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Abstract In this work, the coupled nonlinear
Schrödinger’s equation (CNLSE) is studied with four
forms of nonlinearity. The nonlinearities that are con-
sidered in this paper are the Kerr law, power law, par-
abolic law and dual-power law. Jacobi elliptic func-
tion solutions and also bright and dark optical soliton
solutions are obtained for each law of the CNLSE. We
will acquire constraint conditions for the existence of
obtained solitons.
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1 Introduction

The dynamics of optical solitons is one of the most
important areas of research in the field of nonlinear
optics [1–15]. There are many new results that have
been produced in this field. Many long-distance com-
munications around the world are put into practice
under favour of this technology.

The governing equation for the propagation of opti-
cal solitons is the NLSE. There are many mathematical
features of the NLSE that interest the nonlinear optics
community. We consider the CNLSE with spatiotem-
poral dispersion (STD) and group velocity dispersion
(GVD) in this study. There are four nonlinear forms of
the optical couplers that will be studied in this paper.
These are Kerr law, power law, parabolic law and dual-
power law. Jacobi elliptic functions are going to be used
to get exact solutions of the CNLSE.

The paper is arranged as follows: In Sect. 2, we
present the mathematical analysis for the CNLSE with
Kerr, power, parabolic anddual-power laws. In last Sec-
tion, we give some conclusions.

2 Mathematical analysis

The CNLSE is going to be studied in this paper which
is given by [3,4]

iqt + a1qxx + b1qxt + c1F
(
|q|2

)
q = k1r, (1)

irt + a2rxx + b2rxt + c2F
(
|r |2

)
r = k2q. (2)
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Equations (1) and (2) are the governing equation for
twin-core couplers. Here, q and r represent dimension-
less forms of the optical fields in the respective cores
of the optical fibres. a� and b� represent, respectively,
the coefficients of GVD and STD for � = 1, 2. Also,
c� represents the coefficients of nonlinearity and k�

describes the coupling coefficients for � = 1, 2. The
function F gives the type of nonlinearity that will be
studied. Considering the complex plane C as a two-
dimensional linear space R2, the function F

(|q|2) q :
C → C is k times continuously differentiable, so
that F

(
q2

)
q ∈ ∪∞

m,n=1C
k
(
(−n, n) × (−m,m) ; R2

)
.

Since q and r are complex-valued function, the solution
for the CNLSE can be written in the form

q(x, t) = P1(x, t)e
iφ, (3)

r(x, t) = P2(x, t)e
iφ, (4)

where P�(x, t) represents the amplitude component of
the soliton, while the phase component φ is defined as

φ(x, t) = −κx + wt + θ, (5)

where κ represents the soliton frequency, w is the soli-
ton wave number and θ is the phase constant. Substitut-
ing (3) and (4) into (1) and (2) and then decomposing
into real and imaginary parts gives

a�

∂2P�

∂x2
+ b�

∂2P�

∂x∂t
+ P�

(
b�wk − w − a�κ

2
)

+c�F
(
P2

�

)
P� − k�P�∗ = 0, (6)

and

(1 − b�k)
∂P�

∂t
+ (b�w − 2a�κ)

∂P�

∂x
= 0, (7)

respectively. Here, � = 1, 2 and �∗ = 3 − �. P� is
written of the following form of travelling wave type

P1 (x, t) = U1 (ξ) , P2 (x, t) = U2 (ξ) ,

ξ = B (x − vt) (8)

where B represent the inverse width and v is the veloc-
ity of the soliton. So, it can be written

(a� − b�v) B2 ∂2U�

∂ξ2
+U�

(
b�wk − w − a�κ

2
)

+c�F
(
U 2

�

)
U� − k�U�∗ = 0, (9)

and

{−v (1 − b�κ) + b�w − 2a�κ} B ∂U�

∂ξ
= 0. (10)

Equation (10) leads to

v = b�w − 2a�κ

1 − b�κ
. (11)

Equating the two expressions for the soliton velocity
leads to

a1 = a2, b1 = b2 (12)

So, Eq. (9) reduces to

v = bw − 2aκ

1 − bκ
. (13)

In this way, the CNLSE for twin-core couplers given
by (1) and (2) can be written

iqt + aqxx + bqxt + c1F
(
|q|2

)
q = k1r, (14)

irt + arxx + brxt + c2F
(
|r |2

)
r = k2q, (15)

where a1 = a2 = a and b1 = b2 = b. Hence, the Eq.
(9) modifies to

(a − bv) B2 ∂2U�

∂ξ2
+U�

(
bwk − w − aκ2

)

+c�F
(
U 2

�

)
U� − k�U�∗ = 0. (16)

We note that the result for the velocity of the soliton,
given by (13), is true for all types of nonlinearity in
question.

The CNLSE will be studied with the following four
nonlinear forms.

2.1 Kerr law

The Kerr law nonlinearity is the case when F(s) = s.
For Kerr law nonlinearity, the considered CNLSE is
given by

iqt + aqxx + bqxt + c1 |q|2 q = k1r, (17)

irt + arxx + brxt + c2 |r |2 r = k2q. (18)

Real part (16) is reduces

(a − bv) B2 ∂2U�

∂ξ2
+U�

(
bwk − w − aκ2

)

+c�U
3
� − k�U�∗ = 0. (19)

We assume that U is in the form

U� (ξ) = λ�sn
p (μξ,m) , (20)
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where λ represents the amplitude andm is the modulus
of Jacobi elliptic function 0 < m < 1. The unknown
index p will be determined. The second-order deriva-
tive of Eq. (20) is as follows:

(U�)ξξ = (p − 1) pλ�μ
2sn p−2 (μξ,m)

−p
[
m + m2 (p − 1) + p

]

×λ�μ
2sn p (μξ,m)

+mp (mp + 1) λ�μ
2sn p+2 (μξ,m) (21)

Substituting (20) and (21) into (19) gives

(a − bv) B2 (p − 1) pλ�μ
2sn p−2 (μξ,m)

− (a − bv) B2 p
[
m + m2 (p − 1) + p

]

λ�μ
2sn p (μξ,m) + (a − bv) B2mp

(mp + 1) λ�μ
2sn p+2 (μξ,m)

+λ�

(
bwk − w − aκ2

)
sn p (μξ,m)

+c�λ
3
�sn

3p (μξ,m) − k�λ�∗sn p (μξ,m) = 0.

(22)

From (22), matching the exponents sn p+2 (μξ,m) and
sn3p (μξ,m) yields

p + 2 = 3p, (23)

which gives

p = 1. (24)

Now, setting the coefficients of sn p+ j (μξ,m), for j =
−2, 0, to zero in (22) as these are linearly independent
functions yields

w = m
(
aκ2λ� + k�λ

∗
�

) − c�λ
3
�

mλ� (bκ − 1)
, (25)

and

v = c�λ
2
� + m (m + 1) aB2μ2

m (m + 1) bB2μ2 . (26)

Now, equating the two values of the soliton wave num-
ber from (25) for � = 1, 2, we get

λ1λ2

(
c2λ

2
2 − c1λ

2
1

)
= m

(
k2λ

2
1 − k1λ

2
2

)
. (27)

Similarly, equating the two values of the soliton veloc-
ity from (26) gives

λ1

λ2
=

√
c2
c1

, c1c2 > 0. (28)

Finally, equating the two expressions for inverse width
of the soliton from (13) and (26), we obtain

B = ±
√

(1 − bκ) c�

m (m + 1) μ2
(
b2w − abκ − a

)λ�, (29)

which requires the constraint condition

(1 − bκ) c�

(
b2w − abκ − a

)
> 0. (30)

Hence, for Kerr law nonlinearity, Jacobi elliptic func-
tion solutions are obtained as follows,

q = λ1sn

[√
(1 − bκ) c1

m (m + 1)
(
b2w − abκ − a

)λ1

{
x −

(
bw − 2aκ

1 − bκ

)
t,m

}]
ei(−κx+wt+θ), (31)

r = λ2sn

[√
(1 − bκ) c2

m (m + 1)
(
b2w − abκ − a

)λ2

{
x −

(
bw − 2aκ

1 − bκ

)
t,m

}]
ei(−κx+wt+θ), (32)

where the soliton wave number w is given by (25).
When the modulus m → 1 in (31) and (32), we obtain
following new dark optical soliton solutions

q (x, t) = λ1 tanh

[√
(1 − bκ) c1

2
(
b2w1 − abκ − a

)λ1

{
x −

(
bw1 − 2aκ

1 − bκ

)
t

}]
ei(−κx+w1t+θ),

(33)

r (x, t) = λ2 tanh

[√
(1 − bκ) c2

2
(
b2w1 − abκ − a

)λ2

{
x −

(
bw1 − 2aκ

1 − bκ

)
t

}]
ei(−κx+w1t+θ).

(34)
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Here, w1 is in the form

w1 =
(
aκ2λ� + k�λ

∗
�

) − c�λ
3
�

λ� (bκ − 1)
. (35)

To get another pair of Jacobi elliptic function solution
of CNLSE with Kerr law nonlinearity, we use the fol-
lowing function

U� (ξ) = λ�cn
p (μξ,m) . (36)

For (36), one obtains

(U�)ξξ =
(
1 − m2

)
(p − 1) pλ�μ

2cn p−2 (μξ,m)

+p
[
m + m2 (2p − 1) − p

]

×λ�μ
2cn p (μξ,m) − mp (mp + 1)

× λ�μ
2cn p+2 (μξ,m) (37)

Thus, Eq. (19) reduces

(a − bv) B2
(
1 − m2

)
(p − 1) pλ�μ

2cn p−2

(μξ,m) + (a − bv) B2 p

×
[
m + m2 (2p − 1)] − p

]
λ�μ

2cn p (μξ,m)

− (a − bv) B2mp (mp + 1)

×λ�μ
2cn p+2 (μξ,m) + λ�

(
bwk − w − aκ2

)
cn p

× (μξ,m) + c�λ
3
�cn

3p (μξ,m)

−k�λ�∗cn p (μξ,m) = 0. (38)

From (38), setting the coefficients p + 2 and 3p equal
to one another gives the same value of p which is in
(24). The functions cn p+ j (μξ,m), for j = −2, 0 are
linearly independent, and this yields

w = m (m + 1)
(
aκ2λ� + k�λ

∗
�

) − (
m2 + m − 1

)
c�λ

3
�

m (m + 1) λ� (bκ − 1)
,

(39)

v = m (m + 1) aB2μ2 − c�λ
2
�

m (m + 1) bB2μ2 . (40)

Equating the two values of soliton wave number from
(39) and also two values of soliton velocity from (40),
for � = 1, 2, gives(

m2 + m − 1
)

λ1λ2

(
c2λ

2
2 − c1λ

2
1

)

= m (m + 1)
(
k2λ

2
1 − k1λ

2
2

)
, (41)

and
λ1

λ2
=

√
c2
c1

, c1c2 > 0

respectively. Next, matching the two expressions for
inverse width of the soliton from (13) and (40), we get

B = ±
√

(bκ − 1) c�

m (m + 1) μ2
(
b2w − abκ − a

)λ�, (42)

which requires the constraint

(bκ − 1) c�

(
b2w − abκ − a

)
> 0. (43)

So, for Kerr law nonlinearity, another Jacobi elliptic
function solution of the CNLSE is given by

q = λ1cn

[√
(bκ − 1) c1

m (m + 1)
(
b2w − abκ − a

)λ1

×
{
x −

(
bw − 2aκ

1 − bκ

)
t,m

}]
ei(−κx+wt+θ),

(44)

r = λ2cn

[√
(bκ − 1) c2

m (m + 1)
(
b2w − abκ − a

)λ2

×
{
x −

(
bw − 2aκ

1 − bκ

)
t,m

}]
ei(−κx+wt+θ),

(45)

where the w is given by (39). If the modulus m → 1,
(44) and (45) solutions become following new bright
optical soliton solutions.

q (x, t) = λ1 sec h

[√
(bκ − 1) c1

2
(
b2w1 − abκ − a

)λ1

{
x −

(
bw1 − 2aκ

1 − bκ

)
t

}]
ei(−κx+w1t+θ),

(46)

r (x, t) = λ2 sec h

[√
(bκ − 1) c2

2
(
b2w1 − abκ − a

)λ2

{
x −

(
bw1 − 2aκ

1 − bκ

)
t

}]
ei(−κx+w1t+θ),

(47)

where w1 is in the form

w1 = 2
(
aκ2λ� + k�λ

∗
�

) − c�λ
3
�

2λ� (bκ − 1)
. (48)
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Remark 1 Bright optical soliton solutions (46) and (47)
are identical to solutions in [4] obtained by using the
sine–cosine function method.

2.2 Power law

For the case of power law nonlinearity, where F(s) =
sn, the CNLSE reduces to

iqt + aqxx + bqxt + c1 |q|2n q = k1r, (49)

irt + arxx + brxt + c2 |r |2n r = k2q. (50)

It is worth considering that 0 < n < 2 for stability
of solitons. Furthermore, n �= 2 to avoid self-focusing
singularity. For this law of nonlinearity, real part Eq.
(16) is written as follows

(a − bv) B2 ∂2U�

∂ξ2
+U�

(
bwk − w − aκ2

)

+c�U
2n+1
� − k�U�∗ = 0. (51)

To obtain the solutions of this equation, the starting
assumption for the form ofU stays the same as in (20).
So, substituting (20) and (21) into (51), then matching
the exponents (2n + 1) p and p + 2 in the obtained
equation

(2n + 1) p = p + 2, (52)

that gives

p = 1

n
. (53)

Again from this obtained equation, setting the coef-
ficients of sn p+ j (μξ,m) to zero, where j = −2, 0,
yields

w =
{
m (m + n)

(
aκ2λ� − k�λ

∗
�

) − c�λ
3
�

(
m2 (1 − n)+mn+1

)}

m (m + n) λ� (bκ − 1)
,

(54)

v = m (m + n) aB2μ2 + n2c�λ
2n
�

m (m + n) bB2μ2 . (55)

Equating the two expressions for wave number from
(54) and also two expressions for the soliton velocity
from (55) gives(

m2 (1 − n) + mn + 1
)

λ1λ2

(
c2λ

2n
2 − c1λ

2n
1

)

= m (m + n)
(
k1λ

2
2 − k2λ

2
1

)
. (56)

λ1

λ2
=

(
c2
c1

) 1
2n

, c1c2 > 0 (57)

respectively. Finally,matching the (11) and (55) implies

B = ±
√

(1 − bκ) c�

m (m + n) μ2
(
b2w − abκ − a

)nλn� , (58)

where

(1 − bκ) c�

(
b2w − abκ − a

)
> 0.

Thus, for power law nonlinearity, we obtain the Jacobi
elliptic function solutions of Eqs. (49) and (50) as

q = λ1sn
1
n

[√
(1 − bκ) c1

m (m + n)
(
b2w − abκ − a

)nλn1

×
{
x −

(
bw − 2aκ

1 − bκ

)
t,m

}]
ei(−κx+wt+θ), (59)

r = λ2sn
1
n

[√
(1 − bκ) c2

m (m + n)
(
b2w − abκ − a

)nλn2

×
{
x −

(
bw − 2aκ

1 − bκ

)
t,m

}]
ei(−κx+wt+θ). (60)

Here, thewave number is given by (54).When themod-
ulusm → 1 in (59) and (60),we get following newdark
optical soliton solutions

q = λ1 tanh
1
n

[√
(1 − bκ) c1

(n + 1)
(
b2w1 − abκ − a

)nλn1

×
{
x −

(
bw1 − 2aκ

1 − bκ

)
t

}]
ei(−κx+w1t+θ), (61)

r = λ2 tanh
1
n

[√
(1 − bκ) c2

(n + 1)
(
b2w1 − abκ − a

)nλn2

×
{
x −

(
bw1 − 2aκ

1 − bκ

)
t

}]
ei(−κx+w1t+θ), (62)

where

w1 = (n + 1)
(
aκ2λ� − k�λ

∗
�

) − 2c�λ
3
�

(n + 1) λ� (bκ − 1)
. (63)

Now, to look for other solutions of the coupled NLSE
with power law nonlinearity, we use the starting
assumption for the form ofU the same as in (36). Sub-
stituting (36) and (37) into (51), then setting the coef-
ficients (2n + 1) p and p + 2 equal to one another in
the obtained equation, gives the same value of p which
is in (53). Next, setting the coefficients of the linearly
independent functions cn p+ j (μξ,m), for j = −2, 0
to zero yields
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w =
{
m (m + n)

(
aκ2λ� + k�λ

∗
�

) − c�λ
2n+1
�

(
m2 (2 − n) + mn − 1

)}

m (m + n) λ� (bκ − 1)
, (64)

v = m (m + n) aB2μ2 − n2c�λ
2n
�

m (m + n) bB2μ2 . (65)

Equating the components gives the following relations,
respectively.(

m2 (2 − n) + mn − 1
)

λ1λ2

(
c2λ

2n
2 − c1λ

2n
1

)

= m (m + n)
(
k2λ

2
1 − k1λ

2
2

)
,

λ1

λ2
=

(
c2
c1

) 1
2n

, c1c2 > 0 (66)

Again, equating (13) and (65) gives

B = ±
√

(bκ − 1) c�

m (m + n) μ2
(
b2w − abκ − a

)nλn� , (67)

where

(bκ − 1) c�

(
b2w − abκ − a

)
> 0.

Hence, for power law nonlinearity, solutions of CNLSE
are given by

q = λ1cn
1
n

[√
(bκ − 1) c1

m (m + n)
(
b2w − abκ − a

)nλn1

×
{
x−

(
bw−2aκ

1−bκ

)
t,m

}]
ei(−κx+wt+θ), (68)

r = λ2cn
1
n

[√
(bκ − 1) c2

m (m + n)
(
b2w − abκ − a

)nλn2

×
{
x−

(
bw−2aκ

1−bκ

)
t,m

}]
ei(−κx+wt+θ), (69)

where the wave number is given by (64). When the
modulus m → 1 in (68) and (69), we obtain following
bright optical soliton solutions as

q = λ1 sec h
1
n

[√
(bκ − 1) c1

(n + 1)
(
b2w1 − abκ − a

)nλn1

×
{
x −

(
bw1 − 2aκ

1 − bκ

)
t

}]
ei(−κx+w1t+θ), (70)

r = λ2 sec h
1
n

[√
(bκ − 1) c2

(n + 1)
(
b2w1 − abκ − a

)nλn2

×
{
x −

(
bw1 − 2aκ

1 − bκ

)
t

}]
ei(−κx+w1t+θ), (71)

where

w1 = (n + 1)
(
aκ2λ� + k�λ

∗
�

) − c�λ
2n+1
�

(n + 1) λ� (bκ − 1)
. (72)

Remark 2 Bright optical solutions (70) and (71) are
identical to solutions in [4] obtained by using the sine–
cosine function method.

2.3 Parabolic law

For this kind of nonlinearity, F (s) = s + k1s2. In this
case, the CNLSE is

iqt + aqxx + bqxt +
(
τ1 |q|2 + η1 |q|4

)
q = k1r,

(73)

irt + arxx + brxt +
(
τ2 |r |2 + η2 |r |4

)
r = k2q.

(74)

Here the constants τ and η for � = 1, 2 represent the
coefficients of cubic and quintic nonlinear terms. In this
case, Eq. (16) reduces to

(a − bv) B2 ∂2U�

∂ξ2
+U�

(
bwk − w − aκ2

)

+τ�U
3
� + η�U

5
� − k�U�∗ = 0. (75)

We assume that U is in the form

U� (ξ) = λ� [D1 + sn (μξ,m)]p , (76)

where the constant D1 and the unknown index p will
be determined. The second-order derivative of (76) is
obtained as follows

(U�)ξξ = (p − 1) pλ�μ
2
(
1 − D2

1

) (
1 − m2D2

1

)

[D1 + sn (μξ,m)]p−2

+p
{
2p

(
1 − m2D2

1

)
+ m

(
1 − D2

1

)

+m2
(
3D2

1 − 2
)

− 1
}

λ�μ
2D1
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[D1 + sn (μξ,m)]p−1

+p
{
mD2

1 (6mp − 4mD1 + m + 2)

+m2 (1 − 2D1 − p) − m − p
}

×λ�μ
2 [D1 + sn (μξ,m)]p

+mp (−4mp + 3m − 3) λ�μ
2D1

[D1 + sn (μξ,m)]p+1

+mp (mp + 1) λ�μ
2

× [D1 + sn (μξ,m)]p+2 . (77)

Substituting (76) and (77) into the Eq. (75) and then
setting the exponents p+1 and 3p equal to one another
give

p + 1 = 3p (78)

so that

p = 1

2
(79)

which is also obtained the exponents p + 2 and 5p are
equated. The functions [D1 + sn (μξ,m)]p+ j for j =
−2,−1, 0 are linearly independent, and this yields,

w =

⎧⎨
⎩
2m (m − 3) D1

(
aκ2λ� + k�λ

∗
�

)
−τ�λ

3
�

[
4mD2

1 (2m − 2mD1 + 1)
+m2 (1 − 2D1) − 2m + 1

]

⎫⎬
⎭

2m (m − 3) D1λ� (bκ − 1)
, (80)

v = m (m − 3) aB2μ2D1 + 2τ�λ
2
�

m (m − 3) bB2μ2D1
, (81)

and

D1 = (m + 2) τ�

2 (3 − m) η�λ
2
�

. (82)

Equating the wave number of the solitons from the two
components and also velocity of the soliton from the
two components gives the following relations, respec-
tively
[
4mD2

1 (2m − 2mD1+1)+m2 (1 − 2D1) − 2m+1
]

×λ1λ2

(
τ1λ

2
1 − τ2λ

2
2

)

= 2m (m − 3) D1

(
k2λ

2
1 − k1λ

2
2

)
, (83)

λ1

λ2
=

√
τ2

τ1
, τ1τ2 > 0 (84)

Finally, matching (13) and (81) implies

B = ±
√

(bκ − 1) η�

m (m + 2) μ2
(
b2w − abκ − a

)2λ2�, (85)

where

(bκ − 1) η�

(
b2w − abκ − a

)
> 0. (86)

Thus, the Jacobi elliptic function solutions for the
CNLSE with parabolic law nonlinearity are given by

q (x, t) = λ1

{
(m + 2) τ1

2 (3 − m) η1λ
2
1

+sn

[√
(bκ − 1) η1

m (m + 2)
(
b2w − abκ − a

)2λ21

×
{
x −

(
bw − 2aκ

1 − bκ

)
t,m

}]} 1
2

ei(−κx+wt+θ), (87)

r (x, t) = λ2

{
(m + 2) τ2

2 (3 − m) η2λ
2
2

+sn

[√
(bκ − 1) η2

m (m + 2)
(
b2w − abκ − a

)2λ22

×
{
x −

(
bw − 2aκ

1 − bκ

)
t,m

}]} 1
2

× ei(−κx+wt+θ), (88)

where the wave number is given by (80). When the
modulus m → 1 in (87) and (88), we obtain following
dark optical soliton solutions

q (x, t) = λ1

{
3τ1

4η1λ21

+ tanh

[√
(bκ − 1) η1

3
(
b2w1 − abκ − a

)2λ21

×
{
x −

(
bw1 − 2aκ

1 − bκ

)
t

}]} 1
2

× ei(−κx+w1t+θ), (89)

r (x, t) = λ2

{
3τ2

4η2λ22

+ tanh

[√
(bκ − 1) η2

3
(
b2w1 − abκ − a

)2λ22
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×
{
x −

(
bw1 − 2aκ

1 − bκ

)
t

}]} 1
2

× ei(−κx+w1t+θ), (90)

where

w1 =
{
−4D1

(
aκ2λ� + k�λ

∗
�

)
− τ�λ

3
�

[
4D2

1 (3 − 2D1) − 2D1

]}

−4D1λ� (bκ − 1)
.

(91)

Now, we use the starting assumption as

U� (ξ) = λ� [D1 + cn (μξ,m)]p , (92)

The second-order derivativeof (92) is obtained as fol-
lows.

(U�)ξξ = (p − 1) pλ�μ
2
(
1 − D2

1

) (
m2 + 1

)

× [D1 + cn (μξ,m)]p−2

+p
{[

m2 (4p − 3) + m
]

×
(
D2
1 − 1

)
+ 2p − 1

}
λ�μ

2D1

× [D1 + cn (μξ,m)]p−1

+p
{(

1 − 3D2
1

) (
2m2 p − m2 + m

)
− p

}

× λ�μ
2 [D1 + cn (μξ,m)]p

+mp (4mp − m + 3) λ�μ
2D1

[D1 + cn (μξ,m)]p+1

−mp (mp + 1) λ�μ
2

× [D1 + cn (μξ,m)]p+2 (93)

Substituting (92) and (93) into the Eq. (75) and then
setting the exponents p + 1 and 3p equal to one
another give the same value of p which is in (79). The
same value of the exponent p is also yielded when
the exponents p + 2 and 5p are equated. The func-
tions [D1 + cn (μξ,m)]p+ j , for j = −2,−1, 0, are
linearly independent, and this yields,

w=
{
2m (m + 3) D1

(
aκ2λ� + k�λ

∗
�

) + τ�λ
3
�

[
2m

(
1 − 3D2

1

) − 1
]}

2m (m + 3) D1λ� (bκ − 1)
,

(94)

v= m (m + 3) aB2μ2D1 + 2τ�λ
2
�

m (m + 3) bB2μ2D1
, (95)

D1= − (m + 2) τ�

2 (m + 3) η�λ
2
�

. (96)

Equating the components, we obtain the same value in
(85) with the condition (86) and also we get the same
relation in(84) and following relation

[
2m

(
1 − 3D2

1

)
− 1

]
λ1λ2

(
τ1λ

2
1 − τ2λ

2
2

)

= 2m (m + 3) D1

(
k2λ

2
1 − k1λ

2
2

)
, (97)

So, another pair of Jacobi elliptic function solution in
a parabolic law media for the CNLSE is given by

q (x, t) = λ1

{
− (m + 2) τ1

2 (m + 3) η1λ
2
1

+cn

[√
(bκ − 1) η1

m (m + 2)
(
b2w − abκ − a

)2λ21

×
{
x −

(
bw − 2aκ

1 − bκ

)
t,m

}]} 1
2

× ei(−κx+wt+θ), (98)

r (x, t) = λ2

{
− (m + 2) τ2

2 (m + 3) η2λ
2
2

+cn

[√
(bκ − 1) η2

m (m + 2)
(
b2w − abκ − a

)2λ22

×
{
x −

(
bw − 2aκ

1 − bκ

)
t,m

}]} 1
2

× ei(−κx+wt+θ), (99)

where the wave number is given by (94). When the
modulus m → 1 in (98) and (99), we obtain following
bright optical soliton solutions

q (x, t) = λ1

{
−3τ1
8η1λ21

+ sec h

[√
(bκ − 1) η1

3
(
b2w1 − abκ − a

)2λ21

×
{
x −

(
bw1 − 2aκ

1 − bκ

)
t

}]} 1
2

× ei(−κx+w1t+θ), (100)

r (x, t) = λ2

{
−3τ2
8η2λ22

+ sec h

[√
(bκ − 1) η2

3
(
b2w1 − abκ − a

)2λ22

×
{
x −

(
bw1 − 2aκ

1 − bκ

)
t

}]} 1
2

× ei(−κx+w1t+θ), (101)
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where

w1 = 8D1
(
aκ2λ� + k�λ

∗
�

) + τ�λ
3
�

(
1 − 6D2

1

)

8D1λ� (bκ − 1)
. (102)

2.4 Dual-power law

The dual-power law nonlinearity is formulated as
F (s) = sn + k2s2n . If n = 1, this law reduces to par-
abolic law nonlinearity. The CNLSE with dual-power
law nonlinearity is given by

iqt + aqxx + bqxt

+
(
τ1 |q|2n + η1 |q|4n

)
q = k1r, (103)

irt + arxx + brxt

+
(
τ2 |r |2n + η2 |r |4n

)
r = k2q. (104)

In this case Eq. (16) reduces to

(a − bv) B2 ∂2U�

∂ξ2
+U�

(
bwk − w − aκ2

)

+τ�U
2n+1
� + η�U

4n+1
� − k�U�∗ = 0. (105)

For dual-power law nonlinearity, the starting hypothe-
sis for U is given by

U� (ξ) = λ� [D2 + sn (μξ,m)]p , (106)

Here the constant D2 and the unknown index p will be
determined. Substituting the required derivatives in the
Eq. (105) and then equating the coefficients (2n + 1) p
and p + 1 give

(2n + 1) p = p + 1, (107)

p = 1

2n
. (108)

The above value of the exponent p is yielded when the
exponents (4n + 1) p and p+2 are equated. Now, set-
ting the coefficients of [D2 + sn (μξ,m)]p+ j to zero,
for j = −2,−1, 0, gives

w =

⎧⎨
⎩
2m [3n (m−1)−2m] D2

(
aκ2λ� + k�λ

∗
�

)
+τ�λ

2n+1
�

[
mD2

2 {6m+2n (−4mD2+m+2)}
+m2 (−4nD2+2n−1)−2mn−1

]

⎫⎬
⎭

2m [3n (m − 1) − 2m] D2λ� (bκ − 1)
,

(109)

v = m [3n (m − 1) − 2m] aB2μ2D2 + 2n2τ�λ
2n
�

m [3n (m − 1) − 2m] bB2μ2D2
,(110)

and

D2 = − (m + 2n) τ�

2 [3n (m − 1) − 2m] η�λ
2n
�

. (111)

Equating the components, we obtain following rela-
tions[

mD2
2 (6m + 2n (−4mD2 + m + 2))

+m2(2n − 4nD2 − 1) − 2mn − 1
]

×λ1λ2

(
τ1λ

2n
1 − τ2λ

2n
2

)

= 2m [3n (m − 1) − 2m] D2

(
k2λ

2
1 − k1λ

2
2

)
,

(112)

λ1

λ2
=

(
τ2

τ1

) 1
2n

, τ1.τ2 > 0 (113)

and

B = ±
√

(bκ − 1) η�

m (m + 2n) μ2
(
b2w − abκ − a

)2nλ2n� ,

(114)

with the condition

(bκ − 1) η�

(
b2w − abκ − a

)
> 0.

Thus, the Jacobi elliptic function solutions for the cou-
pled NLSE with dual-power law nonlinearity are given
by

q (x, t) = λ1

{
− (m + 2n) τ1

2 [3n (m − 1) − 2m] η1λ
2n
1

+sn

[√
(bκ − 1) η1

m (m + 2n)
(
b2w − abκ − a

)2nλ2n1

×
{
x −

(
bw − 2aκ

1 − bκ

)
t,m

}]} 1
2n

× ei(−κx+wt+θ), (115)

r (x, t) = λ2

{
− (m + 2n) τ2

2 [3n (m − 1) − 2m] η2λ
2n
2

+sn

[√
(bκ − 1) η2

m (m + 2n)
(
b2w − abκ − a

)2nλ2n2

×
{
x −

(
bw − 2aκ

1 − bκ

)
t,m

}] 1
2n

× ei(−κx+wt+θ), (116)
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where the wave number is given by (109). If the mod-
ulus m → 1 in (115) and (116), we obtain following
dark optical soliton solutions

q (x, t) = λ1

{
(2n + 1) τ1

4η1λ2n1

+ tanh

[√
(bκ − 1) η1

(2n + 1)
(
b2w1 − abκ − a

)2nλ2n1

×
{
x −

(
bw1 − 2aκ

1 − bκ

)
t

}]} 1
2n

× ei(−κx+w1t+θ), (117)

r (x, t) = λ2

{
(2n + 1) τ2

4η2λ2n2

+ tanh

[√
(bκ − 1) η2

(2n + 1)
(
b2w1 − abκ − a

)2nλ2n2

×
{
x −

(
bw1 − 2aκ

1 − bκ

)
t

}]} 1
2n

× ei(−κx+w1t+θ), (118)

where

w1 =

{−4D2
(
aκ2λ� + k�λ

∗
�

) + τ�λ
2n+1
�

[
D2
2

× {6 + 2n (−4D2 + 3)} + −4nD2 − 2]

}

−4D2λ� (bκ − 1)
.

(119)

Now, to look for the solutions of CNLSE with dual-
power nonlinearity, the starting hypothesis is given by

U� (ξ) = λ� [D2 + cn (μξ,m)]p , (120)

Substituting the hypothesis into (105) and then equat-
ing the coefficients (2n + 1) p and p+1 give the same
value of p which is in (108). The same value of p is
obtained on equating (4n + 1) p and p + 2. Then, set-
ting the coefficients of [D2 + cn (μξ,m)]p+ j to zero,
for j = −2,−1, 0, gives

w =

{
2m [m (2 − n) + 3] D2

(
aκ2λ� + k�λ

∗
�

)
+τ�λ

2n+1
�

[
2m

(
1 − 3D2

2

)
[m + n (1 − m)] − 1

]
}

2m [m (2 − n) + 3] D2λ� (bκ − 1)
,

(121)

v = m [m (2 − n) + 3] aB2μ2D2 + 2n2τ�λ
2n
�

m [m (2 − n) + 3] bB2μ2D2
, (122)

and

D2 = − (m + 2n) τ�

2 [m (2 − n) + 3] η�λ
2n
�

. (123)

Equating the components, we obtain the same value in
(114) and also we get the same relation in (113) and
following relation
[
2m

(
1 − 3D2

2

)
[m + n (1 − m)] − 1

]

λ1λ2

(
τ1λ

2n
1 − τ2λ

2n
2

)

= 2m [m (2 − n) + 3] D2

(
k2λ

2
1 − k1λ

2
2

)
. (124)

Thus, finally, another pair of Jacobi elliptic function
solution for the coupled NLSE with dual-power law
nonlinearity is given by

q (x, t) = λ1

{
− (m + 2n) τ1

2 [m (2 − n) + 3] η1λ
2n
1

+cn

[√
(bκ − 1) η1

m (m + 2n)
(
b2w − abκ − a

)2nλ2n1

×
{
x −

(
bw − 2aκ

1 − bκ

)
t,m

}]} 1
2n

× ei(−κx+wt+θ), (125)

r (x, t) = λ2

{
− (m + 2n) τ2

2 [m (2 − n) + 3] η2λ
2n
2

+cn

[√
(bκ − 1) η2

m (m + 2n)
(
b2w − abκ − a

)2nλ2n2

×
{
x −

(
bw − 2aκ

1 − bκ

)
t,m

}]} 1
2n

× ei(−κx+wt+θ), (126)

where the wave number is given by (121). When the
modulus m → 1 in (125) and (126), we obtain follow-
ing bright optical soliton solutions

q (x, t) = λ1

{
(2n + 1) τ1

2 (n − 5) η1λ
2n
1

+ sec h

[√
(bκ − 1) η1

(2n + 1)
(
b2w1 − abκ − a

)2nλ2n1

×
{
x −

(
bw1 − 2aκ

1 − bκ

)
t

}]} 1
2n

× ei(−κx+w1t+θ), (127)

r (x, t) = λ2

{
(2n + 1) τ2

2 (n − 5) η2λ
2n
2

+ sec h

[√
(bκ − 1) η2

(2n + 1)
(
b2w1 − abκ − a

)2nλ2n2
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×
{
x −

(
bw1 − 2aκ

1 − bκ

)
t

}]} 1
2n

× ei(−κx+w1t+θ), (128)

where

w1 =
{
2D2 (5 − n)

(
aκ2λ� + k�λ

∗
�

) + τ�λ
2n+1
�

(
1 − 6D2

2

)}

2D2 (5 − n) λ� (bκ − 1)
.

(129)

3 Conclusions

This study focuses on exact solutions in a type of non-
linear directional optical couplers. The Jacobi elliptic
functions are used to obtain dark and bright optical
soliton solutions of this couplers with four forms of
nonlinearity.

The sn and cn Jacobi elliptic functions have been the
focus in this study. Other Jacobi elliptic functions can
also be used to get different solutions of the coupled
NLSE. Similarly, these functions can also be used to
get exact solutions of other nonlinear equations and
systems.

The conclusions of this work provide a lot of support
to future work. In the future, different soliton solutions
and conservation laws will be examined with Lie sym-
metry of this system.
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