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Abstract In the paper, an improved car-following
model based on the full velocity difference model con-
sidering the influence of optimal velocity for leading
vehicle on a single-lane road is proposed.The linear sta-
bility condition of themodel is obtained by applying the
linear stability theory. Through nonlinear analysis, the
time-dependent Ginzburg–Landau (TDGL) equation
and the modified Korteweg–de Vries (mKdV) equa-
tion are derived to describe the traffic flow near the
critical point. In addition, the connection between the
TDGL and the mKdV equations is also given. Good
agreement between the simulation and the theoretical
results shows that the improvedmodel can be enhanced
the stability of traffic flow.

L. Fangxun · C. Rongjun (B) · G. Hongxia
Faculty of Maritime and Transportation, Ningbo
University, Ningbo 315211, China
e-mail: chengrongjun@nbu.edu.cn

L. Fangxun · C. Rongjun · G. Hongxia
Jiangsu Province Collaborative Innovation Center for
Modern Urban Traffic Technologies, Nanjing 210096,
China

L. Fangxun · C. Rongjun · G. Hongxia
National Traffic Management Engineering and Technology
Research Centre Ningbo University Sub-centre,
Ningbo 315211, China

L. Siuming
Department of Civil and Architectural Engineering,
City University of Hong Kong, Kowloon 999077,
Hong Kong, China

Keywords Traffic flow · Car-following model · Phase
transition · TDGL equation · mKdV equation

1 Introduction

Now, traffic jam has been more and more popular in
modern city and caused a lot of trouble to the majority
of people. So, many traffic models such as hydrody-
namic models [1–10], car-following models [11–13]
and cellular automaton models [14] have been con-
structed to investigate various complex properties of
traffic jams. In addition, several important achieve-
ments have been attained. Car-following models are a
favorable type of microscopic traffic model describing
the behavior of an individual driver [15]. At present, the
widely used traffic models are improved car-following
models [16–22].

In 1995, Bando et al. [23] proposed the optimal
velocity model (for short, OVM) to describe the car-
following behavior on a single-lane highway. But the
OVmodelmay appear too high acceleration andunreal-
istic deceleration. In order to overcome the deficiency,
Helbing and Tilch [24] proposed a generalized force
model (for short, GFM). But GFM cannot describe the
delay time and the kinematicwave speed at jamdensity.
Jiang et al. [25] presented the full velocity difference
model (for short, FVDM) to solve the shortcoming in
GFM. Because FVDM has too high deceleration, Ge
et al. [26] proposed the two velocity difference model
(for short, TVDM) by considering the ITS application.
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Recently, some new car-followingmodelswere succes-
sively put forward to describe the traffic nature more
realistically. Some of them were extended by introduc-
ing multiple headway or relative velocity information
of car, and others considered the two factors at the same
time [27–34].

As we all know, in the actual traffic, the most impor-
tant factors that affect the behavior of the current
vehicle are the influences of the leading vehicle. The
car-following models mentioned above can reproduce
many complex actual traffic phenomena, but most of
these models were studied by considering the impact
of the headway or velocity of the leading vehicle; for
example, some models have been investigated by con-
sidering the impact of the headway of the leading vehi-
cle [35], and others have been investigated by taking
into account the velocity of the leading vehicle [36].
Our model is focused on the impact of the optimal
velocity of the leading vehicle, which is rarely inves-
tigated. The results may be closer to the actual traffic
and can make the traffic flow relatively stable. In view
of this, the improved car-following model is presented
to investigate the traffic flow.

Based on previous work, we will investigate an
improved car-following model in this paper. In Sect. 2,
the model is presented with considering full velocity
difference and a new optimal velocity function, which
is decided by the optimal velocity between the nth car
and n + 1th car. The model is analyzed by using lin-
ear stability theory. In Sect. 3, the nonlinear analysis
near the critical point for our model is made, so the
TDGL equation and its corresponding soliton solution
are obtained. In Sect. 4, the mKdV equation is derived.
In Sect. 5, numerical simulation is given, and the con-
clusions are given in Sect. 6.

2 Car-following models and linear stability
analysis

In 1995, Bando et al. [23] proposed the optimal velocity
model (for short, OVM) to describe the car-following
behavior on a single-lane highway. The motion equa-
tion is given as follows:

dvn(t)

dt
= a [V (�xn(t)) − vn(t)] , (1)

where vn(t) is the position of car n at time t,�xn (t) =
xn+1 (t) − xn (t) represents the headway of two suc-

cessive vehicles, a is the sensitiveness of a driver
and V (�xn (t)) is the optimal velocity function. The
empirical data show that the OVmodel may appear too
high acceleration and unrealistic deceleration.

In order to overcome the deficiency, Helbing and
Tilch [24] proposed a generalized force model (for
short, GFM), i.e.,

dvn(t)

dt
= a [V (�xn(t)) − vn(t)]

+ λH (−�vn (t))�vn (t) , (2)

where H is the Heaviside function, λ is a sensitiv-
ity coefficient different from a,�vn (t) = vn+1 (t) −
vn (t) is the velocity difference between the leading car
n + 1 and the following car n. The simulation results
show that the GFM is poor in the delay time of car
motion and the kinematic wave speed at jam density.

In view of the problem, in 2001, Jiang et al. [25]
presented the full velocity difference model (for short,
FVDM) by introducing the positive relative velocity
into the GFM to solve the shortcoming in GFM.

dvn (t)

dt
= a [V (�xn (t)) − vn (t)] + λ�vn (t) , (3)

but the simulation results indicate that the FVDM has
too high deceleration.

Ge et al. [26] presented a two-velocity difference
(TVD) model that considers ITS application. The dif-
ferential equation is as follows:

dvn (t)

dt
= a [V (�xn (t)) − vn (t)]

+ λG (�vn (t) ,�vn+1 (t)) , (4)

where G (�vn (t) ,�vn+1 (t)) = p�vn (t) + (1 − p)
× �vn+1 (t), and p denotes the weighting value. The
results indicate that unrealistically high deceleration
will not appear in the TVD model due to the consider-
ation of ITS application.

Based on the above-mentioned models and because
of the complexity of the actual traffic, drivers have to
adjust their speed according to the complicated condi-
tion of traffic, to ensure traffic safety. In view of the
above reasons, an improved car-following model con-
sidering the impact of the optimal velocity of the lead-
ing vehicle is presented, and we call it (OVLM, for
short).
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dvn(t)

dt
= a

[
V (�xn(t)) + γ (V (�xn+1(t))

− V (�xn(t))) − vn(t)
] + λ�vn(t), (5)

where �vn(t) = vn+1(t)− vn(t), and a is the sensitiv-
ity which corresponds to the inverse of the delay time
τ , λ (0 ≤ λ ≤ 1)and γ (0 ≤ γ ≤ 1) is the weight coef-
ficient, and the optimal velocity function is proposed
by [16].

V (�xn(t)) = vmax

2
[tanh (�xn(t) − hc) + tanh(hc)],

(6)

where �xn(t) = xn+1(t) − xn(t), hc is the safety dis-
tance and vmax is the maximal velocity. The function
V (.) is a monotonically increasing function with an
upper bound (maximal velocity) and has a turning point
�xn = hc : V ′′(hc) = 0. Therefore, we can derive
the TDGL equation from Eq. (5), which could describe
traffic jams.

For later convenience of linear analysis, Eq. (5) can
be rewritten as:

dx2n (t)

dt2
= a

[
V (�xn(t)) + γ

(
V (�xn+1(t))

− V (�xn(t))) − dxn(t)

dt

]

+ λ

[
dxn+1(t)

dt
− dxn(t)

dt

]
. (7)

Further, Eq. (7) can be rewritten in terms of the head-
way:

d�x2n (t)

dt2
= a

[
V (�xn+1(t)) − V (�xn(t))

+γ
[
V (�xn+2(t)) − 2V (�xn+1(t))

+ V (�xn(t))
] − d�xn(t)

dt

]

+ λ

[
d�xn+1(t)

dt
− d�xn(t)

dt

]
. (8)

Then, linear stability analysis can be conducted for
OVLM. It is obvious that the traffic flow can reach
the steady state when the vehicles run with constant
headway h and constant velocity V (h). Therefore, the
steady-state solution is given as

x0n (t) = hn + V (h)t, h = L

N
, (9)

where N is the total vehicle number and L is the road
length.

Suppose yn(t) is a small deviation from the steady-
state x0n (t): xn(t) = x0n (t) + yn(t). Substituting it into
Eq. (7) and linearizing it yield

dy2n (t)

dt2
= a

[
V ′(h)�yn(t) + γ

(
V ′(h)�yn+1(t)

− V ′(h)�yn(t)
) − dyn(t)

dt

]

+ λ

[
dyn+1(t)

dt
− dyn(t)

dt

]
, (10)

where �yn(t) = yn+1(t) − yn(t) and V ′(h) =
dV (�xn)/dt |�xn = h.

Expanding yn(t) = exp(ikn + zt), it reads

z2 = a

[
V ′ (eik − 1

)
+ γ V ′ (eik − 1

)2 − z

]

+ λz
(
eik − 1

)
, (11)

where V ′ = V ′(h). Let z = z1(ik) + z2(ik)2 + . . .;
then, the first- and second-order terms of ik are:

z1 = V ′(h) z2 = 1 + 2γ

2
V ′(h)−

(
V ′(h)

)2 − λV ′(h)

a
.

(12)

For small disturbances with long wavelengths, the uni-
form traffic flow is unstable in the condition that

a <
2

(
V ′(h) − λ

)

1 + 2γ
, (13)

The stability condition is given:

a = 2
(
V ′(h) − λ

)

1 + 2γ
. (14)

The result is relevant with the parameters γ, λ.
Figure1 shows the phase diagram in the (h, a)-plane

where h is the headway and a is the sensitivity. The
neutral stability curves are indicated by the solid lines.
The solid lines show the results of the neutral stability
curves with different γ, λ. It shows the stable region,
and the critical points increasewith increasing the value
of the parameter γ, λ.

As can be seen from the diagram (a) of Fig. 1, when
γ = 0, λ = 0, the neutral stability line and the critical

123



1472 L. Fangxun et al.

Fig. 1 Phase diagram of the model according to different values of parameter γ, λ from a–e (vmax = 2, hc = 4)
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An improved car-following model considering the influence of optimal velocity 1473

point inOVLMare consistentwith those inOVMwhich
proposed by Bando et al. Under the condition of traffic,
it is very unstable.

As can be seen from the diagrams (a), (b), (c) and (d)
of Fig. 1, whenwe fix λ[λ = 0 in diagram (a), λ = 0.05
in diagram (b), λ = 0.15 in diagram (c), λ = 0.2
in diagram (d)], increase γ (γ = 0, 0.1, 0.17, 0.3), the
stable region will gradually increase, the traffic flow
will become more stable.

From diagrams (a)–(d) of Fig. 1, when we take the
same parameter γ in every diagram, with the gradual
increase of λ from diagrams (a)–(d), regional stability
will gradually increase, the traffic flow will be more
stable. Obviously, from Fig. 1 we can see that OVLM
is more stable than OVM.

In particular, from diagram (e) of Fig. 1, we can see
that once comparing the four most stable curve of the
four diagrams (a)–(d) of Fig. 1, the result shows that
when the values are selected as γ = 0.3, λ = 0.2, the
stable region reaches the best range.

3 TDGL equation

Now, we consider the traffic behavior of long-
wavelength models on coarse-grained scales. The sim-
plest way to describe the behavior of long-wavelength
models is the long-wavelength expansion. The slowly
vary behavior at long waves near the critical point is
analyzed. The slow scales for space variable n and the
time variable t are introduced, and the slow variables
X and T are defined as follows:

X = ε (n + bt) , T = ε3t, 0 < ε ≤ 1. (15)

The headway �xn(t) is set as

�xn(t) = hc + εR(X, T ). (16)

Substituting Eqs. (15)–(16) into Eq. (8) and expanding
to the fifth order of ε, we obtain the following expres-
sion:

ε2
(
b − V ′) ∂X R + ε3

(
τb2 − 1 + 2γ

2
V ′ − τλb

)
∂2X R

+ ε4
[
∂T R −

(
τλb

2
+ 1 + 6γ

6
V ′

)
∂3X R

− V ′′′

6
∂X R

3
]

+ ε5
[
1

3
(2τb − τλ) ∂X∂T R

−
(
1 + 14γ

24
V ′ + τλb

6

)
∂4X R

+ 1

12
(1 + 2γ ) V ′′′∂2X R3

]
= 0, (17)

where V ′ = V ′(hc) = dV (�xn)/d�xn |�xn = hc
and V ′′′ = V ′′′(hc) = d3V (�xn)/d�x3n |�xn = hc

Now,we study the traffic flow near critical point τ =
(1 + ε2)τc. By taking b = V ′, the second- and third-
order terms of ε are eliminated from Eq. (17), which
leads to the simplified equation as following:

ε4∂T R = ε4
(

τλV ′

2
+ 1 + 6γ

6
V ′

)
∂3X R

− ε4

∣∣V ′′′∣∣
6

∂X R
3

+ ε3V ′
(

τλ + 1 + 2γ

2
− τV ′

)
∂2X R

− ε5
[
τ(2V ′ − λ)

(
λτV ′

2
+ 1 + 6γ

6
V ′

)

− 1 + 14γ

24
V ′ − τλ

6
V ′

]
∂4X R

+ ε5

∣
∣V ′′′∣∣
12

(1 + 2γ )(3V ′ − 2λ)

V ′ − λ
∂2X R

3. (18)

By transforming variables X and T into variables x =
ε−1X and t = ε−3T , and taking S(x, t) = εR(X, T ),
Eq. (18) is rewritten as follows:

∂t S =
(

τλV ′

2
+ 1 + 6γ

6
V ′

)
∂3x S −

∣∣V ′′′∣∣
6

∂x S
3

+ V ′
(

τλ + 1 + 2γ

2
− τV ′

)
∂2x S

−
[
τ(2V ′ − λ)

(
λτV ′

2
+ 1 + 6γ

6
V ′

)

− 1 + 14γ

24
V ′ − τλ

6
V ′

]
∂4x S

+
∣∣V ′′′∣∣
12

(1 + 2γ )(3V ′ − 2λ)

V ′ − λ
∂2x S

3. (19)

By adding term
2V ′(V ′−λ)(τλ+ 1+2γ

2 −τV ′)
(1+2γ )(3V ′−2λ)

∂x S on both

left and right sides of Eq. (19) and performing t1 = t

and x1 = x − 2V ′(V ′−λ)(τλ+ 1+2γ
2 −τV ′)

(1+2γ )(3V ′−2λ)
t for Eq. (19), we

get

∂t1 S =
(

∂x1 − (1 + 2γ )(3V ′ − 2λ)

2(V ′ − λ)
∂2x1

)

[(
τλV ′

2
+ 1 + 6γ

6
V ′

)
∂2x1S
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−
2V ′(V ′ − λ)

(
τλ + 1+2γ

2 − τV ′
)

(1 + 2γ )(3V ′ − 2λ)
S

−
∣∣V ′′′∣∣
6

S3
]

. (20)

We define the thermodynamic potentials [37–40]:

φ(S) ≡ −
V ′ (V ′ − λ

) (
τλ + 1+2γ

2 − τV ′
)

(1 + 2γ ) (3V ′ − 2λ)
S2

+
∣∣V ′′′∣∣
24

S4, (21)

By rewritten Eq. (20) with Eq. (21), the TDGL equation
is derived

∂t1 S = −
(

∂x1 − (1 + 2γ )(3V ′ − 2λ)

2(V ′ − λ)
∂2x1

)
δ
(S)

δS
.

(22)

With


(S) ≡
∫

dx1

[
1

2

(
τλV ′

2
+ 1 + 6γ

6
V ′

) (
∂x1S

)2

+φ(S)

]
, (23)

where δ
(S)/δS indicates the function derivative. The
TDGL Eq. (22) has two steady-state solutions except
trivial solution S=0: One is the uniform solution:

S (x1, t1) = ±
⎡

⎣
12V ′(V ′ − λ)

(
τλ + 1+2γ

2 − τV ′
)

(1 + 2γ )(3V ′ − 2λ) |V ′′′|

⎤

⎦

1
2

,

(24)

And the other is the kink solution

S (x1, t1) = ±
⎡

⎣
12V ′ (V ′ − λ

) (
τλ + 1+2γ

2 − τV ′
)

(1 + 2γ ) (3V ′ − 2λ) |V ′′′|

⎤

⎦

1
2

× tanh

{[
12τV ′ − 12τλ − 6(1 + 2γ )

6τλ + 2(1 + 6γ )

] 1
2

× (x1 − x0)

}
, (25)

where x0 is constant. Equation (25) represents the coex-
isting phase.

By the condition

∂φ/∂S = 0, ∂2φ/∂S2 > 0. (26)

We obtain the coexisting curve from Eq. (21) in terms
of the original parameters

(�x)co = hc ±
⎡

⎣
12V ′(V ′ − λ)

(
τλ + 1+2γ

2 − τV ′
)

(1 + 2γ )(3V ′ − 2λ) |V ′′′|

⎤

⎦

1
2

.

(27)

The spinodal line is given by the condition

∂2φ/∂S2 = 0. (28)

From Eq. (21), we obtain the spinodal line described
by the following equation

(�x)sp = hc ±
⎡

⎣
4V ′(V ′ − λ)

(
τλ + 1+2γ

2 − τV ′
)

(1 + 2γ )(3V ′ − 2λ) |V ′′′|

⎤

⎦

1
2

.

(29)

The critical point is given by the condition ∂φ/∂S =
0and Eq. (28).

(�x)c = hc, ac = 2
(
V ′(h) − λ

)

1 + 2γ
. (30)

4 mKdV equation

Similarly, we consider the slowly varying behavior at
long wavelengths near critical point. We also extract
slow scales for space variable n and time variable t .

By inserting ac = 2(V ′(h)−λ)
1+2γ , a = (1 + ε2)ac into

Eq. (17), one obtains:

ε4
[
∂T R − h1∂

3
X R + h2∂X R

3
]

+ ε5
[
h3∂

2
X R + h4∂

4
X R + h5∂

2
X R

3
]

= 0. (31)

Here, the coefficients hi are given in Table1.
In the table, V ′ = dV (�xn)/d�xn |�xn = hc ,

V ′′′ = d3V (�xn)/d�x3n |�xn = hc . In order to derive
the regularized equation, we make the following trans-
formation:

T = 1

h1
T ′, R =

√
h1
h2

R′ (32)
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Table 1 Coefficients hi of the model

h1 h2 h3

λV ′(1+2γ )
4(V ′−λ)

+ 1+6γ
6 V ′ V ′′′

6
1+2γ
2 V ′

h4 h5

(1+2γ )(2V ′−λ)
2(V ′−λ)

(
λV ′(1+2γ )
4(V ′−λ)

+ 1+6γ
6 V ′)

− 1+14γ
24 V ′ − λV ′(1+2γ )

12(V ′−λ)

V ′′′(1+2γ )(3V ′−2λ)
12(V ′−λ)

So the standard mKdV equation with a O(ε) correc-
tion term is showed as follows:

∂T ′ R′ = ∂3X R
′ − ∂X R

′3

−ε

[
h3
h1

∂2X R
′ + h4

h1
∂4X R

′ + h5
h2

∂2X R
′3
]

. (33)

If we ignore the O(ε), they are just the mKdV equation
with a kink solution as the desired Solution:

R′
o

(
X, T ′) = √

c tanh

√
c

2

(
X − cT ′) . (34)

Next, assuming that R′(X, T ′) = R′
o(X, T ′)+εR′

1(X,

T ′), we take into account the O(ε) correction. For the
purpose of determining the selected value of the veloc-
ity c for the kink solution, it is necessary to satisfy the
solvability condition

As
(
R′
o,M

[
R′
o

]) ≡
∫ +∞

−∞
dX ′R′

oM
[
R′
o

]
,

where M
[
R′
o

] = h3
h1

∂2X R
′ + h4

h1
∂4X R

′ + h5
h2

∂2X R
′3.

We get the general velocity c:

c = 5h2h3
2h2h4 − 3h1h5

. (35)

Hence, the general Kink–antikink soliton solution of
the headway, from the mKdV equation, is obtained:

�xn(t) = hc ±
√
h1c

h2

(
τ

τc
− 1

)

× tanh

√
c

2

(
τ

τc
− 1

)

[
n +

(
1 − ch1

(
τ

τc
− 1

))
t

]
. (36)

Where V ′′′ < 0, this kink soliton solution also repre-
sents the coexisting phase and the kink solution (36)
is agreed with the solution (25) obtained from the
TDGL equation. Thus, the jamming transition can be
described by both the TDGL equation with a nontrav-
elling solution and the mKdV equation with a propa-
gating solution.

5 Numerical simulation

Computer simulation is carried out to check the valid-
ity of the theoretical results above. Under the periodic
boundary condition, the following initial conditions are
chosen as follows:

�xn(0) = �x0 = 4.0,�xn(1) = �x0 = 4.0,

for n �= 50, 51,�xn(1) = 4.0 − 0.5, for n = 50,

�xn(1) = 4.0 + 0.5, for n = 51

The total number of cars is N = 100 and the sensi-
tivity a = 1.25.

Figure2 shows the space–time evolution of the head-
way after t = 104 time steps under the different para-
meter γ and λ. Pattern (a1) with γ = 0 and λ = 0 cor-
responds to that of the OVMmodel. In patterns (a1), it
can be clearly seen that the traffic flow is very unsta-
ble.When a small disturbance is added into the uniform
traffic flow, the propagating backward stop-and-go traf-
fic jam appears which is very similar to the mkdV solu-
tion. Pattern (b1) with γ = 0 and λ = 0.15, we can find
that the traffic congestion is becoming relatively stable
compared with pattern (a1). Pattern (c1) with γ = 0.2
and λ = 0, one can find that the traffic congestion is
much less serious in pattern (c1) than in pattern (a1).
Pattern (d1) with γ = 0.3 and λ = 0.2, we can find
that the traffic flow is approaching stability. So it means
that the new consideration plays the positive function
on the stabilization of traffic flow. As increasing the
parameterλ, γ the amplitude of the kink–antikink soli-
tonweakens gradually, which further demonstrates that
the new consideration can enhance the stability of traf-
fic flow.

Figure3 shows the headway profiles obtained at
t = 10,300 corresponding to panels in Fig. 2, respec-
tively, and from diagrams [(a2), (b2), (c2) and (d2)]
we conclude the similar results to Fig. 2. Therefore, the
results of simulation are in agreement with those of the
theoretical analysis.
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1476 L. Fangxun et al.

Fig. 2 Space–time evolution of the headway after t = 10,000

6 Conclusions

Based on the property of the effect of leading vehicle
on current vehicle on a single-lane road, an improved
car-following model has been developed to suppress
traffic jams. The neutral stability line and the criti-

cal point have been obtained by using the linear sta-
bility theory for the OVLM. Furthermore, the TDGL
equation has been derived to describe traffic behav-
ior near the critical point by applying the reductive
perturbation method. The two corresponding steady-
state solutions have been obtained, and the spinodal
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An improved car-following model considering the influence of optimal velocity 1477

Fig. 3 Headway profile at
t = 10,300 under the
different value of γ and λ

line, the critical point have been calculated from
the TDGL equation. The stability condition of the
extended model has been obtained, and the results
show that the stability of traffic flow is improved
by taking the effect of optimal velocity for lead-
ing vehicle into account. In addition, we also have
derived the mKdV equation from the OVLM. Numer-
ical simulation has shown that the traffic jams are sup-
pressed efficiently through the new model. The analyt-
ical results are in good agreement with the simulation
results.
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