since the corresponding
values are always very small (<1%). One may observe
that at low values of the energy non-escaping orbits
is the most populated type of motion as they corre-

spond to about 40% of the phase space. With increas-
ing energy, however, the rate of regular non-escaping
orbits is reduced and for E > 6 it completely disap-
pears. In Fig. 6 referring to the configuration space we
see that near the energy of escape the rates of escaping
orbits coincide, thus implying a high degree of frac-
talization. This is also true in the phase space although
this time the rates of escapingorbits are slightly reduced
with respect to the previous case. As the value of the
energy increases the rates of escaping orbits start to
diverge.Beingmore precise, the percentage of escaping
orbits through exit channel 1 increases rapidly, while
that of escaping orbits through exit channel 2 it exhibits
almost a monotone behavior around 38% for E > 2. At
the highest energy level studied (E = 10) about 62%
of the phase space is occupied by initial conditions of
orbits which escape through exit channel 1. By taking
into account the results presented in Fig. 11, we may
say that in the phase space and for high values of the
energy, exit channel 1 seems to be more preferable.

5.3 An overview analysis

The color-coded grids in the configuration (x, y) as
well as the phase (x, ẋ) space provide information on
the phase space mixing, however, for only a fixed value
of total orbital energy. Hénon, back in the late 1960s
[23], introduced a new type of plane which can provide
information not only about stability and chaotic regions
but also about areas of escaping and non-escaping
orbits using the section y = ẋ = 0, ẏ>0 (see also
[3]). In other words, all the orbits of the test particles
are launched from the x-axis with x = x0, parallel to
the y-axis (y = 0). Consequently, in contrast to the
previously discussed types of planes, only orbits with
pericenters on the x-axis are included and therefore the
value of the energy E can be used as an ordinate. In
this way, we can monitor how the energy influences
the overall orbital structure of our Hamiltonian system
using a continuous spectrum of energy values rather
than few discrete energy levels.

The orbital structure of the (x, E) plane is presented
in Fig. 12a. The outermost black solid line is the limit-
ing curve which is defined as

f1(x, E) = VD5(x, y = 0) = E . (12)

In this type of plane, we can observe the two wells of
D5 potential. The horizontal black dashed line indi-
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Fig. 12 Orbital structure of the (a-upper left): (x, E) plane and (a-lower left): (y, E) plane. The color code is the same as in Fig. 4.
Panels (b) and (d): The distribution of the corresponding escape time of the orbits of the (x, E) and (y, E) plane, respectively

cates the energy of escape (Eesc = 0). It is seen that
below the energy of escape there is a substantial amount
of trapped chaotic orbits. All the initial conditions of
these orbits are, however, confined only to the left will
of the potential. For E > 0 trapped chaoticmotion com-
pletely disappears. Well-defined basins of escape start
to form for E > 0 and their extent grows rapidly with
increasing energy, while fractal areas are observable
only in the boundaries between the escape basins. For
x > 0 a stability island is present; however, its size is
reduced with increasing energy and at about E = 5.5 is

vanishes. The value of the energy at which we observe
the last indication of non-escaping regular motion is
very close to the corresponding values reported ear-
lier in both the configuration and the phase space. In
Fig. 12b, we illustrate how the corresponding escape
time of orbits are distributed on the (x, E) plane.

In order to obtain amore complete viewof the orbital
structure of the dynamical system, we follow a similar
numerical approach to that explained before, but in this
case we use the section x = ẏ = 0, ẋ > 0, considering
orbits that are launched from the y-axis with y = y0,
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Fig. 13 Evolution of the percentages of all types of orbits as a function of the total orbital energy E in the (a-left): (x, E) plane and
(b-right): (y, E) plane

parallel to the x-axis. This allow us to construct again a
two-dimensional (2D) plane in which the y coordinate
of orbits is the abscissa, while the value of the energy
E is the ordinate. Figure 12c shows the structure of
the (y, E) plane, while the distribution of the corre-
sponding escape time of orbits is given in Fig. 12d.
The limiting curve this time is given by

f2(y, E) = VD5(x = 0, y) = E . (13)

It is interesting to note that the orbital structure of the
(y, E) plane is mirror symmetrical with respect to the
y axis (x = 0).

Useful conclusions can be obtained by monitoring
the evolution of the percentages of all types of orbits
as a function of the value of the energy E . Figure 13a,
b shows the diagrams corresponding to the (x, E) and
(y, E) planes of Fig. 12, respectively. In the (x, E)

plane for negative values of the energy regular motion
dominates, however, the amount of non-escaping regu-
lar orbits significantly reduces and for about E > 5.5 it
completely disappears. In the (y, E) plane on the other
hand, it displays fluctuations in the interval E ∈ [0, 4],
while for larger values of the total orbital energy there is
no indication of bounded regularmotion. The evolution
of the percentages of escaping orbits is also different

in the two types of planes. In particular, in the (x, E)

plane the percentages of both escape channels coin-
cide at about 25%, just above the energy of escape,
while for larger values of the energy the rates start
to diverge. Our calculations suggest that in the energy
range E ∈ (0, 12] the percentage of exit channel 1 is
always larger than that of exit channel 2. In the (y, E)

plane things are quite different since both escape chan-
nels are always equiprobable due to the symmetry of
the plane.

Finally, in Fig. 14a we present the evolution of the
average value of the escape time <tesc> of orbits as a
function of the total orbital energy for the (x, E) and
(y, E) planes. We observe that for low energy levels,
just above the critical energy of escape, the average
escape period of orbits is more than 500 time units.
However, as the value of the energy increases the escape
time of the orbits reduces rapidly, in general terms,
tending asymptotically, however, to different values.
If we want to justify the behavior of the escape time
we should take into account the geometry of the open
ZVCs. In particular, as the total orbital energy increases
the two symmetrical escape channels near the saddle
points become more and more wide and therefore the
test particles need less and less time until they find one
of the two openings (holes) in the ZVC and escape to
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Fig. 14 (a-left): The average escape time of orbits <tesc> and (b-right): the percentage of the total area A of the planes covered by the
escape basins as a function of the total orbital energy E

infinity. This geometrical feature explains why for low
values of the energy orbits consume large time periods
wandering inside the open ZVC until they eventually
locate one of the two exits and escape from the system.
The evolution of the percentage of the total area (A) on
the (x, E) and (y, E) planes corresponding to basins
of escape, as a function of the total orbital energy is
given in Fig. 14b. As expected, for low values of the
energy the degree of fractality on both types of planes is
high. However, as the energy increases the rate of frac-
tal domains reduces and the percentage of domains cov-
ered by basins of escape starts to grow rapidly. Eventu-
ally, at relatively high energy levels (E > 7) the fractal
domains are significantly confined and therefore the
well-formed basins of escape occupy more than 90%
of both types of planes.

5.4 Three-dimensional distributions of initial
conditions of orbits

In all previous subsections, we investigated the escape
dynamics of orbits using two-dimensional grids of ini-
tial conditions in several types of planes (or in other
words, in several 2D subspaces of the whole 4D phase
space). Unfortunately, the results presented in these

subsections are different between each other, both from
a qualitative and from a quantitative point of view. This
negatively affect the conclusions that have been drawn,
which are evidently “subspace- dependent.” Therefore,
we decided to expand our numerical exploration using
three-dimensional distributions of initial conditions of
orbits. Being more precise, for a particular value of the
energy we define inside the corresponding zero veloc-
ity surface uniform grids of 100 × 100 × 100 initial
conditions (x0, y0, ẋ0), while the initial value of ẏ > 0
is always obtained from the energy integral of motion
(4).

In Fig. 15, we present the orbital structure of the
three-dimensional distributions of initial conditions of
orbits in the (x, y, ẋ) subspace for the same set of val-
ues of the energy. The color code is the same as in Fig. 4.
It is seen that in this case the grid of the initial condi-
tions of the orbits is in fact a three-dimensional solid
and therefore only its outer surface is visible. However,
a tomographic-style approach can be used in order to
penetrate and examine the interior region of the solid
(e.g., [47]). In the previous Sects. 5.1 and 5.2, we clas-
sified initial conditions of orbits in 2D subspaces (see
Figs. 4, 7) which can be considered as horizontal and
vertical tomographic slices of the corresponding three-
dimensional solids shown in Fig. 15. Thus, we may say
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Fig. 15 Orbital structure of three-dimensional distributions of initial conditions of orbits in the 3D (x, y, ẋ) subspace for several values
of the energy E . The color code is the same as in Fig. 4

that wemanaged to obtain amore general and spherical
view of the escape dynamics of the D5 potential. Here
we would like to point out that to our knowledge this
is the first time that a three-dimensional distribution of
initial conditions of orbits is used for classifying orbits
in open Hamiltonian systems.

Using the above-mentioned technique regarding the
three-dimensional distribution of initial conditions of
orbits, we can monitor how the percentages of the dif-
ferent types of orbits with initial conditions inside the
3D (x, y, ẋ) subspace evolve as a function of the total
orbital energy E . For obtaining a more complete view,
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Fig. 16 Evolution of the percentages of escaping and non-
escaping orbits with initial conditions inside the three-
dimensional grids, as a function of the total orbital energy E

we integrated more 3D grids (not shown here) for addi-
tional higher energy levels (E > 7). Our results are pre-
sented in Fig. 16. Once more the evolution of the per-
centage of trapped chaotic orbitswas not included since
the corresponding values are always extremely small
(less than 0.5%). Escaping orbits share about 86% of
the 3D subspace for E = 0.05, that is an energy level
just above the energy of escape.With increasing energy,
however, the rates of escaping orbits start to diverge. In
particular, our calculations indicate that the percentage
of orbits that escape through exit 1 increases, while
the rate of orbits that escape through exit channel 2
decreases. The amount of non-escaping regular orbits
also decreases as we proceed to higher energy levels
and for E > 6 they completely disappear. Our analy-
sis suggests that for E > 7 the rates of escaping orbits
seem to saturate, around 70% for channel 1 and around
30% for channel 2. Thus, we may conclude that in
the 3D (x, y, ẋ) subspace and especially for relatively
high energy levels the probability of an orbit escaping
through exit channel 1 is double with respect to exit
channel 2.

6 Discussion

The aim of this work was to numerically investigate
the escape dynamics in the D5 potential which is a

characteristic example of a two-dimensional multiwell
potential. For this purpose, we investigated the orbital
structure in many types of two-dimensional planes and
for several values of the total orbital energy E . We also
proceeded one step further by classifying initial condi-
tions of orbits in a three-dimensional (3D) subspace of
thewhole four-dimensional (4D) phase space.Weman-
aged to distinguish between escaping and non-escaping
orbits, and we also located the basins of escape lead-
ing to different exit channels, finding correlations with
the corresponding escape time of the orbits. Among the
escaping orbits we separated between those escaping
fast or late from the system. Our extensive numerical
calculations strongly suggest that the overall escape
process in the D5 potential is very dependent on the
value of the total orbital energy.

We also performed a statistical analysis, relating the
proportion of escaping anddirectly escapingorbitswith
the value of the energy. In the same vein, the evolution
of the proportion of escaping orbits and the correspond-
ing probability as functions of the n-th intersectionwith
the y = 0 axis upwards was also presented. As far as
we know, this is the first time that the escape process
in a two-dimensional multiwell potential is explored
through orbit classification in such a detailed and sys-
tematic way and this is exactly the novelty and the con-
tribution of the current work.

Themultivariate Newton–Raphson rootmethodwas
successfully used in order to obtain the basins of attrac-
tion corresponding to the five equilibrium points. A
highly complicated structure has been revealed on
the configuration (x, y) plane. Well-defined basins of
attractions with fractal boundaries have found to dom-
inate the configuration plane.

For the numerical integration of the sets of the initial
conditions of orbits in each type of plane, we needed
between about 3min and 20h of CPU time on a Quad-
Core i7 2.4 GHz PC, depending of course on the escape
rates of orbits in each case. For each initial condition,
the maximum time of the numerical integration was
set to be equal to 104 time units; however, when a test
particle escaped the numerical integration was effec-
tively ended and proceeded to the next available initial
condition.

We hope that the present thorough analysis and the
corresponding numerical results of the D5 potential
to be useful in this active field of nonlinear Hamil-
tonian systems by shedding some light to the compli-
cated escape mechanism of orbits. Since our results are
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encouraging, it is in our future plans to investigate the
escape properties of orbits in the D7 potential which
has three wells.
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Appendix: Derivation of the multivariate Newton–
Raphson iterative scheme

The multivariate Newton–Raphson method iterates
over the recursive formula

xn+1 = xn − J−1 f (xn), (14)

where J−1 is the inverse Jacobian matrix of f (xn),
while xn stands for the vector x at the n-th iteration.
In our case the system of the equations is Vx = 0 and
Vy = 0 and therefore the Jacobian matrix reads

J =
[
Vxx Vxy

Vyx Vyy

]
. (15)

The inverse Jacobian is

J−1 = 1

det(J )

[
Vyy −Vxy

−Vyx Vxx

]
, (16)

where det(J ) = VyyVxx − V 2
xy .

Inserting the expression of the inverse Jacobian into
the iterative formula (14), we get

[
x
y

]

n+1

=
[
x
y

]

n
− 1

VyyVxx − V 2
xy

[
Vyy −Vxy

−Vyx Vxx

] [
Vx

Vy

]

(xn ,yn)

=
[
x
y

]

n
− 1

VyyVxx − V 2
xy

[
VyyVx − VxyVy

−VyxVx + VxxVy

]

(xn ,yn)
.

(17)

Decomposing formula (17) into x and y, we obtain
the iterative formulae for each coordinate

xn+1 = xn −
(
VxVyy − VyVxy

VyyVxx − V 2
xy

)

(xn ,yn)

,

yn+1 = yn +
(
VxVyx − VyVxx

VyyVxx − V 2
xy

)

(xn ,yn)

. (18)
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