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Abstract The electric activities of neurons are depen-
dent on the complex electrophysiological condition in
neuronal system, and it indicates that the complex dis-
tribution of electromagnetic field could be detected in
the neuronal system. According to the Maxwell elec-
tromagnetic induction theorem, the dynamical behav-
ior in electric activity in each neuron can be changed
due to the effect of internal bioelectricity of nervous
system (e.g., fluctuation of ion concentration inside
and outside of cell). As a result, internal fluctuation
of electromagnetic field is established and the effect
of magnetic flux across the membrane should be con-
sidered during the emergence of collective electrical
activities and signals propagation among a large set
of neurons. In this paper, the variable for magnetic
flow is proposed to improve the previous Hindmarsh–
Rose neuronmodel; thus, a four-variable neuronmodel
is designed to describe the effect of electromagnetic
induction on neuronal activities. Within the new neu-
ron model, the effect of magnetic flow on membrane
potential is described by imposing additive memristive
current on the membrane variable, and the memristive
current is dependent on the variation of magnetic flow.
The dynamics of this modified model is discussed, and
multiple modes of electric activities can be observed
by changing the initial state, which indicates memory
effect of neuronal system. Furthermore, a practical cir-
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cuit is designed for this improved neuron model, and
this model could be suitable for further investigation of
electromagnetic radiation on biological neuronal sys-
tem.
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1 Introduction

The neuronal system consists of a large number of neu-
rons and gliocytes, and complex behaviors in electric
activities of neurons have been investigated extensively
[1–8]. For example, Buschman et al. [1] found evi-
dences that oscillatory synchronization of local field
potentials (LFPs) formed neural ensembles represent-
ing the rules: There were rule-specific increases in syn-
chrony at “beta” frequencies (19–40Hz) between elec-
trodes. Wig et al. [2] presented some principles to ana-
lyze the complex behaviors in brain. Seely and Crotty
[3] discussed the effect of leakage current on action
potential on squid giant axon. Postnov et al. [4] stud-
ied the dynamical behavior of calcium signal based on
functional model of neuron–astrocyte networks. Vol-
man et al. [5] set up a model of neuron–astrocyte inter-
action to explain the emergence of epilepsy [6] associ-
ated with gap junction. Channel noise also can change
the dynamics of electric activities of neuron. Ozer and
Ekmekci [7] discussed the effect of channel noise on
the time course of recovery by blocking the ion chan-
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nels of sodium. Barthélemy [8] argued that spatial net-
works could provide enough guidance to understand
the collective behaviors of neurons and possible mech-
anism for neuronal disease. Some theoretical models
[9–14] have been established for computational neu-
roscience, and some biological neuron model could
be helpful to understand plasticity, mode transition in
electric activities. For example, the Hodgkin and Hux-
ley [11] and Morris and Lecar [12] neuron models
are useful to describe the effect of ion channels on
membrane potential of neurons. Izhikevich [13] ever
gave short comments for most of the neuron model.
Ibarz et al. [14] suggested that map-type model could
also be effective to produce the dynamical properties
in neuronal activities. Perc and Marhl [15] confirmed
that excitable neurons that reside in a steady state near
a bifurcation point to elliptic bursting oscillations, and
it was also found that in addition to the resonant fre-
quency of damped oscillations around the stable focus,
another frequency exists that resonantly enhances large
amplitude bursts and thus amplifies the information
transfer in the system. These results could be helpful
to understand the amplification of information trans-
fer in excitable systems. In fact, the three-variable
Hindmarsh–Rose (HR) neuron model [16] simplified
from the originalHodgkin–Huxley neuronmodel could
be feasible to reproduce main properties of neuronal
activities and effective for bifurcation analysis [17–19].
Indeed, some researchers suggested that a four-variable
HR neuron [20–22] could be better to model the bifur-
cation behaviors of neurons and this model can show
chaos in large parameter region and this model is also
verified by experimental results [23]. To our knowl-
edge, the HR neuron model is classified as a mathe-
matical neuron model because ion channel effect could
not be described. Surely, extensive studies could be car-
ried out on isolate neuron and network of neurons that
the effect of ion channels could be considered as men-
tioned in Refs. [24,25]. In fact, the electric activity of
neurons in neuronal system is much too complex and
many factors should be considered as well. Accord-
ing to the Faraday’s law of induction, the fluctuation
or changes in action potentials in neurons can generate
magnet field in the media; thus, the electrical activi-
ties of neurons will be adjusted under feedback effect.
That is to say, the fluctuation of membrane potentials
of neurons can change the distribution of electromag-
netic field inner and external of neurons; thus, the mag-
netic flux across membrane and electromagnetic effect

should be considered. However, the presented neuron
models seldom consider the effect of electromagnetic
induction on membrane potential of neurons. In this
case, it is important to set more reliable neuron model
so that the effect of electromagnetic induction in neu-
rons could be considered; furthermore, external elec-
tromagnetic radiation could also been calculated and
the author of this paper suggested that magnetic flux
could be used to finish this task.

More often, it is claimed that neuronal system can
be in good memory to keep normal activities and the
memory effect is often described by using time delay
term in the model. Indeed, magnetic field or mag-
net flux storage could be associated with the mem-
ory effect. In fact, the neuronal system can be used
as a reliable signal processor because slight stimuli
on the neuron can be give sensitive response by ana-
lyzing the sampled time series. For example, Aggar-
wal et al. [26] presented an optimal design of two-
dimensional finite impulse response (2D FIR) filter
with quadrantally even symmetric impulse response,
and the presented scheme did show improved design
accuracy and flexibility with varying values of FDCs.
Kumar and Rawat [27] proposed the use of power
function and least squares method for designing of a
fractional-order digital differentiator. The input sig-
nal can be transformed into a power function by
using Taylor series expansion, and the fractional-
order digital differentiator was described by a finite
impulse response (FIR) system that yields fractional-
order derivative of the G–L type for a power function.
Wang et al. [28] investigated the propagation of the
firing rate and synchronous firings in a 10-layer feed-
forward neuronal network and found that these abil-
ities in information processing due to synchrony can
be modulated by noise and the operating mode of neu-
rons. Suffczynski et al. [29] developed a computational
model of thalamo-cortical circuits based on relevant
(patho) physiological data, and these results can pro-
vide more insight into the dynamics of the neuronal
networks leading to seizure generation in a rat experi-
mentalmodel of absence epilepsy.CullheimandThams
[30] investigated the role formicroglia in interplaywith
synapses, and the development of various disorders of
the central nervous system (CNS) was also discussed.
To discern the complex functional role of brain, the
dynamic brain network was constructed from human
functional magnetic resonance imaging data based on
the sliding window method, and then the eigenvalues
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corresponding to the network are calculated. Wang et
al. [31] analyzed the global properties of eigenvalues by
using eigenvalue analysis, and the local properties were
measured based on the random matrix theory (RMT).

In this paper, a new four-variable HR neuron model
is established by introducing additive variable as mag-
netic flux which adjusts the membrane potential via a
memristor [32–34], so that the effect of electromag-
netic induction could be considered by calculating the
magnetic flux on membrane. Most of the previous neu-
ron models can generate a variety of modes in elec-
tric activities by changing the external forcing current
and/or other bifurcation parameters; for example, the
HRneuronmodel can generate quiescent state, spiking,
bursting even chaotic state by increasing the intensity
of external forcing current. It is also confirmed that
chaotic and bursting state in electric activities makes
neuron keep lower Hamilton energy [35,36], and it
could be important to understand the potential mecha-
nism for emergence of epilepsy. This model could be
reliable for further investigation on effect of electro-
magnetic radiation on biological tissue.

2 Model descriptions

The dynamical equations for the improved HR neuron
model are described by
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dx
dt = y − ax3 + bx2 − z + Iext − k1ρ(φ)x
dy
dt = c − dx2 − y
dz
dt = r [s(x + 1.6) − z]
dφ
dt = x − k2φ
dq(φ)
dφ = ρ(φ)

(1)

where the variables x, y, z represent the membrane
potential, slow current for recovery variable, and adap-
tion current, respectively. Iext denotes the external forc-
ing current, and the fourth variable φ describes the
magnetic flux across membrane. The ρ(φ) is the mem-
ory conductance of a magnetic flux-controlled mem-
ristor [32,33] and here used to describe the coupling
betweenmagnetic flux andmembrane potential of neu-
ron. The memory conductance of memristor is often
described by ρ(φ) = α + 3βφ2, and α, β are fixed
parameters [34]. Similar to the previous works, the
parameters could be selected with the same values as
a = 1, b = 3, c = 1, d = 5, r = 0.006, s = 4.
k1 and k2 are parameters that describe the interaction

between membrane potential and magnetic flux. The
term k1ρ(φ)x describes the suppression modulation on
membrane potential, and it is dependent on the vari-
ation in magnetic flux by generating additive faradic
current. According to the Faraday law of electromag-
netic induction and description about memristor, the
term k1ρ(φ)x could be regarded as additive induction
current on the membrane as follows

i ′ = dq(φ)

dt
= dq(φ)

dφ

dφ

dt
= ρ(φ)V = k1ρ(φ)x (2)

The ion currents of sodium, potassiumcontribute the
membrane potential and also the magnetic flux across
the membrane; thus, a negative feedback term −k2φ is
introduced in the fourth formula. It is believed that time
delay could be introduced into neuronmodel andmem-
ory effect could be estimated in the time-delayed neu-
ron model. In fact, a specific synapse called as autapse
which the synapse connects to its body via a close loop
is found in some intermediate neurons, and the effect
of autapse [36,37] on membrane potential of neuron is
often described by applying a time-delayed feedback
current along the close loop. The autapse connection
can change thedynamics of electric activities of neuron,
collective behaviors of neuronal networks [38–40]; par-
ticularly, it can account for the self-adaption response
and selection in electric modes of neurons to external
forcing [41]. Not all the neurons need autapse con-
nection even the autapse can play important biological
functions in neuronal system by generating continu-
ous pacemaker, so the collective behaviors of neurons
could be regulated. That is to say, autapse connection
provides evidence for intrinsic time delay or response
delay, and it is also believed that another time delay
(propagation time delay) exists when signals are prop-
agated among nodes or neurons. Here, we argue that
memristor could be suitable to describe the memory
effect by remembering the magnetic flux across the
membrane of neurons or cells, and the corresponding
parameters for the memory conductance of the mem-
ristor could be dependent on the media indeed. With
respect to memristor, a variety of nonlinear circuits and
dynamical models have been established for dynam-
ical analysis [42–44]; furthermore, memristor-based
neuronal network [45,46] is also paid much attention
to signal processing, pattern recognition, associative
memory to artificial intelligence. It is interesting to find
that memristor-coupled resonator can produce chaotic,
bursting phenomena [47] under appropriate parameter
region. Therefore, it is important to introduce themem-
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ristor into the neuron model because electric activities
in neuron can generate quiescent, spiking, bursting and
chaotic properties in series for membrane potentials.
Furthermore, the memory effect could be even consid-
ered. In the following studies, numerical calculation
and PSpice verification will be carried out according to
the dynamical model shown in Eq. (1).

3 Numerical and experimental results on PSpice

In the numerical studies, the fourth-order Runge–Kutta
algorithm is used and the time step is selected as
0.01. The time series for membrane potential are cal-
culated by selecting different parameters and gains
for k1, k2, α, β; thus, different electric modes could
be observed. For example, k1 = 1, k2 = 0.5, α =
0.1, β = 0.02, the electric activities in neuron can show
different modes by changing the external forcing cur-
rent, and the results are plotted in Fig. 1.

It is found in Fig. 2 that quiescent state, spiking,
bursting and periodical states could be observed by
selecting appropriate external forcing current; further-
more, the bifurcation diagram is plotted and shown in
Fig. 2.

The bifurcation diagram in Fig. 2 confirms that mul-
tiple modes in electrical activities of neuron can be
selected by applying appropriate external forcing cur-
rent. Furthermore, periodical type of external forcing
current Iext = A cosωt is also considered, and the
numerical results are plotted in Figs. 3 and 4.

The results in Fig. 3 show that the mode of electrical
activities is much dependent on the periodical forcing
current; particularly, the dischargemode could be dom-
inated by the angular frequency when low amplitude
(intensity) is used in the external forcing current. Mul-
tiple modes of electrical activities are also observed at
k1 = 1, k2 = 0.5, α = 0.1, β = 0.02 by selecting
other parameters and gains as A = 0.1, ω = 0.03

Fig. 1 The time series of membrane potential in neuron under different external forcing current at k1 = 1, k2 = 0.5, α = 0.1, β = 0.02,
for a Iext = 1.0; b Iext = 2.2; c Iext = 3.4; d Iext = 4.5
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Fig. 2 Bifurcation diagram
associated with external
forcing current Iext (or I ) at
k1 = 1, k2 = 0.5, α =
0.1, β = 0.02, ISI denotes
the inter-spike interval in
membrane potential series

Fig. 3 The time series of membrane potential in neuron under different external forcing current Iext (or I ) at k1 = 1, k2 = 0.5, α =
0.1, β = 0.02, for a A = 1.6, ω = 0.001; b A = 1.6, ω = 0.01; c A = 1.6, ω = 0.04; d A = 1.6, ω = 0.2

(periodical); A = 0.7, ω = 0.01 (spiking); A =
3.0, ω = 0.04 (bursting). Furthermore, we also check
the model independence by selecting another group of
parameters and gains in Eq. (1); for example, it selects
k1 = 0.4, k2 = 0.5, α = 0.4, β = 0.02, and it can also
generate multiple modes in electrical activities, and the

results for time series are shown in Fig. 4, and bifurca-
tion diagram is plotted in Fig. 5.

Figure 4 shows that electrical activity can select dif-
ferent discharge modes by applying external forcing
current with appropriate values; furthermore, the inter-
spike interval (ISI) is calculated by changing the exter-
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Fig. 4 The time series of membrane potential in neuron under different external forcing current Iext (or I ) at k1 = 0.4, k2 = 0.5, α =
0.4, β = 0.02, for a Iext = 1.4; b Iext = 1.6; c Iext = 3.5; d Iext = 5.0

Fig. 5 Bifurcation diagram
associated with external
forcing current Iext (or I ) at
k1 = 0.4, k2 = 0.5,
α = 0.4, β = 0.02, ISI
denotes the inter-spike
interval in membrane
potential series

nal forcing current slightly, and the results are shown
in Fig. 5.

It differs from the bifurcation diagram shown in
Fig. 2, and neuron can select its oscillating state with
different discharge modes; indeed, quiescent state is
removed by selecting the parameters and gains as

k1 = 0.4, k2 = 0.5, α = 0.4, β = 0.02. We also
detected the time series for membrane potentials by
applying periodical forcing currents, and the results are
shown in Figs. 6 and 7.

Comparing the results in Figs. 6 and 7, it finds
that multiple modes of electrical activity emerge in
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Fig. 6 The time series of membrane potential in neuron under different external forcing current Iext = Acosωt at k1 = 0.4, k2 =
0.5, α = 0.4, β = 0.02 for a A = 3.0, ω = 0.0002; b A = 3.0, ω = 0.007; c A = 3.0, ω = 0.02; d A = 3.0, ω = 0.2

the time series for membrane potentials by applying
external forcing current with periodical type. Burst-
ing states are observed when larger amplitude and
lower angular frequency in the periodical forcing cur-
rent are considered as well. Furthermore, the rhythm
of the output time series is mainly dominated by the
angular frequency when lower intensity of forcing
current is used and bursting states are more likely
to occur under higher intensity of periodical forcing.
Indeed, the output series for membrane potentials of
neuron can be regulated by the external forcing cur-
rent but seldom keep pace with the periodical forc-
ing with the same rhythm because the neuron can give
appropriate response to external forcing due to self-
adaption and nonlinearity. Extensive numerical studies
confirm that the neuron model can reproduce multiple
modes of electrical activity in a wide parameter region
because three new controllable parameters are intro-

duced into the new neuron model. Furthermore, the
chaotic parameter regions could also be detected by cal-
culating the Lyapunov exponent spectrumbeyond zero,
and the distribution for the largest Lyapunov expo-
nents in the parameter region could be calculated in
Fig. 8.

It is found in Fig. 8 that positive Lyapunov expo-
nent could be detected; thus, the improved model still
produces chaotic electrical mode, and as a result, this
modified neuron model can give appropriate response
to external forcing and selects appropriate electri-
cal mode if possible. Extensive numerical results for
time series analysis can verify the chaotic properties
by selecting gains in the chaotic region as shown in
Fig. 8.

As a result, this model could be useful for further
studies about transition of dischargemodes in electrical
activity. Finally, it is interesting to verify the effective-
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Fig. 7 The time series of membrane potential in neuron under different external forcing current Iext = Acosωt at k1 = 0.4, k2 =
0.5, α = 0.4, β = 0.02 for a A = 0.5, ω = 0.01; b A = 0.9, ω = 0.01; c A = 1.0, ω = 0.01; d A = 3.0, ω = 0.01

ness of the designed neuronal circuit by using PSpice.
The neuron circuit is plotted in Fig. 9.

In the experiments, the external forcing current is
selected to drive this circuit, and the voltage outputs
associated with membrane potentials of neuron are
monitored, and the time series for membrane poten-
tials are shown in Fig. 10.

It is found in Fig. 10 that bursting states can be gen-
erated from the neuronal circuit by applying external
forcing current as Iext = 300µA. Other modes of elec-
trical activity can still be generated by changing the
external forcing current carefully. As a result, the neu-
ronal model could be effective for further study about
transition of electrical activity induced by time-varying
forcing currents, noise and other bifurcation parame-
ters.

In a summary, the presented neuron model in this
paper can be effective to reproduce the main properties

of electric activities of neurons; particularly, the effect
of electromagnetic induction is considered by introduc-
ing the additive variable as magnetic flux; furthermore,
the feedback from magnetic flux on membrane poten-
tial is realized by using memristor. Based on the pro-
posed neuron models, different topologies of networks
have been constructed to study the synchronization
problems and spatial pattern selection so that the phase
transition for collective behaviors could be discerned
[48,49]. It is observed that some specific spatial pat-
terns such as target wave and spiral wave can emerge in
the two-dimensional neuronal network [48,49]. These
target waves can be induced by local periodical forcing,
or external forcing with diversity, and also heterogene-
ity as well; furthermore, spiral wave can be developed
from the broken target waves. The potential mecha-
nism for the emergence of spatial pattern keeps open;
it could be associated with self-adaption and memory
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Fig. 8 Distribution of the
largest Lyapunov exponent
in the two-parameter region
(k1, k2) when the external
forcing current is set as
Iext = 3.0, and snapshot of
the distribution is shown in
color scale

effect. As a result, it is believed that autapse connection
could make a neuron become self-adaptive by impos-
ing time-delayed feedback, and the local pacing from
autapse in the network can develop stable target wave
or pulse, so that the collective behaviors of network
could be regulated [38,40].

Surely, it is challengeable to update the neuronmod-
els so that the effect of electromagnetic induction and
radiation on neuronal tissue could be considered, and
as a result, our proposed model may work well because
the magnetic flux effect is considered in feasible way.
The improved neuron model can response to exter-
nal forcing with different modes in electrical activ-
ity in a large parameter and gain region, it indicates
some self-adaption in neuron, and it could be use-
ful for further study on the effect of electromagnetic
radiation.

4 Open problems and further suggestion

Finally, it is interesting to discuss some possible open
problems on the relevant neuron model when ion chan-
nels are considered. For the Hodgkin–Huxley (HH)
[11,13] neuron model, it could also be improved by
adding the variable as magnetic flux, and the similar
dynamical equations should be described as follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cm
dV
dt = gK n4(VK − V ) + gNam3h(VNa − V )

+ gL(VL − V ) + Iext + kρ(φ)V

dy
dt = αy(V )(1 − y) − βy(V )y; (y = m, h, n)

dφ
dt = k1x − k2φ

dq(φ)
dφ = ρ(φ)

(3)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αm = am(V ) = 0.1(V+40)
1−exp(−(V+40)/10) ;

βm = βm(V ) = 4 exp(−(V + 65)/18)

αh = αh(V ) = 0.07 exp(−(V + 65)/20);
βh = βh(V ) = 1

1+exp(−(V+35)/10)

αn = αn(V ) = 0.01(V+55)
1−exp(−(V+55)/10) ;

βn = βn(V ) = 0.125 exp(−(V + 65)/80)

(4)

where the variable φ describes the magnetic flux across
membrane, V denotes the membrane potential of neu-
ron and Iext is the external forcing current, m, n, h are
gate variables tomeasure open probability for ion chan-
nels. The term ρ(φ) still represents the memory con-
ductance of a magnetic flux-controlled memristor that
the effect of electromagnetic induction on membrane
potential is calculated by magnetic flux coupled with
membrane potential which is realized by memristor
with appropriate parameters k, k1, k2. Extensive inves-
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Fig. 9 Circuit diagram for
the four-variable neuron
model (a) and additive
magnet flux current
Iφ = −ρ(φ)x(k1 = 1) (b).
X_Analog denotes the
output variable for
membrane potential, and
Iext represents the external
forcing current. The circuit
is designed for Eq. (1) by
selecting parameters and
gains as k1 = 1,
k2 = 0.5, α = 0.1,
β = 0.02

(a)

(b)

tigation could be carried out on the improved model
shown in Eq. (3) if the effect of ion channels, chan-
nel noise should be considered. Surely, appropriate
networks could be designed to study relevant works
about collective behaviors of neuronal network, and
forthcoming biological experiments should be veri-
fied to confirm the exact parameter region for parame-

ters k, k1, k2. Furthermore, autapse connection could
also be considered on this model, and these interesting
problems keep open and are expected to be investi-
gated by readers in this field. The mentioned results
in this paper are expected to propose an interesting
question and give possible guidance for computational
neuroscience.
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Fig. 10 Bursting series generated from the neuronal circuit at Iext = 300µA

5 Conclusions

Based on the previous HR neuron model, the effect
of electromagnetic induction in the biological system
is considered in an improved neuron model by intro-
ducing additive variable as magnetic flux across mem-
brane, and the dynamical property of electric activity
is also verified in the PSpice tool by generating burst-
ing series from the circuit. Most of the previous neuron
models can describe the properties ofmembrane poten-
tial and the response to external forcing current, noise
and channel noise well, while the effect of electromag-
netic induction is out of the consideration. In fact, the
fluctuation in membrane potential and signal propaga-
tion in neuronal system can generate induced-electrical
field and additive current in the media due to electro-
magnetic induction. As a result, the membrane poten-
tial of neuron can be adjusted slightly by induction field
and induced current associated with variation of mag-
netic flux. Our proposed model still can reproduce the
electrical activity with multiple modes, and also the
electromagnetic induction is considered by including
terms of magnetic flux into the dynamical equation. In
addition, the new presented neuron model can expand
the parameter region to generate complex modes of
electrical activity. For further studies, the external elec-
tromagnetic radiation on neuronal activity could be
investigated by using this model. Furthermore, simi-
lar scheme is used for Hodgkin–Huxley neuron model
so that the effect of ion channels could be considered
as well. We wish the presented model could be veri-
fied by further biological experiments. In addition, the
proposed model could also be used to detect the elec-
tromagnetic radiation and signal processing like sen-
sors. Furthermore, the network of this improved model
could also be used to investigate the collective behav-
iors of neurons of brain and central nervous system,

and the potential mechanism for disease induced by
electromagnetic radiation could be explained.
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