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Abstract This study focuses on the analysis of the
first integrals, the integrating factors and the solutions
for some classes of nonlinear dynamical systems rep-
resented by a mass–spring–damper model. The study
consists of the applications of local–nonlocal trans-
formations and the extended Prelle–Singer approach
by considering the relation with Lie symmetry groups
and λ-symmetry. In addition, the mathematical rela-
tions between these methods are presented, and time-
dependent and time-independent first integrals and the
corresponding exact solutions of nonlinear dynamical
systems such as general Morse oscillator equation, the
path equation, the harmonic oscillator equation and
the displaced harmonic oscillator equation as special
cases of Liénard-type equations are investigated. Fur-
thermore, the general forms of Liénard-type equations
including general nonlinear damping and nonlinear
spring functions are studied.
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İstanbul Technical University, 34469 Maslak, Istanbul,
Turkey
e-mail: tozer@itu.edu.tr

Keywords Nonlinear dynamical systems ·
λ-symmetry · Linearization · Local and nonlocal
transformations · Liénard equations · Extended
Prelle–Singer method · Lie point symmetry

1 Introduction

One can say that the concept of dynamical systems
is very general and it includes many applications from
engineering field to economy field. The dynamical sys-
tem is about the interactions with the environment by
means of its inputs and outputs. The modeling of a
dynamical system, such as the general Morse oscilla-
tor equation, the path equation, the harmonic oscillator
equation and the displaced harmonic oscillator equa-
tion, is given by differential equations including inputs,
states and outputs. This means the behavior of dynam-
ical systems is given by evolution its states; that is, if
one has some information about the input of the sys-
tems and all its properties, one can predict the future
behavior of the system. In addition, the behavior of
the system is also characterized by its evolution over
time.

The general procedure to analyze the behavior of
dynamical systems is to construct a mathematical
model described by a differential equation. In the liter-
ature, one of the representations of a dynamical system
can be given by a mass–spring–damper model (Fig. 1).
The Newton’s second law leads to the following differ-
ential equation for this model
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mass 

Fig. 1 A mass–spring–damper model

ẍ + f (ẋ) + kx = 0, (1.1)

where x = x(t) denotes the position of the mass and
varies with time t, f (ẋ) is the nonlinear damping force
as a function of the velocity of the mass, k is the spring
stiffness coefficient, and kx is the spring restoring force.
For the case f (ẋ) = cẋ , where c is the viscosity coeffi-
cient of the damper, then Eq. (1.1) becomes a differen-
tial equation representing a linearmass–spring–damper
model. In addition, the case f (ẋ) = cẋ2 corresponds
to a drag force on a mass moving in a fluid. In addition,
one can consider the following second-order governing
differential equation as a more general case of (1.1)

ẍ + f (x, ẋ) = 0. (1.2)

Thus, it is possible to write the following differential
equations describing nonlinear mass–spring–damper
model as specific cases of Eq. (1.2)

ẍ + f (x)ẋ + g(x) = 0, (1.3)

and

ẍ + f (x)ẋ2 + g(x) = 0, (1.4)

where f (x) represents nonlinear damping and g(x) rep-
resents nonlinear spring in the model. From the math-
ematical point of view, the differential equations given
by (1.3) and (1.4) correspond to Liénard I-type and Lié-
nard II-type equation, respectively, which have impor-
tant properties in terms of mathematics, physics and
mechanics [1–9]. In this study,wedealwith the applica-
tions ofmathematicalmethods such asLie group theory
related to the λ-symmetry approach, local and nonlocal
transformations to analyze first integrals, Lagrangian–
Hamiltonian forms and exact solutions of the nonlin-

ear dynamical systems represented by the differential
equations (1.3) and (1.4).

In the case of analysis of differential equations, Lie
symmetry groups are one of the most effective meth-
ods in the literature [10–16]. Application of Lie groups
has significant effects on all area of science includ-
ing pure and applied mathematics, geometry as well
as engineering, physics and social sciences. In 1883,
S. Lie discovered that the general transformation for-
mulas can be obtained by using a change of variables
for certain classes of second-order ordinary differen-
tial equations to convert them to linear form, which
is an application of Lie symmetry groups to nonlinear
ordinary differential equations. He also indicated that
the linearizable equations must be mostly cubic in the
first-order derivative and its coefficients can be written
as over-determined partial differential equations that
should satisfy Lie linearization test [17,18]. The first
requirement of Lie linearization test is to solve sys-
tems of partial differential equations. The second one
is based on the fact that only second-order ordinary dif-
ferential equations which have eight-dimensional Lie
symmetry algebras can pass the Lie linearization test,
which can be considered as a restriction property. In
order to evaluate with wider perspective of lineariza-
tion problems, new studies on nonlocal transformations
has been developed in studies [18,19]. Sundman [18]
proposes the general transformation formulas, which

X = F(x, t) dT = G(x, t)dt, (1.5)

are defined as a nonlocal transformation. If any nonlin-
ear equation can be obtained in linear form via Sund-
man transformations, then it is called S-linearizable [3].
Duarte et al. [18] derive the second-order equations,
which can be obtained as S-linearizable equations and
demonstrate that they belong to the family of equations
of the form

ẍ + a2(t, x)ẋ
2 + a1(t, x)ẋ + a0(t, x) = 0. (1.6)

Further studies on S-linearizable equations that
involve an algorithm which enables finding the S-
transformation are developed in [2,3]. They revaluate
Duarte’s results [18] and introduce some theorems for
S-linearizable second-order ordinary differential equa-
tions as the form (1.6).

For Eq. (1.6), there are a list of three properties so
that writing a2(t, x) = 0 and a1(t, x) = a0(t, x), and

123



Analysis of nonlinear dynamical systems 1573

the function only depends on x , then (1.6) corresponds
to Liénard I-type equation [6,7]. On the other hand, for
a list of three properties so that writing a1(t, x) = 0
and a2(t, x) = a0(t, x), and the function only depends
on x , then Eq. (1.6) becomes Liénard II-type equation
[20]. In the literature, Lie point symmetry properties
for Liénard I-type and II-type equations, which have
eight-parameter Lie symmetry groups are investigated
in detail in [6,7,20]. Some invariant solutions of the
Liénard II-type equations representing some nonlinear
dynamical systems are investigated by using the Lie
point symmetry concept in [20]. Some solutions are
presented and plotted. In the study [21], λ-symmetries
are introduced as a new concept in the study of Lie
groups. It is also shown that if any Lie point sym-
metry of second-order ordinary differential equation
is known then the λ-symmetry of the same equation
can be found by using a feasible algorithm. In fact,
from the mathematical motivation point of view, in this
study our aim is to consider more general mathemati-
cian concept in analyzing not only for Liénard II-type
equation but for Liénard I-type equation and not only
using Lie point symmetry but also using transforma-
tions and λ-symmetries approaches connected with Lie
point symmetry and to represent some mathematical
relations between these methods.

In addition to this, in the literature, the extended
Prelle–Singer method is also used for investigating the
time-dependent and time-independent first integrals of
the ordinary differential equations. In fact, it is possi-
ble to show that there is a strong mathematical connec-
tion between λ-symmetry approach and the extended
Prelle–Singer method based on the solution of null
function and the integrating factors. We present that
the use of Lie point symmetries and λ-symmetries in
the concept of Prelle–Singer method procedure may
give some important advantages to investigate first inte-
grals of differential equations. Based on these facts,
we analyze local and nonlocal transformations and λ-
symmetries of some specific forms of Liénard I-type
and Liénard II-type equations. In addition, we con-
sider the relation between λ-symmetries and Prelle–
Singermethod for analyzing first integrals and integrat-
ing factors for general and spacial cases ofLiénard-type
equations.

This paper is organized as follows. In Sect. 2, we
introduce some necessary preliminaries about Sund-
man transformation, theorems based on the condi-
tions of being an S-linearizable equation. In Sect. 3

the linearizable cases of Liénard II-type and S-trans-
formations, local transformations are presented by
including some examples. Section 4 deals with λ-
symmetries of given equation. Section 5 consists of
analysis of Liénard I-type equation via S-linearizable
conditions. Section 6 focuses on the application of
extended Prelle–Singer method and the presentation
of relations with the λ-symmetries. Section 7 includes
conclusions and discussions.

2 Preliminaries

2.1 Nonlocal (S) transformations

Let us consider a second-order ordinary differential
equation

ẍ = M (t, x, ẋ) . (2.1)

Duarte et al. [18] illustrate that the equations of the
form (2.1) can be written in the following linear equa-
tion form

XTT = 0, (2.2)

via generalized Sundman transformations

X = F(x, t) dT = G(x, t)dt, (2.3)

which are called S-transformations [3]. Besides, they
state that if any equation can be linearized by means of
S-transformations, then this equation can be called as
S-linearizable. In fact, in order to express Eq. (2.1) as
S-linearizable, it has to be in the form

ẍ + a2(t, x)ẋ
2 + a1(t, x)ẋ + a0(t, x) = 0, (2.4)

where

a2 = GFxx − FxGx

GFx
=

(
Fx
G

)
x

·
(
Fx
G

)−1

,

a1 = 2GFxx − FtGx − FxGt

GFx

=
[(

Ft
G

)
x

+
(
Fx
G

)
t

] (
Fx
G

)−1

,

a0 = GFtt − FtGt

GFx
=

(
Ft
G

)
t
·
(
Fx
G

)−1

. (2.5)
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Theorem 2.1 [3] The Eq. (2.4) is S-linearizable by
means of S-transformation (2.3) if and only if its first
integral can be defined as

ω (t, x, ẋ) = A(t, x)ẋ + B(t, x), (2.6)

in which A and B are defined by

A(t, x) = Fx
G

B(t, x) = Ft
G

. (2.7)

It is clear that one can write

A(ẍ + a2(t, x)ẋ
2 + a1(t, x)ẋ + a0(t, x))

= Dt (ω(t, x, ẋ)) , (2.8)

where Dt is the total derivative operator. Consequently,
first integral and integrating factor corresponding to
Eq. (2.4) can be written as ω and A = ωẋ =
Fx/G, respectively. Conversely, if the first integral
ω = A(t, x)ẋ + B(t, x) of (2.4) is known then a lin-
earizing S-transformation can be determined by

F(t, x) = ϕ(I (t, x)), (2.9)

then G is uniquely given by

G(t, x) = Fx
A

or G(t, x) = Ft
B

if B �=0, (2.10)

in which I (x, y) is the first integral of

ẋ = − B

A
. (2.11)

In the study [3], a new characterization method in
terms of coefficient a0, a1, a2 is developed to obtain S-
linearizable form of Eq. (2.4). The following theorem
summarizes the construction of the method.

Theorem 2.2 [3] Let us consider an equation of the
form (2.4) and let S1 and S2 be the functions defined by

S1(t, x) = a1x − 2a2t , (2.12)

S2(t, x) = (a0a2 + a0x )x + (a2t + a1x )t
+ (a2t − a1x ) a1. (2.13)

Hence, the following alternatives hold:

• If S1 = 0 then Eq. (2.4) is S-linearizable if and only
if S2 = 0.

• If S1 �= 0, let S3 and S4 be the functions defined by

S3(t, x) =
(
S2
S1

)
x

− (a2t + a1x ) , (2.14)

S4(t, x) =
(
S2
S1

)
t
+

(
S2
S1

)2

+ a1

(
S2
S1

)
+ a0a2 + a0x , (2.15)

then theEq. (2.4) is said to be S-linearizable if and only
if S3=0 and S4 = 0.

Theorems 2.1 and 2.2 present the conditions for any
equation tobe S-linearizable byusing S-transformation.
Now we consider the following theorem consisting of
the methods to obtain F and G functions for the Sund-
man transformation.

Theorem 2.3 [3] Suppose that Eq. (2.4) is
S-linearizable. If S1 = S2 = 0, let τ(t) be the function
defined by

τ(t) = a0x − 1

2
a1t + a0a2 − 1

4
a21 . (2.16)

Let ω(t) be a solution of the system of equations

ωt + ω2 + τ = 0,

ωx = 0, (2.17)

and C(t, x) is a solution of the system

Ct = a0 − C
(a1
2

+ ω
)

, (2.18)

Cx =
(a1
2

+ ω
)

− Ca2, (2.19)

and P(t, x) is a solution of

Px = a2, Pt = a1
2

, (2.20)

then if F(t, x) is a nonconstant solution of equation

Ft = CFx , (2.21)

and G is given by

G = Fx · exp
(

−P −
∫

ω(t)dt

)
, (2.22)

thus the pair F and G define, via Eq. (2.3), a lineariz-
ing S-transformation. If S1 �= 0 then the equation S-
linearizable if and only if S3 = S4 = 0 then C(t, x) is
a solution of the system

Ct = a0 − C(a1 + u), (2.23)
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Cx = −u − Ca2, (2.24)

where u = S2/S1. And let P(t, x) be a solution of

Px = a2, Pt = S1
S2

+ a1. (2.25)

If F is a nonconstant solution of Eq. (2.21) and G is
defined by

G = Fx · exp(−P), (2.26)

then the pair F and G define via Eq. (2.3) a linearizing
S-transformation.

2.2 Local (L) transformations

Let us consider Eq. (2.4), which is linearizable to the
Eq. (2.2) via local transformations

X = R(t, x), T = S(t, x), (2.27)

then Eq. (2.1) has the form

ẍ+a3(t, x)ẋ
3+a2(t, x)ẋ

2+a1(t, x)ẋ+a0(t, x) = 0,

(2.28)

where the coefficients ai (t, x), 0 ≤ i ≤ 3 can be
expressed in terms of R and S and their derivatives
[8]

a3(t, x) = Sx Rxx − Sxx Rx

St Rx − Sx Rt
,

a2(t, x) = St Rxx − Rt Sxx + 2 (Sx Rtx − Rx Stx )

St Rx − Sx Rt
,

a1(t, x) = Sx Rtt − Rx Stt + 2 (St Rtx − Rt Stx )

St Rx − Sx Rt
,

a0(t, x) = St Rtt − Rt Stt
St Rx − Sx Rt

. (2.29)

Thus, if Eq. (2.28) can be linearized by means
of local transformations (2.27) then it is called L-
linearizable.

Theorem 2.4 [8] L-linearizable equation must be at
most cubic in the first-order derivative and its coeffi-
cients satisfy the following equations

3(a3)t t − 2(a2)t t + (a1)xx =
(
3a1a3 − a22

)
t

−3(a0a3)x − 3a3a0x + a2a1x

3a0xx−2(a1)t x + (a2)t t = 3(a0a3)t+
(
a21 − a0a2

)
x

+ 3a0(a3)t − a1(a2)t . (2.30)

It can be said that the conditions of L-linearizable
equations are also valid for S-linearizable equations.
The following procedure can be given to obtaining local
transformation for the condition S1 = S2 = 0. Let’s
consider a nonzero solution σ(t) of the equation

σ ′(t) = ω(t)σ (t), (2.31)

where ω is a solution of (2.17). If P satisfies (2.20)
then the function H can be defined such as H = σeP .
Since S2 = 0, there exists a function N such that

Nt = a0H, Nx =
(
1

2
a1 − σ ′

σ

)
H. (2.32)

With the solution of (2.16), the function F(t, x) can
be found from the integration of the differential equa-
tions

Fx = H

σ 2 , Ft = N

σ 2 . (2.33)

By using Eq. (2.31) ω is written in terms of σ and
by substituting in (2.22) then the expression

G = Fxe
−Pσ−1, (2.34)

is obtained. And G can be defined in terms of σ as
below

G = Fxe
−Pσ−1 = H

σ 2 e
−P 1

σ
= σePe−P

σ 3 = 1

σ 2 .

(2.35)

Let S̄ = S̄(t) be such that S̄′(t) = 1/σ 2. The
local transformations (2.27) that linearize (2.4) can be
defined as

R(t, x) = F(t, x), S(t, x) = S̄(t). (2.36)

Theorem 2.5 [3] An equation of the form (2.4) is
L-linearizable and S-linearizable if and only if S1 =
S2 = 0.
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3 S and L-transformations of Liénard II-type
equation

We deal with the second-order nonlinear differential
equation, which is called Liénard II-type equation [22,
23]

ẍ + f (x)ẋ2 + g(x) = 0, (3.1)

where f (x) and g(x) are arbitrary functions of x . In
this section, we investigate S-linearizable conditions
of equation of type (3.1). From Eqs. (2.4) and (3.1) one
can write

a2(t, x) = f (x), a1(t, x) = 0, a0(t, x) = g(x).

(3.2)

3.1 S-transformations

Proposition 3.1 Liénard II-type equation is called L-
linearizable and S-linearizable if and only if with the
condition g′(x) + f (x)g(x) = γ , γ > 0 is satisfied.

Proof Substituting the coefficients a2, a1, a0 to the
Eq. (2.12), S1(t, x) = 0 is obtained. Based on The-
orem (2.2) if S2(t, x) = 0 satisfies, then Eq. (3.1) is
called S-linearizable. Let us assume that S2(t, x) = 0,
then the differential equation in terms of f (x) and g(x)
is found

g′′(x) + ( f (x)g(x))′ = 0. (3.3)

If we integrate Eq. (3.3), then the relationship
between f (x) and g(x) is given by

g′(x) + f (x)g(x) = γ, γ > 0, (3.4)

where γ is a constant. ��
Equation (3.4) describes isochronous condition,

which is an important result from physical and math-
ematical point of view [20]. In addition, a (classical)
dynamical system is called isochronous if it features
an open (hence fully dimensional) region in its phase
space in which all its solutions are completely periodic
(i.e., periodic in all degrees of freedom) with the same
fixed period (independent of the initial data, provided

they are inside the isochrony region) [24]. The integra-
tion of Eq. (3.4) enables us to define g(x) function in
terms of given f (x). Hence, the special form of (3.1)
can be written as

ẍ + f (x)ẋ2 + γ e− ∫
f (x)dx

∫
e
∫

f (x)dxdx

+ γ1e
− ∫

f (x)dx = 0. (3.5)

Here we deal with obtaining F and G functions to
define S-transformations. For this purpose, in terms of
the coefficients a2, a1, a0 Eq. (2.16) is written to find
τ(t) as below

τ(t) = g′(x) + f (x)g(x). (3.6)

Since τ(t) only should depend on t , one can see that
the Eq. (3.6) must be equal to a constant such that

τ(t) = γ. (3.7)

Based on Eq. (3.4) it is possible to see that two dif-
ferent cases of γ value should be considered since if γ

is equal to zero then Eq. (3.4) becomes homogeneous
but it is different from zero then Eq. (3.4) becomes
nonhomogeneous.
Case 1. γ = 0 From Eq. (2.17) we find

ω(t) = 0. (3.8)

A particular solution of the system (2.18) is

C(t, x) = tg(x). (3.9)

Then, P(t, x) via Eq. (2.20) is obtained

P(t, x) = − ln(g(x)). (3.10)

By solving Eqs. (2.21) and (2.22), the pair F and G
defines, via Eq. (2.3), S-transformations

F(t, x) = ϕ

(
1

2

(
t2 + 2

∫
dx

g(x)

))
,

G(t, x) = ϕ′
(
1

2

(
t2 + 2

∫
dx

g(x)

))
, (3.11)

that linearize Eq. (3.1). From the (2.6) and (2.7) the
first integral of (3.1) can be written as

I = 1

g(x)
ẋ + t. (3.12)
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Case 2. γ �= 0. The solution of (2.17) gives

ω(t) = −√
γ tan

(√
γ t

)
. (3.13)

If we solve the system (2.18), then

C(t, x) = g(x)√
γ

tan
(√

γ t
)
, (3.14)

is obtained. Thus, P(t, x) is found in the following
form

P(t, x) =
∫

f (x)dx . (3.15)

From the (2.21) and (2.22) the functions F and G,
which define S-transformations, yield

F(t, x) = ϕ

(
dx∫
g(x)

− 1

γ
ln

(
cos(

√
γ t)

))
, (3.16)

G(t, x) = 1

g(x)
exp

(
−

∫
f (x)dx

)
sec

(√
γ t

)
ϕ′

×
(

dx∫
g(x)

− 1

γ
ln

(
cos

(√
γ t

)))
,

(3.17)

which linearize Eq. (3.1). From the (2.6) and (2.7) the
first integral for (3.1) can be written as

I = exp

(∫
f (x)dx

)

×
(
cos

(√
γ t

)
ẋ + 1√

γ
g(x) sin

(√
γ t

))
.

(3.18)

3.2 L-transformations

Based on the Theorem 2.5, Eq. (3.1) is linearizable
by a transformation of the form (2.36). It can easily
be checked that Liénard II-type equation (quadratic
Liénard type) satisfies Lie’s linearization test given
by (2.30). If we substitute the coefficients of (3.5)
in Eq. (2.30), then one can see that these two equa-
tions are satisfied. Now let us consider the case of
ω(t) = −γ tan(γ t), then Eq. (2.31) yields

σ = cos
(√

γ t
)
. (3.19)

From the equation H = σeP , we find

H(t, x) = exp

(∫
f (x)dx

)
cos

(√
γ t

)
. (3.20)

Solution of Eq. (2.32) yields

N (t, x) = 1

γ
exp

(∫
f (x)dx

)
sin

(√
γ t

)
g(x).

(3.21)

Consequently from Eqs. (2.33) and (2.35), we can
write the pair

R(t, x) = g(x)

γ
sec

(√
γ t

)
exp

(∫
f (x)dx

)
,

S(t, x) = 1√
γ
tan

(√
γ t

)
, (3.22)

which define a local L-transformation that linearizes
Eq. (3.1). The examples of the application of S and
L-transformations to Liénard II-type equations having
importantmechanical andphysicalmeaning are studied
below.

Example 1 The differential equation describing the
path of minimum drag work has been defined such that

ẍ − f ′(x)
f (x)

ẋ2 − f ′(x)
f (x)

= 0, (3.23)

where x = x(t) is the altitude function [25]. In a fluid
medium, drag forces are the major sources of energy
loss for moving objects. Fuel consumption may have
to be reduced to minimize the drag work. This can be
achieved by the selection of the optimum path. It is a
fact that the path equation (3.23) is a type of quadratic
Liénard equation. It can be seen that it satisfies the
isochronous condition (3.4) and S-linearizable condi-
tions S1 = S2 = 0 are satisfied if and only if f (x) has
only the form f (x) = βsech(

√
γ (x − c1)), where β

and c1 are constants. If Eq. (3.23) is rewritten bymeans
of f (x), then one can find

ẍ + √
γ tanh

(√
γ (x − c1)

) (
1 + ẋ2

)
= 0. (3.24)

By using Eqs. (3.16)–(3.18), for the Eq. (3.24) pair
of S-transformations are

F(t, x) = ϕ

(
1

γ

(
ln

(
cos(

√
γ t)

sin
(√

γ (x − c1)
)
)))

,

(3.25)
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G(t, x) = −csch
(√

γ (x − c1)
)
sec

(√
γ t

)
√

γ
ϕ′

×
(
1

γ

(
ln

(
cos

(√
γ t

)
sin

(√
γ (x − c1)

)
)))

,

(3.26)

and the first integral is

I = cos
(√

γ t
)
cosh

(√
γ (x − c1)

)
ẋ

+ sin
(√

γ t
)
sinh

(√
γ (x − c1)

)
, (3.27)

where gives the invariant solution

x(t) = c1 ± 1√
γ
arcsinh

(
1

2

(−√
γ c2 cos

(√
γ t

)

± 2c3 sin
(√

γ t
)))

, (3.28)

where c2 and c3 are arbitrary constants. In addition, the
L-transformations for Eq. (3.23) are

R(t, x) = −1√
γ
sinh

(√
γ (x − c1)

)
sec

(
t
√

γ
)
,

S(t, x) = 1√
γ
tan

(√
γ t

)
, (3.29)

which transform Eq. (3.24) to the linear equation R′′ =
0. The general solution of this equation can be written
as

R + aS + b = 0, (3.30)

where a and b are constants. By applying Eq. (3.29) to
the (3.30), we find the general solution of (3.24)

x(t) = c1 − 1√
γ
arcsinh

(√
γ a cos

(
t
√

γ
) + b sin

(
t
√

γ
))

,

(3.31)

which is the same as the solution given in (3.28) for
c2 = a, c3 = b. Furthermore, if the first integral of an
equation is known, then the relation

I (x, ẋ) = H(x, p) = pẋ − L (x, ẋ) , (3.32)

can be given, in which H is the Hamiltonian, L is the
Lagrangian, and p is the conjugate momentum. Thus,
the relation

∂ I

∂ ẋ
= ∂H

∂ ẋ
= ∂p

∂ ẋ
ẋ + p − ∂L

∂ ẋ
= ∂p

∂ ẋ
ẋ, (3.33)

can be written. In addition, the p conjugate momentum
is expressed of the form

p =
∫

Iẋ
ẋ

+ k(x), (3.34)

Fig. 2 Phase portrait of (3.28) for three different integration
constants

where k(x) is an arbitrary function of x . For the con-
venience, k(x) can be assumed to be zero. Hence, it
is easily checked that Lagrangian formulation can be
given

L = pẋ − I (x, ẋ) . (3.35)

For Eq. (3.24), the Lagrangian is obtained from
(3.27) and (3.35)

L = ẋ cos
(√

γ t
)
cosh

(√
γ (x − c1)

)
(ln (ẋ) − 1)

− sin
(√

γ t
)
sinh

(√
γ (x − c1)

)
. (3.36)

From (3.32) the Hamiltonian

H = cos
(√

γ t
)
cosh

(√
γ (x − c1)

)
×

(
ep sec(

√
γ t)sech(√γ (x−c1))

+ tan
(√

γ t
)
tanh

(√
γ (x − c1)

))
, (3.37)

and the conjugate momentum p.

p = cos
(√

γ t
)
cosh

(√
γ (x − c1)

)
ln (ẋ) . (3.38)

are found. Figure 2 presents the variation of the con-
jugate momentum p (3.34) versus position for three
different values of integration constants for the para-
meter γ = 0.4.

Additionally, Fig. 3 shows the states of simulations
for the position, velocity and acceleration.

Example 2 If one substitutes f (x) = λ1 to Eq. (3.5),
then generalized Morse oscillator

ẍ + λ1 ẋ
2 + γ

λ1

(
1 − e−λ1x

) = 0, (3.39)
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Fig. 3 State simulation representing position x(t), velocity ẋ
and acceleration ẍ of (3.28)

is obtained, where λ1 and γ are constants. For the limit
λ1 → 0, the above equation corresponds to the linear
harmonic oscillator. Then, S-transformations are

F(t, x) = ϕ

(
1

γ
ln

(
sec

(
t
√

γ
) (
1 − eλ1x

)))
, (3.40)

G(t, x) = λ1

γ
(
eλ1x − 1

) sec (
t
√

γ
)
ϕ′

×
(
1

γ
ln

(
sec

(
t
√

γ
) (
1 − eλ1x

)))
, (3.41)

and the first integral of (3.39) from (3.16) to (3.18)

I = eλ1x cos
(
t
√

γ
)
ẋ +

√
γ

λ1

(
eλ1x − 1

)
sin

(
t
√

γ
)
.

(3.42)

is obtained. Furthermore, L-transformations can be
expressed by using (3.22) as below

R(t, x) = sec
(
t
√

γ
)

λ1

(
eλ1x − 1

)

S(t, x) = 1√
γ
tan

(√
γ t

)
. (3.43)

With the similar process, the general solution can
be obtained by utilizing L-transformations (3.43) in
the following form

x(t) = 1

λ1
ln

(
1 − bλ1 cos

(
t
√

γ
) − aλ1√

γ
sin

(
t
√

γ
))

.

(3.44)

In addition, the corresponding p, H and L functions

p = eλ1x cos
(
t
√

γ
)
ln (ẋ) , (3.45)

Fig. 4 Phase portrait for (3.44) with three different integration
constants

Fig. 5 State simulation representing position x(t), velocity ẋ
and acceleration ẍ of (3.44)

L = eλ1x cos
(
t
√

γ
)
ẋ (ln (ẋ) − 1)

−
√

γ

λ1

(
eλ1x − 1

)
sin

(
t
√

γ
)
, (3.46)

H = exλ1+e−xλ1 p sec(t
√

γ ) cos
(
t
√

γ
)

+
√

γ

λ1

(
eλ1x − 1

)
sin

(
t
√

γ
)
. (3.47)

can be obtained. Similarly, Fig. 4 presents the variation
of the conjugatemomentum p (3.34) versus position for
three different values of integration constants and Fig. 5
shows the states of simulations for position, velocity
and acceleration.

Example 3 For the case of f (x) = − 2λ1
1+xλ1

, Eq. (3.5)
becomes

ẍ − 2λ1
1 + xλ1

ẋ2 + γ
(
x + λ1x

2
)

= 0. (3.48)
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For the limit λ1 → 0, Eq. (3.48) reduces to the linear
harmonic oscillator. Pair of S-transformations become

F(t, x) = ϕ

(
− 1

γ
ln

(
cos

(√
γ t

) (
λ1 + 1

x

)))
,

(3.49)

G(t, x) = (λ1x + 1)

xγ
sec

(√
γ t

)
ϕ′

×
(

− 1

γ
ln

(
cos

(√
γ t

) (
λ1 + 1

x

)))
.

(3.50)

The corresponding first integral is

I = 1

λ1x + 1

(
cos

(√
γ t

)
λ1x + 1

ẋ + x sin
(√

γ t
)√

γ

)
,

(3.51)

which yields the invariant solution of (3.48)

x(t) = 1

λ1

(
(1 + b) cos

(
t
√

γ
) + a sin(t

√
γ )

1 − (b + 1) cos(t
√

γ ) + a sin
(
t
√

γ
)
)

.

(3.52)

And L-transformations are

R(t, x) = − sec
(
t
√

γ
)

λ1

(
1 + 1

λ1x + 1

)
,

S(t, x) = 1√
γ
tan

(√
γ t

)
, (3.53)

which linearize Eq. (3.48). Conjugate momentum p,
Lagrangian L and Hamiltonian for Eq. (3.48) are rep-
resented by

p = cos
(√

γ t
)

(λ1x + 1)2
ln (ẋ) , (3.54)

L = ẋ cos
(
t
√

γ
)
(ln (ẋ) − 1) − x

√
γ (λ1x + 1) sin

(
t
√

γ
)

(λ1x + 1)2
,

(3.55)

H = 1

(λ1x + 1)2
ep(λ1x+1)2 sec

(
t
√

γ
)
cos

(
t
√

γ
)

+ x
√

γ (λ1x + 1) sin
(
t
√

γ
)
. (3.56)

Figure 6 presents the variation of the conjugate
momentum p (3.34) versus time for three different val-
ues of integration constants, Fig. 7 shows the states of
simulations for position, velocity and acceleration, and
Fig. 8 is about the comparison of the graphs between
the solution (3.52) and the linear case f (x) = g(x) =
constant.

Fig. 6 Phase portrait of(3.52) with three different integration
constants

Fig. 7 Graph of state simulation representing position x(t),
velocity ẋ and acceleration ẍ for (3.52)

Fig. 8 Plot of two solutions corresponding to (3.52) as x2(t) and
corresponding for f (x) = g(x) = constant in (3.1) as x1(t)
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4 Relationships between S, L transformations and
λ-symmetry

Wehave so far investigated the first integrals and invari-
ant solutions of Liénard II-type equation by using S
and L-transformations. In this section, we consider λ-
symmetry approach and its relation with these transfor-
mations. Now let us consider the vector field υ = ∂x is
a λ-symmetry of (2.4) if and only if λ is a solution of
the equation

Mx + λMẋ = λt + ẋλx + Mλẋ + λ2, (4.1)

and assume that the coefficients a0, a1, a2 satisfy the
conditions S1 = S2 = 0. If Eq. (4.1) has the solutions
of the linear form of λ = α(t, x)ẋ + β(t, x), then the
following system has particular solutions for α and β

αx + α2 + a2α + a2x = 0, (4.2)

βx + 2(a2 + α)β + a1x + αt = 0, (4.3)

βt + β2 + a1β + a0x − a0α = 0. (4.4)

It is easy to see that the solution of (4.2) is α(t, x) =
−a2(t, x). If we substitute α in Eqs. (4.3) and (4.4),
then these equations can be rewritten such that

βx + a1x − a2t = 0, (4.5)

βt + β2 + a1β + a0x + a0a2 = 0. (4.6)

We consider here two different cases:
Case 1. If S1 = S2 = 0, the function τ which is defined
by (2.16) only depends on independent variable t . Sup-
pose that h(t) is any solution of the Riccati equation
given below

h′(t) + h2(t) + τ(t) = 0. (4.7)

Therefore, the solution of (4.7) which satisfies the
Eqs. (4.5) and (4.6) is defined by β(t, x) = h(t) −
1
2a1(t, x). As a result, for the λ function

λ = −a2 ẋ + β, (4.8)

∂x is a λ-symmetry of (2.4).
Case 2. If S1 �= 0 and S3 = S4 = 0, then solution of
Eqs. (4.5) and (4.6) gives β(t, x) = S2/S1. Hence, ∂x
is a λ-symmetry of (2.4) for

λ = −a2 ẋ + S2/S1. (4.9)

Proposition 4.1 [9] The Liénard equation of the sec-
ond kind ẍ+ f (x)ẋ2+g(x) = 0 admits aλ-symmetry of
the form λ = a(t, x)ẋ +b(t, x), with a(t, x) = − f (x)
and b(t, x) = √

γ cot(
√

γ t) when the functions f
and g satisfy the Sabatini (isochroniticity) condition
g′(x) + f (x)g(x) = γ , γ > 0.

In addition to the method for obtaining λ-symmetry,
there is an alternative approach based on the rela-
tion between Lie point symmetry and λ-symmetry
[1,21,26]. Here, a way to derive λ-symmetries associ-
ated with Lie symmetries directly is considered. If Lie
symmetries of any equation are known, then λ symme-
tries can be found by a simple algorithm as explained
below.

Let us consider the second-order differential equa-
tion of the form

ẍ = φ (t, x, ẋ) , (4.10)

and total derivative operator for above equation can be
written in the form

A = ∂t + ẋ∂x + φ (t, x, ẋ) ∂ẋ . (4.11)

In addition, let

υ = ξ(t, x)
∂

∂t
+ η(t, x)

∂

∂x
, (4.12)

be a Lie point symmetry of (4.10) and then the charac-
teristic of υ is

O̧ = η − ξ y′, (4.13)

and theλ-symmetry for the given equation can be deter-
mined as below

λ = A(O̧)

O̧
. (4.14)

The method for obtaining the first integrals and inte-
grating factors from λ-symmetries are given below step
by step [21]:

1. Substitute λ-symmetry (4.14) to the differential
equation

ωx + λωẋ = 0. (4.15)

2. Evaluate A(ω) and derive A(ω) in terms of (t, ω)

as A(ω) = F(t, ω).
3. Find a first integral G of ∂t + F(t, ω)∂ω.
4. Evaluate I (t, x, ẋ) = G(t, ω(t, x, ẋ)) and find the

integrating factor, which is given in the form

123



1582 G. G. Polat, T. Özer

μ = Gω · ωẋ . (4.16)

Remark 1 In proposition 4.1 by Guha [9] for S and L
transformations it is claimed that λ function must be in
the form λ = − f (x)ẋ + √

γ cot(
√

γ t). However, it is
possible to show that λ symmetries with respect to S
and L transformations can be different forms from the
λ function mentioned in Proposition 4.1. The proof is
given in the following subsection.

4.1 First integral and invariant solutions of Liénard
II-type equations via λ-symmetries

Now, we deal with the λ-symmetry analysis of Lié-
nard II-type equations with respect to Lie point sym-
metries for the cases considered in Examples 2 and
3. For Example 1, the detailed information about λ-
symmetry analysis to the path equation can be found
in the reference [27]. We here consider some of Lie
point symmetries to present λ-symmetry procedure of
the generalizedMorse oscillator equation (3.39) for the
form that is given in Eq. (3.5) of Example 2, which has
an eight-parameter symmetry groups (please seeSect. 6
for the detail).

X1 = ∂

∂t
,

X2 = sin
(√

γ t
) (
eλ1x − 1

)
λ1

∂

∂t

+
√

γ cos
(√

γ t
) (
eλ1x − 2

)
λ21

∂

∂x
,

X3 = cos
(√

γ t
) (
eλ1x − 1

)
λ1

∂

∂t

−
√

γ sin
(√

γ t
) (
eλ1x − 2

)
λ21

∂

∂x
,

X4 = 1 − e−λ1x

λ1

∂

∂x
,

X5 = − sin
(
2
√

γ t
)

2λ1

∂

∂t
− cos

(
2
√

γ t
) (
1 − e−λ1x

)
2λ1

√
γ

∂

∂x
,

X6 = −cos
(
2
√

γ t
)

2λ1

∂

∂t
+ sin

(
2
√

γ t
) (
1 − e−λ1x

)
2λ1

√
γ

∂

∂x
,

X7 = sin
(√

γ t
)
e−λ1x ∂

∂x
,

X8 = cos
(√

γ t
)
e−λ1x ∂

∂x
. (4.17)

Here, we only consider Lie point symmetry genera-
tors X1, X4 and X7 in (4.17).

Case 1. Let us consider X1 vector field. Via this vector
field, the infinitesimals are

ξ = 1, η = 0. (4.18)

By using Eq. (4.5), we obtain the λ-symmetry

λ = −λ1 ẋ − γ
(
1 − e−λ1x

)
λ1 ẋ

, (4.19)

and then the integration factor becomes

μ = 2e2xλ1 ẋ . (4.20)

We can write the first integral of the form

I = exλ1

λ2

(
exλ1λ21 ẋ

2 + exλ1γ − 2γ
)

. (4.21)

Case2.With the similar procedure,weutilize X4 vector
field and then corresponding infinitesimals are

ξ = 0, η = 1 − e−λ1x

λ1
. (4.22)

The λ-symmetry is

λ = λ1 ẋ

eλ1x − 1
, (4.23)

and then the integration factor is written as

μ = exλ1
(
1 − exλ1

)
(
exλ1 − 1

)2
γ + e2xλ1λ12 ẋ2

. (4.24)

Thus, the first integral is found as below

Dt

(
− 1√

γ λ1

(
t
√

γ + arctan

(
exλ1 ẋλ1(

exλ1 − 1
)√

γ

)))
= 0,

(4.25)

and the invariant solution is given by

x(t) = 1

λ1
ln

(
1 − ec1 cos

(
t
√

γ + c2
))

, (4.26)

where c1 and c2 are arbitrary constants. TheLagrangian
L is written in the following form from (3.35)

L = 1√
γ λ1

(
t
√

γ + arctan

(
exλ1 ẋλ1(

exλ1 − 1
)√

γ

))

+ exλ1 ẋ

2γ
(
exλ1 − 1

) ln
((

1 − exλ1
)2

γ + e2xλ1 ẋ2λ21
ẋ2

)
,

(4.27)
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Fig. 9 Phase portrait for Eq. (4.26) for the three different values
of integration constants

Hamiltonian is via (3.32)

H = − 1√
γ λ1

×
⎛
⎝t

√
γ + arctan

⎛
⎝ exλ1λ1√

e2
(
1−e−xλ1

)
pγ − e2xλ1λ

2
1

⎞
⎠ ,

(4.28)

and then conjugate momentum is written by (3.34)

p = exλ1

2γ
(
exλ1 − 1

) ln
((

1 − exλ1
)2

γ + e2xλ1 ẋ2λ21
ẋ2

)
.

(4.29)

Figure 9 shows the plot of p versus x for Eq. (3.39)
are given for the parametric choices of γ = 0.4 and
λ1 = 1.4 for the three different values of integration
constants c1 and c2. Figure 10 presents the simulation
for the position, velocity and deceleration.
Case 3. Another vector field X7 gives the following
infinitesimals

ξ = 0, η = sin
(√

γ t
)
e−λ1x . (4.30)

λ-symmetry is equal to

λ = √
γ cot

(
t
√

γ
) − λ1 ẋ, (4.31)

and the integration factor is written as

μ = exλ1 sin
(
t
√

γ
)
. (4.32)

The first integral of Eq. (3.39) is

I = 1

λ1
sin

(
t
√

γ
) (√

γ cot
(
t
√

γ
)

+ eλ1x
(−√

γ cot
(
t
√

γ
) + λ1 ẋ

))
, (4.33)

Fig. 10 Graph represents position x(t), velocity ẋ and acceler-
ation ẍ of (4.26)

which gives the invariant solution of (3.39)

x(t) = 1

λ1
ln

(
sin(t

√
γ )

×
(
c1 − c2 cot

(
t
√

γ
)

√
γ

+ csc
(
t
√

γ
)))

,

(4.34)

where c1 and c2 are arbitrary constants. Similarly,
with respect to the previous case of the Lagrangian,
the Hamiltonian and the conjugate momentum can be
derived as below, respectively

L =
(
exλ1 − 1

) √
γ cos

(
t
√

γ
)

λ1

+ exλ1 ẋ (ln (ẋ) − 1) sin
(
t
√

γ
)
,

H =
(
exλ1 − 1

) √
γ cos

(
t
√

γ
)

λ1

+ exλ1+e−xλ1 p csc(t
√

γ ) sin
(
t
√

γ
)
,

p = exλ1 ln (ẋ) sin
(
t
√

γ
)
. (4.35)

Using the same parametric values in the previous
case, the plots p versus x and numerical simulation for
the position, velocity and acceleration are presented
in Figs. 11 and 12, respectively. Similarly for the har-
monic oscillator equation (3.48) of Example 3, we fol-
low the similar approach by considering its Lie point
symmetries. It can be shown that Lie point symmetries
of Eq. (3.48) (please see Sect. 6 for the detail) are

X1 = ∂

∂t
,

X2 = x sin
(√

γ t
)

1 + λ1x

∂

∂t
+

√
γ cos

(√
γ t

)
(1 + 2λ1x)

λ21

∂

∂x
,
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Fig. 11 Phase portrait for the conjugate momentum for
Eq. (4.34) for the three different values of integration constants

Fig. 12 State simulation representing position x(t), velocity ẋ
and acceleration ẍ of (4.34)

X3 = x cos
(√

γ t
)

1 + λ1x

∂

∂t
−

√
γ sin

(√
γ t

)
(1 + 2λ1x)

λ21

∂

∂x
,

X4 = (
x + λ1x

2) ∂

∂x
,

X5 = − sin
(
2
√

γ t
)

2γ

∂

∂t
−

(
x + λ1x2

)
cos

(
2
√

γ t
)

2
√

γ

∂

∂x
,

X6 = −cos
(
2
√

γ t
)

2γ

∂

∂t
+

(
x + λ1x2

)
sin

(
2
√

γ t
)

2
√

γ

∂

∂x
,

X7 = sin
(√

γ t
)
(1 + λ1x)

2 ∂

∂x
,

X8 = cos
(√

γ t
)
(1 + λ1x)

2 ∂

∂x
. (4.36)

For this example, we only deal with the application
of the symmetries X1, X4 and X8.
Case 1. By utilizing the similar process, the infinitesi-
mal functions corresponding to X1 vector field are

ξ = 1, η = 0. (4.37)

From (4.14) λ-symmetry is found

λ = 2ẋλ1
1 + λ1x

− x
√

γ (1 + λ1x)

ẋ
, (4.38)

and the integration factor becomes

μ = 2ẋ

(1 + λ1x)4
. (4.39)

Thus, one can find the first integral

I = 1

λ21(1 + λ1x)4

× (−γ − 4γ xλ1 − 5γ x2λ21 + ẋ2λ21 − 2γ x3λ31
)
.

(4.40)

Case2.Nowbasedon X4 vector field, the infinitesimals
are obtained as the following form

ξ = 0, η = x + λ1x
2. (4.41)

The λ-symmetry is

λ = ẋ(2xλ1 + 1)

x(1 + xλ1)
, (4.42)

which yields the integration factor

μ = x(1 + xλ1)

ẋ2 + γ x2(1 + xλ1)2
. (4.43)

First integral of (3.48) can be written

I = t + 1√
γ
arctan

(
ẋ√

γ x(1 + xλ1)

)
, (4.44)

which gives the invariant solution of (3.48)

x(t) = ec1 cos
(√

γ (c2 − t)
)

ec1λ1 cos
(√

γ (c2 − t)
) − 1

, (4.45)

where c1 and c2 are arbitrary constants. Via Eq. (3.35),
Lagrangian formulation is obtained as

L = −t − 1√
γ
arctan

(
ẋ√

γ x(1 + xλ1)

)

− ẋ

2xγ (1 + xλ1)
ln

(
ẋ2 + x2γ (1 + xλ1)2

ẋ2

)
,

(4.46)

and by using Eq. (3.34), the conjugate momentum is
found in the time-independent form

p = 1

2xγ (1 + xλ1)
ln

(
ẋ2

ẋ2 + x2γ (1 + xλ1)2

)
.

(4.47)
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Fig. 13 Phase portrait for the conjugate momentum for
Eq. (4.45) with respect to t

Fig. 14 State simulation representing position x(t), velocity ẋ
and acceleration ẍ of (4.45)

Figures 13 and 14 present the plots of p versus t for
the parameters γ = 0.4 and λ1 = 1.4 for the three dif-
ferent values of integration constants c1 and c2 and the
numerical simulation for position, velocity and accel-
eration, respectively. Figure 15 shows the comparison
of the graphs between the solution (4.45) and the linear
case f (x) = g(x) = constant.
Case 3. Finally, by means of X8 vector field, the infin-
itesimals of (3.48) are written

ξ = 0, η = cos
(
t
√

γ
)
(x + λ1x)

2. (4.48)

The corresponding λ-symmetry is

λ = ẋ

(xλ1 + 1)
− √

γ tan
(
t
√

γ
)
, (4.49)

and integration factor from Eq. (4.16) is obtained

μ = cos
(
t
√

γ
)

(x + λ1x)2
. (4.50)

Fig. 15 Plot of two solutions corresponding to (4.45) as x2(t)
and corresponding for f (x) = g(x) = constant in (3.1) as x1(t)

Additionally, one can find first integral of equation

I = ẋ cos
(
t
√

γ
) + √

γ x(xλ1 + 1) sin
(
t
√

γ
)

(1 + λ1x)2
, (4.51)

which gives the invariant solution

x(t)

= −√
γ − c2γ λ1c1 − c2λ1 tan

(
t
√

γ
)

c1c2γ 3/2λ1
2 − 2

√
γ λ1 sec

(
t
√

γ
)
sin

(
t
√

γ

2

)2 + c2λ12 tan
(
t
√

γ
) ,

(4.52)

where c1 and c2 are arbitrary constants. Lagrangian and
time-dependent conjugatemomentum are expressed by

L = ẋ cos
(
t
√

γ
)
(ln(ẋ) − 1) − √

γ x (xλ1+1) sin
(
t
√

γ
)

(1 + λ1x)2
,

(4.53)

p = cos
(
t
√

γ
)
ln (ẋ)

(1 + λ1x)2
.

(4.54)

Similarly, Fig. 16 presents the plot p versus t with
the same values for parameters γ and λ1. Three differ-
ent colors correspond to the three different values of
integration constants. Figure 17 presents the state sim-
ulation for the position x(t), velocity ẋ and acceleration
ẍ of (4.52).

5 Liénard I-type equation, the corresponding S
and L transformations and λ-symmetry

In this part, we study Liénard I-type differential equa-
tion based on S and L transformations and the relation
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Fig. 16 Phase portrait of conjugatemomentum for the Eq. (4.52)
with respect to t

Fig. 17 State simulation for the position x(t), velocity ẋ and
acceleration ẍ of (4.52)

with λ-symmetry and some related properties. In addi-
tion to Liénard II-type equations, a great number of
mathematical models of physical systems give rise to
differential equation of the Liénard I-type equations of
the form

ẍ + f (x)ẋ + g(x) = 0, (5.1)

where f (x) and g(x) are arbitrary real functions of x .
Linearizable conditions for Liénard equation consist of
two cases, which are S1 = S2 = 0 and S3 = S4 = 0.

Proposition 5.1 Liénard I-type equation is S-linea-
rizable and L-linearizable with the necessary condi-
tion S1 = S2 = 0 satisfies if and only if f (x) = k and
g(x) = λ1x + λ2 where λ1 and λ2 are constants.

In this case, theLiénard I-type equationgets the form

ẍ + kẋ + λ1x + λ2 = 0, (5.2)

which represents the displaced damped harmonic oscil-
lator. Equation (2.16) gives

τ(t) = −k2

4
+ λ1. (5.3)

Then, a particular solution of the system (2.18)

C(t, x) = λ1x + λ2

2λ1
(2α + 2β tan(βt)) , (5.4)

can be found, where α = k
2 , β = 1

2 (4λ1 − k2)1/2.
Hence, P(t, x) via Eq. (2.20) can be written as

P(t, x) = αt. (5.5)

Solving Eqs. (2.21) and (2.22), the pair F and G
define a transformation (2.3)

F(t, x) = ϕ

(
ekt

λ1
(λ1x + λ2) sec(βt)

)
,

G(t, x) = sec(βt)2ϕ′
(
ekt

λ1
(λ1x + λ2) sec(βt)

)
,

(5.6)

that linearize Eq. (5.2). From (2.6), first integral of (5.2)
can be written as

I = ekt

2
cos(βt)ẋ + ekt/2

2λ1
(λ1x + λ2)

cos(βt)(k + 2β tan(βt)). (5.7)

The local transformations are

R(t, x) = ekt/2

λ1
(λ1x + λ2) sec(βt),

S(t, x) = tan(βt)

β
. (5.8)

Thus, the λ-symmetry for Eq. (5.2) can be found by the
formula (4.8) in the following form

λ = −α − β tan(βt). (5.9)

Proposition 5.2 Another case of Eq. (5.1) S1 �= 0 and
S3 = S4 = 0 if and only if the relation between f (x)
and g(x) is as f (x) = 1

λ1
+ g′(x), then (5.1) is called

S-linearizable.

Equation (5.1) can be rewritten

ẍ +
(

1

λ1
+ g′(x)

)
ẋ + g(x) = 0. (5.10)
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We recall the formula u = S1
S2
, then in this case

u = −λ1g′(x) is obtained. Equations (2.23) and (2.25)
yield

C(t, x) = λ1g(x), P(t, x) = t

λ1
. (5.11)

Consequently, the pair of S-transformations are
evaluated as below

F = ϕ

(
λ1t +

∫
1

g(x)
dx

)
,

G = e−t/λ1

g(x)
ϕ′

(
λ1t +

∫
1

g(x)
dx

)
, (5.12)

and the corresponding first integral is

I = e−t/λ1 (g(x) + ẋ) . (5.13)

The λ-symmetry can be found by Eq. (4.9) of the
form

λ = −λ1g(x). (5.14)

Similar to the Liénard II-type equations, one can
deal with λ-symmetry by considering the connection
of these equations with the Lie point symmetry gener-
ators. For example, for the Lie point symmetry X6 =
(x + λ2

λ1
) ∂
∂x of Eq. (5.10) the infinitesimals yield

ξ = 0, η = x + λ2

λ1
. (5.15)

From Eq. (4.14) the λ-symmetry is found

λ = ẋλ1
λ1x + λ2

, (5.16)

and the integration factor from (4.16) is equal to

μ = λ1x + λ2

ẋ2λ1 + kẋ(λ1x + λ2) + (λ1x + λ2)2
, (5.17)

thus the time-dependent first integral of Eq. (5.10)
becomes

I = t + 1

β
arctan

(
2ẋλ1 + k(λ1x + λ2)

2β(λ1x + λ2)

)
. (5.18)

6 Extended Prelle–Singer method and λ-symmetry
connection

In fact, the extended Prelle–Singer method can also
be considered to study Liénard I-type and Liénard II-
type equations with the relation between λ-symmetry
approach and the extended Prelle–Singer method [5]

for the investigation of new first integrals, integrat-
ing factors and invariant solutions. Let us consider the
second-order ODEs of the form

ẍ = P

Q
= φ, P, Q ∈ C [t, x, ẋ] , (6.1)

where over dot denotes differentiation with respect to
time and P and Q are analytic functions of the variables
t , x and ẋ . Let us assume that (6.1) admits a first integral
I (t, x, ẋ) = C , where C is a constant, then the total
differentials are

dI = Itdt + Ixdx + Iẋdẋ = 0, (6.2)

where the subscript denotes partial differentiation with
respect to that variable. Reconsidering Eq. (6.1) in
the form (P/Q)dt − dẋ = 0 and adding a null term
Ω(t, x, ẋ)ẋdt − Ω(t, x, ẋ)dx to the latter, we obtain
that on the solutions the one-form(

P

Q
+ Ω ẋ

)
dt − Ωdx − dẋ = 0. (6.3)

Hence, on the solutions, the one-forms (6.2) and
(6.3) must be proportional. Multiplying (6.3) by the
factor Ψ (t, x, ẋ), which acts as the integrating factor
for (6.3), we have

dI = Ψ (φ + Ω ẋ)dt − Ψ Ωdx − Ψ dẋ = 0, (6.4)

where φ = P/Q. Comparing Eqs. (6.2) and (6.4), we
obtain three relations relating the integral, integrating
factor and the null term,

It = Ψ (φ + Ω ẋ) ,

Ix = −Ψ Ω,

Iẋ = −Ψ. (6.5)

Then, the differential equations in terms of Ψ and
Ω are given as below

Ωt + ẋΩx + φΩẋ = −φx + Ωφẋ + Ω2, (6.6)

Ψt + ẋΨx + φΨẋ = Ψ (φ + Ω ẋ) , (6.7)

Ψx = ΨẋΩ + Ψ Ωẋ . (6.8)

The last equation can be considered as a compatibil-
ity equation. In fact, in addition to the classical inves-
tigation procedure of Lie point symmetries of differ-
ential equations [10–16], one can present a connection
between Lie point symmetries and the extended Prelle–
Singermethod discussed above. For this purpose, it can
be proved that the first equation (6.6) is related to the
Lie point symmetries of a given differential equation.
Then, we can define the following statements.
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Remark 2 For the generalized Morse oscillator (3.39),
the solution of Eq. (6.6) by considering φ = −λ1 ẋ2 −
γ
λ1

(1 − e−λ1x ) and Ω = − A(O̧)

O̧
for O̧ = η − ξ y′ and

A = ∂t + ẋ∂x + φ(t, x, ẋ)∂ẋ gives the infinitesimal
functions ξ and η, which construct an eight-parameter
symmetry groups given in (4.17).

Remark 3 Similarly, forφ = 2λ1
1+λ1

ẋ2−γ (x+λ1x2) the
solution of Eq. (6.6) gives symmetry groups given in
(4.36) corresponding to the harmonic oscillator (3.48).

If the solutions for functionsΨ andΩ , which satisfy
Eqs. (6.7) and (6.8), are found, then the first integral
I (t, x, ẋ) can be found by the relation

I (t, x, ẋ) = r1 − r2 −
∫ [

Ψ + d

dẋ
(r1 − r2)

]
dẋ, (6.9)

where

r1 =
∫

Ψ (φ + Ω ẋ) dt and

r2 =
∫ (

Ψ Ω + d

dx
r1

)
dx . (6.10)

In the following subcases,we analyze the integrating
factors and first integrals by considering these mathe-
matical relations betweenλ-symmetry andnullΩ func-
tion and integrating factor μ and Ψ function by com-
paring the results found in the previous sections.

Proposition 6.1 The function Ψ is equal to negative
of integrating factor μ, and null function Ω is equal to
negative of λ.

6.1 Application to the generalized morse oscillator

We deal with the generalized morse oscillator equation
as given in (3.39) as an example of Liénard II-type
equation

ẍ + λ1 ẋ
2 + γ

λ1

(
1 − e−λ1x

) = 0. (6.11)

From (4.10), we have

φ = −
(
1 − e−λ1x

)
γ

λ1
− λ1 ẋ

2, (6.12)

and the null form in the general case is

Ω = −φ

ẋ
= ẋ2λ21 − e−λ1xγ + γ

ẋλ1
. (6.13)

To obtain the integrating factor Ψ , one can consider
the ansatz in the following form [5],

Ψ = ẋ(
A(x) + B(x)ẋ + C(x)ẋ2

)r , (6.14)

where A, B and C are functions of only variable x and
r is constant. If we substitute (6.14) in Eqs. (6.7) and
(6.8), we obtain a set of equations in terms of ẋ and
its powers. From these equations the explicit solution
forms of A, B and C functions can be found. Following
this procedure, the integrating factor Ψ can be found
in the form

Ψ = ẋ

(
be−2xλ1/r + ae2x(−λ1+rλ1)/r ẋ2 + a

(
exλ1 − 2

)
γ exλ1−2xλ1/r

λ21

)−r

, (6.15)

where a and b are arbitrary constants. In addition, by
using the relation (6.9) the time-independent first inte-
gral

I = e(2(1−r)xλ1)/r

2a(r − 1)

×
(
e−2xλ1/r

λ21

(
bλ21 + aexλ1

(−2γ + exλ1
(
γ + ẋ2λ21

))))
,

r �= 1,

(6.16)

is derived. In the following cases, we present new inte-
grating factors and first integrals of generalized morse
oscillator by using the relation λ-symmetry with the
extended Prelle–Singer approach for each correspond-
ing Lie point symmetry.
Case 1.By using X1 from Eq. (4.17), the infinitesimals
ξ and η correspond to

ξ = 1, η = 0. (6.17)

This case coincides with the general case obtained
by using the extended Prelle–Singer procedure dis-
cussed above. It is easy to see that for the case a = 0,
b = 1/2 and r = 1 the integration factor Ψ in (4.20)
can be easily obtained from (6.16).
Case 2. If we consider X2 from (4.17) the infinitesimals
ξ and η are written as
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ξ = sin
(√

γ t
) (
eλ1x − 1

)
λ1

,

η =
√

γ cos
(√

γ t
) (
eλ1x − 2

)
λ21

. (6.18)

By using the relation λ = −Ω , we have

Ω = −λ =
λ21

(
ẋ cos

(√
γ t

)
λ1

+ sin
(√

γ t
) (

e−λ1x γ

λ21
− ẋ2

))
(
eλ1x − 1

)
ẋ sin(

√
γ t) − (

eλ1x − 2
)√

γ cos
(√

γ t
) .

(6.19)

If Ψ may be defined as the following form

Ψ = Sd

(A(t, x) + B(t, x)ẋ)r
, (6.20)

where A(t, x) and B(t, x) are functions of x and t and
Sd is the denominator of Ω and we substitute (6.20) in
(6.7) by considering Sd, then the functions A(t, x) and
B(t, x) are determined and Ψ is written in the form

Ψ = −μ

= e2xλ1λ31
((
eλ1x − 2

) √
γ cos

(√
γ t

) − (
eλ1x − 1

)
ẋλ1 sin

(√
γ t

))
(
eλ1 ẋλ1 cos

(√
γ t

) + (
eλ1x − 1

) √
γ sin

(√
γ t

))3 .

(6.21)

It is easy to see that Ω and Ψ also satisfy the com-
patibility condition (6.8). From Eq. (6.9) we find time-
dependent first integral by considering (6.10)

I = e2xλ1λ21
(−2γ + exλ1

(
γ + ẋ2λ21

))
2
√

γ
(
eλ1 ẋλ1 cos

(√
γ t

) + (
eλ1x − 1

)√
γ sin

(√
γ t

))2 .

(6.22)

Case 3. By using X3 from Eq. (4.17) the vector field
for infinitesimals ξ and η corresponds to

ξ = cos
(√

γ t
) (
eλ1x − 1

)
λ1

,

η = −
√

γ sin
(√

γ t
) (
eλ1x − 2

)
λ21

. (6.23)

For this case

Ω = −λ

= e−xλ1
(−γ cos

(√
γ t

) + exλ1 ẋλ1
(
ẋλ1 cos

(√
γ t

) + √
γ sin

(√
γ t

)))
(
eλ1x − 1

)
ẋ cos

(√
γ t

) − (
eλ1x − 2

) √
γ sin

(√
γ t

) , (6.24)

is obtained. Similar to the first case, from solutions of
A(t, x) and B(t, x), the solution ofΨ can be written as

Ψ = −μ

= e2xλ1λ31
((
eλ1x − 2

) √
γ sin

(√
γ t

) + (
eλ1x − 1

)
ẋλ1 cos

(√
γ t

))
(
eλ1 ẋλ1 sin

(√
γ t

) − (
eλ1x − 1

) √
γ cos

(√
γ t

))3 ,

(6.25)

and the time-dependent first integral is obtained from
(6.9) and (6.10)

I =
e2xλ1λ21

(
−2γ + exλ1

(
γ + ẋ2λ21

))

2
√

γ
(−eλ1 ẋλ1 sin

(√
γ t

) + (
eλ1x − 1

)√
γ cos

(√
γ t

))2 .

(6.26)

Case 4. For symmetry X4 from Eq. (4.17), the vector
field is

ξ = 0, η = 1 − eλ1x

λ1
. (6.27)

For this case, the null function

Ω = −λ = ẋλ1
1 − eλ1x

, (6.28)

is obtained. Because ξ , η and Ω are time-independent
we can write Ψ as below if it is assumed to be in the
form (6.14)

Ψ = ẋ

(
ce−2λ1x ẋ2(
eλ1x − 1

)2
)−1/2

, (6.29)

where c is an arbitrary constant. Thus, it is easy to see
that Ω and Ψ satisfy (6.6) and (6.7). However, it can
be checked that the last equation as compatibility con-
dition (6.8) is not satisfied. To overcome this difficulty,
we consider the modified form of Ψ function in the
following form
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Ψ̂ = F(I ) · Ψ, (6.30)

where F(I ) is an arbitrary function of the first integral
I. Here, the first integral I can obtained from Eq. (4.21)
and one can write

Ψ̂ = F

(
exλ1

λ2

(
exλ1λ21 ẋ

2 + exλ1γ − 2γ
))

×ẋ

(
ce−2λ1x ẋ2(
eλ1x − 1

)2
)−1/2

. (6.31)

Then, substituting (6.31) in (6.30) into the compati-
ble condition (6.8) a first-order differential equation in
terms of I

F(I ) +
(

− γ

λ21
+ I

)
F ′(I ) = 0, (6.32)

is obtained by yielding the solution

F(I ) = 1

γ − Iλ21
. (6.33)

Thus, the modifying form (6.30) has the form

Ψ̂ = −μ =
((
eλ1x − 1

)2
γ + e2λ1x ẋ2λ21

)
ẋ

×
(

ce−2λ1x ẋ2(
eλ1x − 1

)2
)−1/2

, (6.34)

which now satisfies the compatible condition (6.8).
Finally, by considering (6.10), one can write

r1 = − e−λ1x t ẋ

(eλ1x − 1)λ1

(
ce−2λ1x ẋ2

(eλ1x − 1)2

)−1/2

, (6.35)

r2 = −
e−λ1x ẋ arctan

(
exλ1λ21 ẋ

2+exλ1γ−γ

ẋλ1
√

γ

)
√

γ (eλ1x − 1)λ1

×
(

ce−2λ1x ẋ2

(eλ1x − 1)2

)−1/2

. (6.36)

Hence, the following time-dependent first integral
in the form

I = −
e−λ1x ẋ

(
t
√

γ + arctan

(
ẋλ1√

γ
− arctan

( exλ1 λ21 ẋ
2+exλ1 γ−γ

ẋλ1
√

γ

))
√

γ
(
eλ1x − 1

)
λ1

×
(

ce−2λ1x ẋ2(
eλ1x − 1

)2
)−1/2

,

(6.37)

is found.
Case 5. For X5 from Eq. (4.17), the infinitesimals ξ

and η are

ξ = − sin
(
2
√

γ t
)

2γ
, η = −cos

(√
γ t

) (
1 − e−λ1x

)
2
√

γ λ1
.

(6.38)

For this case the null function

Ω = −λ =
(
2exλ1 − 1

)
ẋ
√

γ λ1 cos
(
2t

√
γ
) − (

γ + exλ1
(−γ + ẋ2λ21

))
sin

(
2t

√
γ
)

(
eλ1x − 1

) √
γ cos

(
2t

√
γ
) − eλ1x ẋλ1 sin

(
2t

√
γ
) , (6.39)

is obtained. If we solve the determining equations
depending on the functions A(t, x) and B(t, x), then
we have

Ψ = −μ = eλ1x
((
eλ1x − 1

) √
γ cos

(
2t

√
γ
)

−eλ1x ẋλ1 sin
(
2t

√
γ
))

. (6.40)

Thus, time-dependent first integral is found to be

I = − 1

2λ1

(
2eλ1x

(
eλ1x − 1

)
ẋ
√

γ λ1 cos
(
2t

√
γ
)

+
((
eλ1x − 1

)2
γ − e2xλ1 ẋ2λ21

)
sin

(
2t

√
γ
))

.

(6.41)

Case 6. For X6 from Eq. (4.17) we have

ξ = − cos
(
2
√

γ t
)

2γ
, η = − sin

(√
γ t

) (
1 − e−λ1x

)
2
√

γ λ1
.

(6.42)

For this case

Ω = −λ =
(
2exλ1 − 1

)
ẋ
√

γ λ1 sin
(
2t

√
γ
) − (−γ + exλ1

(
γ + ẋ2λ21

))
cos

(
2t

√
γ
)

(
eλ1x − 1

) √
γ cos

(
2t

√
γ
) − eλ1x ẋλ1 sin

(
2t

√
γ
) , (6.43)
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is obtained. Based on Eq. (6.20), the integrating factor
is

Ψ = −μ

= eλ1x
((
eλ1x − 1

) √
γ sin

(
2t

√
γ
) + eλ1x ẋλ1 cos

(
2t

√
γ
))

.

(6.44)

The corresponding time-dependent first integral is

I = 1

2λ1

(
−2eλ1x

(
eλ1x − 1

)
ẋ
√

γ λ1 sin
(
2t

√
γ
)

+
((

eλ1x − 1
)2

γ − e2xλ1 ẋ2λ21

)
cos

(
2t

√
γ
))

.

(6.45)

Case 7. By using X7 from Eq. (4.17) vector field infin-
itesimals for ξ and η correspond to

ξ = 0, η = sin
(√

γ t
)
e−λ1x . (6.46)

For this case

Ω = −λ = ẋλ1 − √
γ cos

(√
γ t

)
, (6.47)

is obtained. From Eq. (6.20)

Ψ = −μ = eλ1x sin
(
t
√

γ
)
, (6.48)

is found. The first integral can be written as

I =
(
eλ1x − 1

) √
γ cos

(
t
√

γ
)

λ1
− eλ1x ẋ sin

(
t
√

γ
)
,

(6.49)

and the invariant solution for this case overlaps with
Eq. (4.34).
Case 8. As the cast case we consider X8 from
Eq. (4.17), which corresponds to

ξ = 0, η = cos
(√

γ t
)
e−λ1x . (6.50)

For this case, the null function

Ω = −λ = ẋλ1 + √
γ tan

(√
γ t

)
, (6.51)

is obtained. By using similar calculations, the integra-
tion factor

Ψ = −μ = eλ1x cos
(
t
√

γ
)
, (6.52)

and the time-dependent first integral

I = −
(
eλ1x − 1

) √
γ sin

(
t
√

γ
)

λ1
− eλ1x ẋ cos

(
t
√

γ
)
,

(6.53)

are found.

6.2 Application to the displaced harmonic oscillator

In this section, we consider the displaced harmonic
oscillator as given in (5.2), which is an example of
Liénard I-type equation

ẍ + kẋ + λ1x + λ2 = 0, (6.54)

First of all, we consider a similar procedure to calcu-
late Lie point symmetries of Eq. (6.54) discussed in the
previous section by considering the following remark.

Remark 4 For φ = −kẋ −λ1x −λ2 andΩ = − A(O̧)

O̧
the solution of Eq. (6.6) in terms of ξ and η by consid-
ering O̧ = η − ξ y′ and A = ∂t + ẋ∂x + φ(t, x, ẋ)∂ẋ
gives the following symmetry groups corresponding to
the displaced harmonic oscillator (6.54).

X1 = et (α−β)(xλ1 + λ2)

λ1

∂

∂t

+ et (α−β)(xλ1 + λ2)
2 (α(α + β) − λ1)

βλ21

∂

∂x
,

X2 = et (α+β)(xλ1 + λ2)

λ1

∂

∂t

+ et (α+β)(xλ1 + λ2)
2 (α(−α + β) + λ1)

βλ21

∂

∂x
,

X3 =
(
x + λ2

λ1

)
∂

∂x
,

X4 = e2tβ

2β

∂

∂t
+ e2tβ(xλ1 + λ2)(β − α)

2βλ21

∂

∂x
,

X5 = − e−2tβ

2β

∂

∂t
+ e−2tβ(xλ1 + λ2) (α(−α + β) + λ1)

βλ21

∂

∂x
,

X6 = ∂

∂t
− α(xλ1 + λ2)

λ1

∂

∂x
,

X7 = e−t (α+β) ∂

∂x
,

X8 = et (−α+β) ∂

∂x
, (6.55)

where k
2 = α, β = 1

2 (k
2 − 4λ1)1/2. Finally for each

symmetry, from the solution of Eq. (6.54) the null func-
tion and the corresponding λ function are found by the
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formula (4.14) based on the relation Ω = −λ. It can
be seen easily that symmetries X1, X2, X3, symme-
tries X4 and X8 and symmetries X5 and X7 have same
forms ofΩ . Therefore, we only consider the symmetry
generators X3, X4, X5 and X6.
Case 1. To obtain Ω by using λ function, we use the
X3 symmetry generator

ξ = 0, η = x + λ2

λ1
. (6.56)

For this case, the null function is

Ω = − ẋλ1
xλ1 + λ2

. (6.57)

Using by the same ansatz (6.20), then A(x) = 0,
B(x) = 0 andC(x) = 0 are found, then the integration
factor related function

Ψ = λ21 (xλ1 + λ2) ((2ẋλ1 + 2α (xλ1 + λ2)) cosh β

−2β (xλ1 + λ2) sinh β)−2 , (6.58)

is derived and the first integral via Eqs. (6.9) and (6.10)
can be defined as

I = −(λ1

(
−2λ1

(
ẋ2λ1 + 2α ẋ(xλ1 + λ2) + (xλ1 + λ2)

2

−e2tβ
(
4α2(xλ1 + λ2)

2 + 2α(xλ1 + λ2)

× (2ẋλ1 + 2β(xλ1 + λ2)) + 2λ1
(
ẋ2λ1 + ẋ2β

(xλ1 + λ2) − (xλ1 + λ2)
2
))))

/
(
4β (λ1

(
ẋ2λ1 + 2α ẋ(xλ1 + λ2) + (xλ1 + λ2)

2
)

+e4tβλ1

(
ẋ2λ1 + 2α ẋ(xλ1 + λ2) + (xλ1 + λ2)

2

+e2tβ
(
4α ẋλ1(xλ1 + λ2) + 4α2(xλ1 + λ2)

2

−2λ1
(
−ẋ2λ1 + (xλ1 + λ2)

2
)))))

. (6.59)

Case 2. Infinitesimals corresponding to X4 vector field
are

ξ = e2tβ

2β
, η = e2tβ(xλ1 + λ2)(β − α)

2βλ21
. (6.60)

For this case, one can get the null function Ω of the
form

Ω = α − β. (6.61)

Similarly, the function Ψ is given by

Ψ = 1

λ1
2et (α+β)

(
λ1 + et (α+β) (ẋλ1 + (α − β)(xλ1 + λ2))

)
,

(6.62)

and the first integral

I = −2et (α+β)
(
ẋ(α + β) + xλ1 + λ2)(2λ1 + et (α+β)(ẋλ1 + (α − β)(xλ1 + λ2))

)
(α + β)λ1

. (6.63)

is obtained.
Case 3. Infinitesimals corresponding to X5 vector field
are

ξ = − e−2tβ

2β
, η = e−2tβ(xλ1 + λ2) (α(−α + β) + λ1)

βλ21

.

(6.64)

For this case, the relation

Ω = α + β, (6.65)

gives

Ψ = − et (α−2β)

λ1

(
etβλ1 + etα(ẋλ1 + (α + β)(xλ1 + λ2))

)
.

(6.66)

Then, it is easy to see that the first integral is in the
following form

I = −et (α−2β)
(
ẋ(α − β) + xλ1 + λ2)(2λ1etβ + etα(ẋλ1 + (α + β)(xλ1 + λ2))

)
2(α − β)λ1

. (6.67)
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Case 4.As the last case, the infinitesimals for X6 vector
field can be written of the form

ξ = 1, η = −α(xλ1 + λ2)

λ1
, (6.68)

then the null function and

Ω = λ1 (α ẋ + (xλ1 + λ2))

ẋλ1 + (xλ1 + λ2)
, (6.69)

and integrating factor-related function

Ψ = e2αt2 (ẋλ1 + α(xλ1 + λ2)) . (6.70)

are found.As a result, one canwrite the time-dependent
first integral in the following form

I = −e2αt
(
ẋ2λ1 + 2α ẋ(xλ1 + λ2) + (xλ1 + λ2)

2
)

.

(6.71)

7 Concluding remarks and discussions

In this study, we analyze the nonlinear dynamical sys-
tem including general nonlinear damping and nonlin-
ear spring functions by considering relations between
the local–nonlocal transformations, Lie point symme-
tries and λ-symmetries. From the mathematical point
of view, we consider the nonlinear differential equa-
tions related to the nonlinear dynamical systems called
Liénard I-type and II-type equations corresponding to
many physical examples well known in the literature.
Then, we consider linearizable conditions for each case
of Liénard I-type and II-type equations. We prove that
the nonlinear dynamical system with general forms in
the form of Liénard II-type equation can be lineariz-
able using Lie point transformations and the necessary
corresponding conditions are introduced. For this kind
of equations, we determine whether the condition of S1
exists. Then, if the condition S2 = 0 is satisfied, then
we call them as S and L-linearizable. With the rela-
tion of S2 condition, we derive the property defined as
isochronicity condition for Liénard II-type equations.
Based on the S andL-transformations, the first integrals
and integrating factors for the general and special types
of Liénard I-type and II-type equations are analyzed.
Some problems such as the path equation, the gener-
alized Morse equation and the linear harmonic oscilla-
tor equations are considered. For these equations, we
prove that the isochronous condition is satisfied for
some cases based on the local and nonlocal transfor-
mations. After that, the corresponding conserved forms

and the exact solutions are obtained. Additionally, via
the local and nonlocal transformations we obtain the
necessary relation, which is based on the fact that the
nonlinear damping term must be constant and the non-
linear spring term must be in a linear form in terms
of the position of the mass. As a physical example for
this case, we consider the displaced damped harmonic
oscillator equation and obtain the transformation pair
to linearize this equation.Also,we prove that there is an
additional condition between nonlinear damping func-
tion and the nonlinear spring function in order to have
S-linearizable property for the displaced damped har-
monic oscillator problem. Similar to the first case, we
obtain the corresponding λ-symmetries related to the
corresponding Lie point symmetries, new conserved
forms and the integrating factors of the equation. For
each case, the exact solutions are obtained and some
corresponding graphs for conjugate momentum versus
time and conjugate momentum versus position are pre-
sented for different values of equation parameters and
integration constants of the solutions. With respect to
these solutions, the mass–spring–damper simulations
including position, velocity and acceleration relations
are presented and some linear and nonlinear cases are
compared.

In addition to the local andnonlocal transformations,
we present that it is possible to find new conserved
forms and exact solutions of the nonlinear dynamical
systems by using the relation between the Lie point
symmetry and λ-symmetry. In this concept, it is shown
that one can obtain a new exact solution for the problem
by considering each Lie point symmetry. For example,
in the case of the general Morse oscillator having an
eight-parameter symmetry groups, for each symmetry
group the corresponding λ-symmetry is obtained and
then using the standard procedure the corresponding
integrating factors and first integrals are identified. In
addition for the linear harmonic oscillator having an
eight-parameter symmetry groups, the same procedure
is carried out and the newconserved forms are obtained.
The results corresponding to each Lie point symme-
try are given and discussed in the study since they are
important not only from mathematical point of view
but also from physical point of view.

Furthermore, in the literature, the extended Prelle–
Singer method is used for the investigation of first inte-
grals and integrating factors of differential equations. In
this approach, in order to obtain the integrating factors
and first integrals, one has to solve a system of partial
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differential equations given by (6.6)–(6.8). In general,
it is not easy to get nontrivial solutions from this sys-
tem of differential equations. However, in this study,
we introduce a new approach related to λ-symmetry,
and by using the relation between the λ-symmetry and
the extended Prelle–Singer method, we prove that the
time-dependent and the time-independent first integrals
of Liénard-type equations can be obtained. It is also
important to mention that there is an important relation
between equations Ω , Ψ functions, which are solu-
tions of three differential equations (6.6)–(6.8) and λ-
function (4.14). In the literature, Ω and Ψ functions
are determined by using some proper ansatz functions.
In fact, the present study can be considered as an
application of the Lie point symmetry—λ-symmetry
approach together to find Ω and Ψ functions as a dif-
ferent approach. By using this idea, for the cases of
Liénard I-type and II-type equations, new, nontrivial
integrating factors, nontrivial first integrals and non-
trivial λ-symmetries corresponding to each Lie point
symmetry are determined. For the general Morse equa-
tion and linear harmonic oscillator, for each Lie point
symmetry for the equations, new first integrals, and
invariant solutions are obtained and presented. In fact,
Sects. 4 and 6 concentrate on the derivation and the
interrelation of the symmetries and the methods. These
parts represent one of the main important results and
contributions in the study.

We also deal with a different approach for inves-
tigating classical Lie point symmetries of differential
equations, which is related to the application of the
extended Prelle–Singer approach. It can be shown that
the first Eq. (6.6) in terms of Ω corresponds to the
determining equations in which the solutions of them
give Lie point symmetries. It means that the solution
of Eq. (6.6) by using the expression (4.14) gives all
Lie point symmetries of the corresponding equation.
Thus, instead of solving null function from Eq. (6.6)
we consider the solutions of Ω-function considering
the corresponding Lie point symmetries since it is dif-
ficult to get a solution from equations (6.6) to (6.8). In
general, it is also possible to prove that every Lie point
symmetry corresponds to a null Ω-function; thus, one
can say that Ω function is related to λ-function. Then,
the connection between λ-symmetry and null function
can be given based on the fact that λ = −Ω and the
relation between the integrating factorμ andΨ is given
asμ = −Ψ . Therefore, as mentioned in Sect. 6.2, first,
one can consider the characteristic O̧ function in terms

of ξ and η and then substitute the O̧ function and the
λ-function (4.14) in Eq. (6.6). Finally, the determining
equations in terms of infinitesimal functions ξ and η are
obtained. From the solution of infinitesimal functions
ξ and η, the corresponding nontrivial λ-functions and
nontrivial null functions are determined. In the study,
this method is applied for investigation for Lie point
symmetries of the generalized Morse oscillator equa-
tion, the harmonic oscillator equation and the displaced
harmonic oscillator equation andweprove that their Lie
symmetry groups found by this approach are equiva-
lent to the symmetries obtained by the classical method
known in the literature.
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