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Abstract The development of suitable mathematical
models on the basis of dynamic measurements from
dispersed structural systems that may be undergoing
significant nonlinear behavior is an important and very
challenging problem in the field of Applied Mechanics
that has drawn the attention of numerous investigators
and motivated the development of many approaches
for extracting reduced-order, reduced-complexitymod-
els from such systems. However, even though numer-
ous nonlinear system identification techniques that are
focused on the class of problems encountered in the
structural dynamics field have been developed over the
past decades, there are no systematic studies available
that rigorously compare the performance and fidelity of
such methods under similar operating conditions, and
when encountering challenging nonlinear phenomena
(such as hysteresis) that are present in physical systems,
at different scales. This paper explores a variety of data-
driven identification techniques for complex nonlinear
systems and provides a much needed critical compari-
son of the accuracy and performance of each method.
The Volterra/Wiener neural network (VWNN), a more
recent development in nonlinear identification, is fea-
tured and compared against several existing methods,
including polynomial-based nonlinear estimators and
other artificial neural network systems. A representa-
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tive three degree-of-freedom structure with nonlinear
restoring force elements is used as the primarymeans of
comparison for the different methods, and a variety of
nonlinear models were investigated, including bilinear
hysteresis, polynomial stiffness, and Bouc–Wen hys-
teresis. Performance comparisons were based on the
ability to estimate the acceleration responses for both
training and testing simulations. The results showed
that, in general, the VWNN provided better accuracy
in its estimates for each model. The VWNN also per-
formed best when evaluated for scenarios in which
numerical integration is required to find velocity and
displacement information frommeasured accelerations
or sensor noise is present in the measured responses.

Keywords Nonlinear identification · Data-driven
methods · Neural networks · Bouc–Wen · Hysteresis

1 Introduction

1.1 Motivation

With the explosive growth in available data from
dynamic systems encountered in the broad field of
Applied Mechanics, there is a growing interest in the
development and application of sophisticated data-
based procedures to identify the properties of such
systems through the identification of reduced-order,
reduced-complexity mathematical models that can be
used for active control applications, computational sim-
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ulations, or for structural healthmonitoringmethodolo-
gies based on vibration signature analysis. While the
field of system identification of linear systems is a very
well-developed and mature topic (with strong roots in
the digital signal processing field), in which a vari-
ety of powerful time-domain and frequency-domain
approaches have been established and widely applied
[2,9,19,22,27,30,48,51,56], there is a paucity of sim-
ilar approaches that deal with nonlinear systems typi-
cally encountered in the field of structural dynamics, at
many scales.

The behavior and modeling of nonlinear systems
has been the subject of seminal works on bilinear hys-
teresis [10], yielding structures [29], degrading sys-
tems [5,6] and other hysteretic systems and structures
[8,24,26,40,58]. A helpful survey of Bouc–Wen hys-
tereticmodels [59], a particular class of nonlinear mod-
els, may be found in [23]. These various models have
continued to advance [3,4,17,39,45,57,64], better cap-
turing the complexities of different nonlinearities, but
the identification of these systems remains a work-in-
progress.

In part, the degree of difficulty is so high for nonlin-
ear system identification approaches because, as good
as models may be at capturing nonlinear phenomena,
the nonlinear physical behavior actually encountered
in real-world structures and systems is not of course
governed exactly by these equations and models. Sev-
eral contributions have been made using parametric
identification methods for various models, including:
single-valued models [1], distributed element mod-
els [25], Masing models [28], modal models [50],
wavelets [20], and the Bouc–Wen model. The Bouc–
Wen, in particular, has seen its parameters estimated
via nonlinear optimization schemes, [65], Bayesian
state estimate with bootstrap filters [34], adaptive
on-line methods [11,12,52], and applications of the
extended Kalman filter (EKF) [21,38,63,66] and the
unscented Kalman filter [13,14,61]. Despite the dif-
ferences in these approaches, they all require some
assumption about the form or characterization of the
nonlinearity.

One of the significant hurdles in the development
of mathematical models on the basis of vibration data
extracted from systems undergoing significant nonlin-
ear deformations is the initial step of selecting the
model class to identify, before proceeding to deter-
mine the optimum values for the parameters of the
selected model. The more complex (and realistic) the

choice of nonlinearmodels become, themore challeng-
ing it becomes to select the appropriate phenomeno-
logical model to identify. This serious difficulty in the
use of parametric identification approaches progres-
sively worsens when the target system of interest is
dispersed in nature or has challenging nonlinear fea-
tures (e.g., hysteresis, limited slip, distributed plastic
deformations, multi-component frictional effects, etc.)
to be captured with sufficient fidelity.

The above-mentioned serious limitation of para-
metric nonlinear system identification approaches, has
motivated the development of variety of methods and
approaches that are referred to as nonparametric, or
model-free, identification methods because they use
various basis functions to represent the nonlinear sys-
tem. Some nonparametric methods include the use
of Chebyshev polynomials [42], least square methods
[43,44], power series basis functions [41,46], and other
polynomial functions [55]. Nonparametric techniques
have the advantage of remaining agnostic about the
particular manifestation of the nonlinearity and instead
use a set of basis functions to create a nonlinear repre-
sentation of the observed system. Basis functions often
utilize different measured response quantities, and for
this reason, these methods are sometimes referred to
as data-driven, or data-based, identification. The appli-
cations for nonparametric methods has been expanded
to include identification for hysteretic systems under
earthquake loading [7] and structural health monitor-
ing and damage detection [36,54]. Some of the more
recent developments in nonparametric identification
have focused on using various neural network architec-
tures [15,16,33,35,37,49,62]. Among these advance-
ments, the Volterra/ Wiener neural network (VWNN)
[33] has shown some particular promise for accurate
nonlinear identification.

Given the extremely wide variety of situations that
are encountered in real-life structural dynamics appli-
cations (e.g., the many types of physical systems that
differ in material properties, level of nonlinearity, non-
linear phenomenological features of interest, topol-
ogy of dispersed systems, degrees-of-freedom, sensing
modalities, knowledge of the dynamic loads, spectral
content of the excitation, physical scale of the system,
stationarity of the system and/or the excitation, etc.),
it is obvious that no one method would be expected
to perform well for all conceivable situations. Conse-
quently, over the past few decades, researchers have
developed a collection of methods, each with its own
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strengths and limitations, that are each optimized for
certain situations of interest to the Applied Mechanics
community. A review of nonlinear system identifica-
tion within structural dynamics has been compiled in
[31].

With the above in mind, the main goal of the present
study is to conduct a “fair” comparison of the lead-
ing nonparametric nonlinear system identification tech-
niques that have beenwidely used for a variety of appli-
cations. Different polynomial basis functions, specifi-
cally power series [41,46] and Chebyshev polynomi-
als [42], and neural network approaches, both artifi-
cial neural networks (ANNs) [15,16] and the VWNN
[33], will be investigated in the present study. Each of
these methods includes its own parameters to “tune,”
such as the order, or degree, of the polynomial and
number of neurons in a layer. The comparison will
be based on evaluating their performance and robust-
ness in accurately capturing the dominant features of
a calibration multi-degree-of-freedom (MDOF) sys-
tem that many other investigators have previously used
to assess the utility of some proposed identification
schemes.

1.2 Scope

In this paper, the performance of the VWNN is
evaluated through comparisons to several other lead-
ing nonparametric identification methods for nonlin-
ear systems. This paper highlights the advantages of
the VWNN method for identification due to its lim-
ited reliance on response information (only accelera-
tions and excitations are required) and its widespread
applicability for nonlinear systems by evaluating it
through three different models, namely bilinear hys-
teresis, polynomial nonlinearity, and Bouc–Wen hys-
teresis.

The paper is organized as follows: Sect. 2 provides
the formulation and background for the nonlinear iden-
tification techniques considered herein, Sect. 3 presents
the nonlinear models included in this study as well as
the chosen parameters for the different identification
techniques, andSect. 4 includes the results for the appli-
cations of each of the identification methods as well
as an extended discussion of their accuracy and effec-
tiveness for systems with limited response information
and noisy measurements. A summary of the results and
future research needs are provided in Sect. 5.

2 Nonlinear identification strategies

The generic equation of motion for a multi-degree-of-
freedom (MDOF) system subjected to external excita-
tion forces is given by Eq. 1:

Mẍ(t) + r (ẋ(t), x(t),p) = f(t) (1)

where M is the constant mass matrix, x(t) is the dis-
placement vector, f(t) is the column vector of exter-
nally applied forces, and r (ẋ(t), x(t),p) represents the
restoring force vector. (Thevectorswithin this paper are
column vectors unless otherwise noted.) The restoring
force vector contains both linear conservative and non-
linear non-conservative forces. The vector p represents
the system-specific parameters related to the restoring
forces.

For the purposes of identification, the equation of
motion in Eq. 1may be reorganized to isolate the accel-
erations:

ẍ(t) = −M−1r (ẋ(t), x(t),p) + M−1f(t) (2)

Since the individual elements within the restoring force
vector, such as the damping, stiffness, and hysteretic
functions, are unknown, only their combined effects
can be estimated. Therefore, instead of trying to esti-
mate all of the individual restoring force terms within
r (ẋ(t), x(t),p) of Eq. 2, the various nonlinear iden-
tification techniques considered in the present study
will seek to directly estimate ẍ(t). Note that the knowl-
edge of ẍ(t) allows its utilization in conjunction with
time-marching techniques for computational simula-
tion studies.

Specifically, this study will consider the Volterra/
Wiener neural network, power series and Chebyshev
polynomial estimators, and artificial neural network
approaches for nonlinear identification. Brief reviews
of the inner workings of these methods will be pre-
sented in the following subsections to facilitate discus-
sions of performance and comparisons among meth-
ods.

2.1 Volterra/Wiener neural network

The Volterra/Wiener neural network (VWNN) [33]
does not assume any particular model for the system
to be identified. Rather the VWNN operates in a sim-
ilar manner to other artificial neural networks in that
identification is a purely input–output process. The
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Fig. 1 Block diagram of Volterra/Wiener neural network

VWNN consists of a linear multi-input multi-output
(MIMO) style dynamical system connected in cascade
with a linear-in-the-weights neural network, as shown
in Fig. 1. The general description of theMIMOdynam-
ical system is given in Eq. 3, where ζ is the input, H(s)
is a stable transfer function matrix (s denotes a Laplace
operator) and ξ is a the output of the linear MIMO sys-
tem:

ξ = H(s)ζ (3)

The linear-in-the-weights neural network is described
by Eq. 4:

η = WTφ (ξ) = ˆ̈x(t) (4)

where φ (·) is the vector of nonlinear activation func-
tions of the neural network, W is the matrix of synaptic
weights of the neural network, and η is the output of the
neural network. A more detailed explanation of linear-
in-the-weights neural networks and the VWNNmay be
found in [33].

Ultimately, the VWNN is used to approximate the
acceleration vector ẍ(t) using the relationship given
by5.Thevector θ contains the samevalues as the neural
network weight matrix W except that the weights have
been concatenated into a single column vector. The
term ε represents the modeling error, which measures
how closely the VWNN approximates the measured
acceleration for a given DOF:

ẍi = θTφ (ξ) + ε (5)

where ẍi is the acceleration of the i th DOF within vec-
tor ẍ.

The original inputs for the VWNN are chosen as
ζ = [ẍ(t), f(t)]T. This assumes that the response accel-
erations may be measured at each DOF and that the
external excitations have been measured. The origi-
nal inputs are passed through the MIMO dynamical
system, which involves a series of transfer functions.
Low-pass filters are used for the transfer functions. The
filtering is applied in a cascading process.

In order to properly capture the possible nonlinear
dynamics of a given structural system, a high-order
neural network (HONN) (as described in [32]) is cho-
sen for the activation function φ. TheHONNpasses the

modified input vector ξ through a hyperbolic tangent
sigmoidal function, and the resulting output forms the
first entries of φ, which are deemed first-order terms.
Thework in [49] recommends a hyperbolic tangent sig-
moidal with zero bias and a uniform weight λ applied
to all inputs, as shown in Eq. 6:

h (p) = 2

1 + e−2λp
− 1 (6)

where h (p) represents a first-order term in the vector
φ and p represents an input from the vector ξ . The
appropriate value for λ depends heavily on the input
range for p [49]. The vector φ is then augmented with
higher-order terms by adding all of the unique products
between two individual first-order entries in φ. These
are referred to as second-order terms, but additional
higher-order terms may be similarly computed.

Theweights θ of theVWNNmay be estimated using
linear least squares. In previous implementations of the
VWNN, on-line adaptive estimation has been used to
drive the estimation of the weights [33]. However, the
present study does not focus on on-line estimation tech-
niques and instead presents a novel application of the
VWNN for batch identification. Since the VWNN is
a linear-in-the-weights neural network, using a least
squares approach will produce the optimal estimates
for the weights.

2.2 Polynomial basis methods

For these methods, the linear contribution to the equa-
tion of motion in Eq. 1 is first identified by using a
time-domain method to generate the equivalent linear
system matrices. This is accomplished by re-writing
Eq. 2 as the follows:

ẍ(t) = −M−1Cẋ(t) − M−1Kx(t) + M−1f(t) (7)

where C and K are constant matrices that provide an
equivalent linearized damping and stiffness, respec-
tively. Assuming that the accelerations, displacements,
velocities, and externally applied forces are available,
the acceleration of the i th DOF may be re-written as:

ẍi (t) =
n∑

j=1

ai j ẋ j (t) +
n∑

j=1

bi j x j (t) +
n∑

j=1

ci j f j (t)

i = 1, 2, . . . , n (8)

where ai j , bi j , and ci j are elements of the unknown sys-
tem matrices −M−1C, −M−1K, and −M−1, respec-
tively. (It may be assumed that the accelerations and
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forces are available from measurements, whereas the
displacements and velocities may come directly from
measurements or indirectly through integration of the
measured accelerations.) Further, these are linear coef-
ficients that may be solved for using standard least
squares techniques.Once thesematrices have been esti-
mated, the nonlinear aspect of the systemmay be deter-
mined in one of two ways.

The first approach assumes that the residual between
the equivalent linear system and the measured accel-
erations represents the nonlinear contribution to the
response fN L(t), as shown in Eq. 9:

fN L(t) = f(t) − (Mẍ(t) + Cẋ(t) + Kx(t)) (9)

The other approach relies upon using the identified
mass matrix to determine the unknown nonlinear
restoring force according to Eq. 10:

r(t) = f(t) − Mẍ(t) (10)

For both of these methods, the next step is to fit a
polynomial function in order to capture the nonlinear
behavior of the system. However, it has been shown
that is more efficient to “rotate” the system coordinates
using the eigenvectors corresponding to the linearized
system matrices [41,46], as shown in Eq. 11:

h(t) = ΦTM−1fN L(t) (11a)

or

h(t) = ΦTr(t) (11b)

where Φ is the eigenvector matrix associated with the
linearized system matrixM−1K. In this equation, h(t)
represents either the transformed nonlinear residual or
transformed nonlinear restoring force, depending on
the chosen identification technique.

It may be generally assumed that, in either case, h(t)
will depend on the system’s velocity and displacement
vectors, as shown in Eq. 12:

h(t) = h (x, ẋ) (12)

Based on the work established in [42], it may be
assumed that each component of h may be expressed
in terms of a series of the form shown in Eq. 13:

hi (x, ẋ) ≈
Jmaxi∑

j=1

ĥ( j)
i

(
v

( j)
1i

, v
( j)
2i

)
(13)

where v1 and v2 are suitable generalized coordinates
related, via linear combination, to the physical dis-
placements and velocities. The term Jmaxi denotes the

number of terms needed for a given hi , and ĥ( j)
i refers

to the j th modal contribution to the restoring force at
the i th DOF. The essence of Eq. 13 is that each compo-
nent hi of the transformed nonlinear vector h may be
adequately estimated by a collection of terms ĥ( j)

i eval-
uated at a pair of generalized coordinates. The selection
of appropriate generalized coordinates and the number
of terms needed to properly estimate hi depends on the
nonlinear characteristics of the system.

Given the distributed nature of the nonlinearities
in this (and in a real, physical) MDOF system, an
improved rate of convergence of the series in Eq. 13
may be achieved by performing a least squares fit of
the nonlinear component (residual or restoring forces)
in the “modal” domain. The eigenvector Φ, found
previously using the linearized system matrices, may
be applied to the displacement vector in the familiar
dynamics equation:

u(t) = Φ−1x(t) (14)

where u(t) represents the generalized modal displace-
ments of the system. This set of generalized modal
coordinates may then be utilized through series of sub-
stitutions to yield Eqs. 15a and 15b:

h (u, u̇) = ΦTM−1fN L(t) (15a)

or

h (u, u̇) = ΦTr(t) (15b)

The individual terms contained within the series
expansion in Eq. 13 may be evaluated using the least
squares approach alluded to earlier. This approach will
produce the optimum fit for the time history of each
hi . Equation 16 shows that each ĥ( j)

i may therefore
be expressed as a double series of a set of generalized
modal coordinates q1 and q2:

ĥ( j)
i

(
q( j)
1i

, q( j)
2i

)
≡

kmax∑

k

lmax∑

l

C (i)
kl Tk

(
q( j)
1i

)
Tl

(
q( j)
2i

)

(16)

whereCkl are the undetermined constants and Tk(·) are
suitable basis functions. Once identified, the function
representation of each hi may then be inserted back into
the governing equations of motion. A more detailed
review of this method, including example applications,
may be found in [43,44].

This study will consider two different types of basis
functions, a power series basis and Chebyshev poly-
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Fig. 2 Schematic for nonlinear residual ANN architecture
(adapted from [16])

nomials, as both have been previously used in similar
applications [41,42,46]. The power series basis will be
applied for both the case of estimating the nonlinear
residual and the nonlinear restoring force. The Cheby-
shev polynomials will only be applied to estimating the
nonlinear restoring force, where a Chebyshev polyno-
mial is defined in Eq. 17:

Tk(ξ) = cos(k cos−1 ξ) − 1 ≤ ξ ≤ 1 (17)

Further discussion on the use of Chebyshev polyno-
mials for estimating restoring forces may be found in
[42].

2.3 Artificial neural networks

Two different artificial neural networks (ANN) archi-
tectures for characterizing nonlinear dynamic systems
were explored in the present study [15,16].A schematic
of the first ANN architecture is given in Fig. 2, showing
that there is a single input layer, one hidden layer, and a
single output layer. A sigmoid transfer function is used
for the hidden layer, whereas a linear transfer function
is employed in the output layer.

The inputs for the ANN are the displacements xk ,
velocities ẋk , and external excitations fk at time tk for all
available DOFs. The nonlinear residual fN L , as deter-
mined from Eq. 9, is also included as an input, but this
architecture uses a delayed residual from the previous
time step tk−1. This is done to enhance the training
process and better capture the nonlinear characteristics
of the system [16]. The output of the neural network is
an estimate of the nonlinear residual at the current time
step f̂N Lk . The ANN functions similarly to the polyno-
mial methods described above in that the accelerations
at time step tk will be predicted using a combination of

Hidden Layer 1             Hidden Layer 2

Input Layer Output Layer

1

2

3

4

10

2

3

4

10

w

b
Σ

Sigmoid
Transfer
Function

1

w

b
Σ

Linear
Transfer
Function

xk

˙k

k
ˆ̈k

x
f x

Fig. 3 Schematic for global ANN architecture (adapted from
[15])

the linear system matrices and the ANN representation
of the nonlinear residual.

Figure 3 presents a diagram of the second ANN
architecture that suggests a global approach in which
the ANN represents the entire system [15]. In this way,
the global approach operates in a very similar manner
to the VWNN. This architecture includes single input
and output layers with two hidden layers in between
them. Both hidden layers utilize sigmoid transfer func-
tions, and a linear transfer function is used for the output
layer.

Unlike the previously described ANN, this architec-
ture does not include the nonlinear residuals in either
its inputs or outputs. As before, the inputs are the dis-
placements, velocities and external excitations from all
available DOFs. The outputs in this case are the accel-
erations of the available DOFs at the current time step
ˆ̈xk . One of the advantages of this method is that it does
not rely upon a linearization of the system, but rather
attempts to fully capture both the linear and nonlinear
dynamics of the system.

A substructure ANN architecture is also suggested
within [15] in which a different neural network is
trained for eachDOFusing inputs from thatDOFand its
neighbors. While this method was shown to be highly
effective in identifying and estimating nonlinear behav-
ior in a certain class of systems, this method cannot
be applied for the case of a generalized topology. The
substructure approach requires chain-like structures, or
systems that can be easily deconstructed into their con-
stituent DOFs. For the case of a generalized topology
in which all DOFs may share some interconnection,
however, this is not possible. Therefore only the global
ANN approach was included in this study as it shares
the same applicability to generalized topologies as the
VWNN.
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Both ANNs were created using Matlab’s Neural
Network Toolbox [47]. A random scheme initialized
the weights and biases. Networks were trained using
the batch mode of the Levenberg–Marquardt back
propagation algorithm. The performance function was
defined in terms of mean squared error.

3 Applications

Each of the different methods under discussion was
applied to responses generated by the model structure
shown in Fig. 4. The structural topology is such that the
model is composed of three masses mi that are inter-
connected to a system of six restoring force elements ri

that are anchored to a support si at three locations. The
supports si (t) may be fixed or moving. This results in
a redundant system with three degrees of freedom. All
motion is one-dimensional, as the structure only allows
rectilinear horizontal motion. Since the structure is not
chain-like, the linearized system stiffness matrix will
not be banded.

The absolute displacement of eachmassmi is desig-
nated by xi . The external excitation forces that act upon
this system are denoted by fi (t). Themagnitudes of the
system masses are m1 = 0.8, m2 = 2.0 and m3 = 1.2,
and these remain the same for all simulations.

3.1 Models for nonlinear restoring forces

The restoring force elements ri are dependent on the
relative displacement yi and velocity ẏi across the ter-

Fig. 4 Model of generic nonlinear 3DOF system

minals of each element. The relativemotions across the
various elements yi (t) are determined as follows:

y1 = x1 − s1 (18a)

y2 = x2 − x1 (18b)

y3 = x3 − x1 (18c)

y4 = x3 − x2 (18d)

y5 = s3 − x3 (18e)

y6 = x2 − s2 (18f)

Each element has prescribed nonlinear behavior. The
type of nonlinearity, however, was varied between a
few different simulations.

3.1.1 Bilinear hysteresis and limited-slip elements

The restoring force elements were first given bilin-
ear hysteretic and limited-slip behaviors, as shown in
Fig. 5; the behavior of these elements are governed by

zy
y

r(y,y).

k1,c1 

k2,c2 

zy
y

r(y,y).

k1,c1 

k2,c2 

zg

(a)

(b)

Fig. 5 Sample plots of restoring force versus relative displace-
ment for a bilinear hysteretic and b limited-slip elements
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Table 1 Restoring force element properties for bilinear and limited-slip behaviors

Element i Type p(i)
1 p(i)

2 p(i)
3 p(i)

4 p(i)
5 p(i)

6

1, 5, 6 Bilinear zy = 0.02 k1 = k0 k2 = 0.5k0 c1 = 0.01 c2 = 0.01 –

2, 3, 4 Limited-slip zy = 0.01 k1 = k0 k2 = k0 c1 = 0.1c0 c2 = 0.1c0 zg = 0.03

the branches and trajectories shownvia arrows inFig. 5.
Following the example in [46], elements r1, r5, and r6
were designated as bilinear hysteretic, while the other
three elements (r2, r3, and r4) were of the limited-slip
type. For the bilinear elements, five element parameters
must be specified: the stiffness and viscous damping in
the elastic range k1 and c1, respectively, the stiffness
and viscous damping in the nonlinear range k2 and c2,
respectively, and the yield displacement level zy . The
limited-slip elements include a sixth term, the slip dis-
placement level zg . The material properties and spe-
cific parameter values chosen for this study were taken
directly from [46] and are shown in Table 1. The nom-
inal stiffness in the elastic range k0 is set at 4π2 for all
elements, and the nominal damping coefficient c0 is set
at π/4.

Phase-plane plots of the bilinear hysteretic and
limited-slip restoring forces from a sample simulation
are shown in Fig. 6. The bilinear behavior of elements
r1, r5 and r6 and the limited-slip behavior of elements
r2, r3 and r4 may be clearly observed.

3.1.2 Polynomial nonlinearity

The restoring force elements were then changed to
exhibit polynomial nonlinearities. The nonlinearity for
each element was expressed using Eq. 19, where p(i)

1

represents the linear stiffness component, p(i)
2 repre-

sents the linear viscous damping term and p(i)
3 is the

coefficient for the cubic (nonlinear) displacement term.
By changing the sign of p(i)

3 the restoring force element
ri will either represent hardening (positive) or softening
(negative) nonlinear behavior.

ri (y, ẏ) = p(i)
1 yi + p(i)

2 ẏi + p(i)
3 y3i (19)

The specific nonlinear element properties were
adopted from the example in [41] that keeps the nomi-
nal stiffness of all elements at p(i)

1 = 4π2. The viscous

damping was defined as p(i)
2 = π/5, and the cubic dis-

placement termswere proportional as p(i)
3 = ±0.5p(i)

1 ,
where i = 1, 5 and 6 are positive (+) and i = 2, 3 and

4 are negative (−). A sample of the phase-plane restor-
ing force plots generated by the cubic nonlinearities
are shown in Fig. 7. As with the previous example, the
material properties were varied to evince two different
types of polynomial nonlinear behavior: hardening (r1,
r5 and r6) and softening (r2, r3 and r4).

3.1.3 Bouc–Wen hysteresis

Simulations were also conducted in which the restor-
ing forces were governed by a Bouc–Wen model for
hysteresis [5,6], shown in Eq. 20:

ṙi = (1/ηi )
[

Ai ẏ − νi

(
βi |ẏ| |ri |ni −1 ri − γi ẏ |ri |ni

)]

(20)

where ηi , Ai , νi , βi , γi , and ni are design parameters
for the hysteretic behavior. In order to reduce the num-
ber of terms in Eq. 20, the parameters ηi and νi , which
are typically used to control degrading and pinching
behavior [60], respectively, were uniformly set to unity
for all restoring force elements. Additionally, the para-
meter ni was consistently set to unity for each restoring
force element.

The Bouc–Wen parameter related to linear stiffness,
Ai , was set as the same nominal stiffness (4π2) used for
the other two nonlinear models. The remaining para-
meters were set as ratios of Ai , namely βi = Ai/4 and
|γi | = Ai/3. (It should be noted that the thermody-
namic principle of intrinsic dissipation would typically
require |γ | ≤ β [18], but this particular constraint is not
of concern for the current example.) The same parame-
ters were given to every element, but the sign of γi was
positive for i = 1, 5, and 6 and negative for i = 2, 3,
and 4. These parameter choices and ratios were influ-
enced by the Bouc–Wen hysteresis loops produced by
SDOF system shown in [53].

Figure 8 shows the hysteresis loops produced by the
Bouc–Wen restoring force elements. The influence of
the sign of γi may be clearly seen when comparing ele-
ments, as it allows for both hardening and softening
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Fig. 6 Phase-plane plots (restoring force vs. relative displacement across element) of the bilinear hysteretic (r1, r5 and r6) and limited-
slip (r2, r3 and r4) nonlinear elements. Note that identical scales were used for all of the plots

behaviors. Additionally, these phase-plane plots show
that the restoring force elements experienced fairly sig-
nificant hysteresis with Bouc–Wen models, as each

plot shows significant drift among the many loops.
It was assumed that such extensive hysteresis would
prove challenging during identification, but the extent
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Fig. 7 Phase-plane plots (restoring force vs. relative displace-
ment across element) of the hardening (r1, r5 and r6) and soften-
ing (r2, r3 and r4) nonlinear elements. To enhance visualization,

different amplitude scales were used for the individual plots of
the hardening and softening elements
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Fig. 8 Phase-plane plots (restoring force vs. relative displacement across element) of the Bouc–Wen hysteretic elements. To enhance
visualization, different amplitude scales were used for the individual plots
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of the challenge was unknown prior to attempting each
method.

3.2 Training and testing

The different identification methods explored for this
study do not impose restrictions on the nature of the
excitation sources. Therefore, excitation f(t) was pro-
vided by uncorrelated broad-band random excitations
applied to each of the three system masses. The ran-
dom excitations were modeled as zero-mean stationary
random processes, with the standard deviations vary-
ing between restoring force models in order to elicit
a wide range of nonlinear behaviors from each model.
The randomexcitationswere also relatively broad-band
in nature in order to fully excite the dynamics of the
3DOF system. The duration of each simulation was
50s in order to allow for at least 50 periods of the fun-
damental frequency for each system.

Two types of simulations were conducted for each
system: a training simulation and subsequent test sim-
ulation, where each simulation followed the general
procedure described above and was used to produce
the measurements, i.e., the excitations and responses,
used for evaluating the nonlinear identification meth-
ods; for both types of simulations, full state information
and excitations were provided to each method. Thus,
the displacements, velocities and accelerations, as well
as the external excitations from each DOF, were made
available; however, while all of these quantities were
available, their use or incorporation depended on the
desired inputs of a given method. This allowed each
method to produce its optimal fit as the focus of this
paper is the nonlinear identification capabilities of the
different methods.

First a training simulation was used for fitting the
relevant coefficients or training the specified networks
depending on the given method. The performance of
each method in identifying the nonlinear system was
quantified based on the ability to estimate the origi-
nal measured accelerations. The accuracy of the esti-
mates was evaluated using the relative root-mean-
square (RMS) error, as calculated inEq. 21,which takes
the acceleration responses from all three DOFs into
account. In Eq. 21, ẍ represents the measured accelera-
tions and ˆ̈x represents the estimate of the accelerations
as produced by a givenmethod. This relativeRMSerror
will serve as the primary performance metric.

RM S (tn) =

√
∑n

i=1

(
ẍ(ti ) − ˆ̈x(ti )

)T (
ẍ(ti ) − ˆ̈x(ti )

)

√∑n
i=1 (ẍ(ti ))T ẍ(ti )

= ‖ˆ̈x − ẍ‖
‖ẍ‖ (21)

The error from training represents the “fit” error
for a given method, as there is no forward computa-
tional simulation aspect and, therefore, no “propaga-
tion” error source.

For the test simulations, the 3DOF system was sub-
jected to a new set of random excitations with the same
spectral characteristics. These new system responses
and excitationswere then fed directly into eachmethod,
again avoiding the need for forward computational sim-
ulation within a given method. The estimated acceler-
ations from the test simulations were determined using
the coefficients or weights produced during training.
For instance, for the polynomial identification meth-
ods, the previously determined equivalent linear sys-
tem matrices were used to estimate the linear accelera-
tion responses given the new displacements, velocities,
and excitations; the new generalized displacements and
velocitieswere used as inputs for the previously created
nonlinear polynomial function. When combined, they
would create an estimate for the acceleration responses
from the test simulation based on thematrices and coef-
ficients identifiedduring training (fitting); a similar pro-
cedurewas followed for theVWNNandANNmethods.
The same relative RMS error was used to evaluate the
estimated accelerations.

3.3 Parameters for nonlinear identification techniques

Each method includes a few parameters that must be
specified by the user prior to implementation. In an
effort to create fair comparisons between methods, and
between nonlinear behaviors, parameters were kept
constant where possible.

3.3.1 Volterra/Wiener neural network

The main parameters that must be specified for the
VWNN are shown in Table 2. For the low-pass fil-
ter in the first row, the cut-off frequency is given as
50 rad/s, which is well above any of the frequencies
in the responses created by the various nonlinear ele-
ments. The second row denotes the number of low-
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Table 2 Parameters for Volterra/Wiener neural network

H(s) 50/(s + 50)

No. cascading filters 2

WTφ (ξ) Second-order HONN

pass filters applied in cascade to the original input.
The third row denotes that the HONN for each sys-
temwas chosen to be second-order. The only parameter
not included in Table 2 is the weight from the hyper-
bolic tangent sigmoidal function λ. This parameter is
related to the input, and was therefore scaled based
on the input accelerations and excitations. The bilinear
and Bouc–Wen hysteretic simulations produced accel-
erations with a range around ±10, but the polynomial
nonlinearity simulation produced accelerations around
±100. Therefore, λ was set at 0.05 for the bilinear and
Bouc–Wen simulations and 0.005 for the polynomial
nonlinearity simulations.

3.3.2 Polynomial basis methods

The order of the power series basis was set at jmax = 5
for the functions estimating both the nonlinear residuals
and nonlinear restoring forces. Equation 22 shows the
corresponding power series basis of length 36:

basis = {1, q, q2, q3, q4, q5, qq̇, q2q̇, q3q̇,

q4q̇, q5q̇, qq̇2, q2q̇2,

q3q̇2, q4q̇2, q5q̇2, qq̇3,

q2q̇3, q3q̇3, q4q̇3, q5q̇3, qq̇4,

q2q̇4, q3q̇4, q4q̇4, q5q̇4,

qq̇5, q2q̇5, q3q̇5, q4q̇5, q5q̇5} (22)

The same basis was used in order to provide unbiased
comparisons in performance since no prior knowledge
was assumed for any of the nonlinear parameters or
characteristics.

Similar to the scaling of inputs performed for the
VWNN, the generalized coordinates were normalized
prior to using least squares to solve for the coefficients.
The normalization is performed using Eqs. 23a and
23b:

q ′ = [q − (qmax + qmin)/2]/[(qmax − qmin)/2] (23a)

q̇ ′ = [q̇ − (q̇max + q̇min)/2]/[(q̇max − q̇min)/2] (23b)

The normalization prevents the terms with higher-
degree polynomials from “blowing up,” providing
some stability to the power series expression. How-
ever, it is important to note that the normalization is
performed with regard to the responses from training
and without any knowledge of the response amplitudes
from the test simulation. Therefore, it is possible for
response amplitudes from the test simulation to exceed
those from training and, consequently, for terms in the
basis to exceed±1 during testing. The potentially dele-
terious effects of these exceedances, though, should be
significantly mitigated by the normalization.

Similar to the power series, the Chebyshev polyno-
mial basis was fifth-order for both generalized coordi-
nates and produced a total of 36 coefficients. Addi-
tionally, the coordinates were normalized according
to Eqs. 23a and 23b, as Chebyshev polynomials are
defined for an input range of ±1.

3.3.3 Artificial neural networks

The ANN used to estimate the nonlinear residual had a
total of 12 inputs (three displacements, three velocities,
three external excitations, and three delayed nonlinear
residuals). Based on the work in [16], this ANN was
given a hidden layer of 15 hidden neurons. The transfer
function for the hidden layer was prescribed as a hyper-
bolic tangent sigmoid transfer function. This was based
on recommendations in [16] but also made for a suit-
able comparison to the VWNN. The ANN produced
three outputs (nonlinear residuals).

The ANN for the global approach had only nine
inputs (three displacements, three velocities, and three
external excitations). Each of its two hidden layers con-
tained ten hidden neurons and used hyperbolic tangent

Table 3 Relative RMS errors from various identification strate-
gies for the bilinear nonlinear model

ID method Total RMS error (in %)

Training Testing

VWNN 9.34 10.79

PS—residual 19.32 36.24

PS—restoring force 19.78 19.60

Ch—restoring force 19.73 19.55

ANN—residual 2.40 42.25

ANN—global 15.43 22.17
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Fig. 9 Comparison of exact
and estimated accelerations
for the a 1st, b 2nd, and
c 3rd DOFs from the test
simulation conducted using
bilinear nonlinear models
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sigmoid transfer functions. Three outputs (accelera-
tions) were produced. The design of this ANN was
based on recommendations in [15].

While the authors recognize that the number of hid-
den layers and the number of neurons could poten-
tially be adjusted to further optimize the system, similar
changes and adjustments could also be made to other
methods to further optimize their results. Therefore, the
authors thought it was best to design these ANN archi-

tectures according to the established designs in [15,16]
given the similarity in application.

4 Results and discussion

The bilinear hysteresis simulations were conducted
first. The relative RMS errors for the estimated accel-
erations produced by each of the nonlinear identifica-
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tion techniques are shown in Table 3, where “PS—
residual” and “PS—restoring force” refer to estimates
found using power series polynomial estimates for the
nonlinear residuals and restoring forces, respectively,
and “Ch—restoring force” refers to estimates found
using Chebyshev polynomial functions for the restor-
ing forces. The first column displays the results from
training, during which the various neural networks and
polynomial functions were assembled and estimated,
and the second column represents the performance of
these methods given a new excitation and new state
information, i.e., different accelerations, velocities and
displacements, for testing.

The polynomial methods (both power series approa-
ches and the Chebyshev technique) produced generally
comparable estimates for both the training and test sim-
ulations. While the ANN residual-based method pro-
duced the most accurate representation of the acceler-
ations during training, it also produced the least accu-
rate estimate during testing. The VWNNwas relatively
accurate during training and the RMS error in its test
simulation estimate was comparable and nearly 50%
smaller than all other estimates.

As mentioned previously, the ANNs were created
using the Matlab Neural Network Toolbox [47]
that employs random seeds for training the network.
Because of this feature, the results from anANNwould
be slightly different each time it is run. The results in
Table 3 (and all subsequent tables) are from single trials
for the ANN approaches, but those results may be con-
sidered representative, as a few trials were run in order
to ensure a general congruency in the RMS errors. The
other methods, including the VWNN, are determinis-
tic in nature. In terms of training, the ANN residual
approach required around 150 epochs to satisfy the pre-
scribed performance criteria, whereas the global ANN
approach required around 240 epochs.

Figure 9 shows the estimated accelerations from
the test simulation at each DOF produced by the dif-
ferent identification methods and plotted over a rela-
tively small time window (a smaller time window was
necessary to provide discernible differences between
the methods). Subtle differences in the estimates may
be detected, but generally the methods provided fairly
similar estimates of the measured accelerations.

The results of the polynomial nonlinearity simula-
tion are given in Table 4.Much like the previous results,
the power series and Chebyshev polynomials produced
comparable estimates, and these were more accurate

Table 4 Relative RMS errors from various identification strate-
gies for the polynomial nonlinear model

ID method Total RMS error (in %)

Training Testing

VWNN 3.43 4.71

PS—residual 11.87 11.13

PS—restoring force 13.16 11.27

Ch—restoring force 12.68 11.01

ANN—residual 0.10 8.94

ANN—global 0.12 0.26

than they were for the bilinear hysteretic case. During
training, both ANN approaches (residual and global)
failed to achieve their performance criteria prior to 1000
epochs; however, both ANN approaches were nearly
perfectly accurate in their estimation of the training
simulation. Only the global ANN performed compara-
bly during testing. The VWNN was not as accurate as
the global ANN but proved to be reasonably accurate
during both the training and testing simulations.

The estimated accelerations for the test simula-
tion shown in Fig. 10 are essentially indistinguishable
between methods, which reflects the consistent accu-
racy and low errors given in Table 4.

The Bouc–Wen simulations proved to be the most
difficult case for identification for all of the methods
except the VWNN. The RMS errors for the VWNN
were remarkably similar to the polynomial nonlinear
model case, but every other method experienced a sig-
nificant increase in error during training and an order-
of-magnitude increase for the test simulation (Table 5).
Among those affected, the residual ANN approach had
the best estimate (by far) for the training simulation,
but its results for the test simulation were as poor, or
worse, than every other method. The residual ANN
approach required about 400 epochs during its train-
ing, whereas the global ANN approach only required
around 80 epochs. Despite this disparity during train-
ing, they performed comparably poorly for the test sim-
ulation.

The sharp rise in RMS error was not entirely a sur-
prise given the intense drift and numerous hysteresis
loops shown by the Bouc–Wen phase-plane plots in
Fig. 8. However, more insightmay be gained by explor-
ing the acceleration estimates. The estimated acceler-
ations produced by the different identification meth-
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Fig. 10 Comparison of
exact and estimated
accelerations for the a 1st,
b 2nd, and c 3rd DOFs from
the test simulation
conducted using polynomial
nonlinear models
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ods for the test simulation are plotted in Fig. 11. This
figure demonstrates that the VWNN method follows
the measured acceleration very closely (the two super-
imposed curves are virtually indistinguishable) and
that the polynomial-based identification methods fol-
low similar trajectories, albeit trajectories that are rel-
atively in-phase but at a significant off-set from the
measured accelerations. Even the different ANN tech-
niques seem to capture some of the larger dynamics
of the system, but their off-sets and phase shifts are
less consistent. More importantly, Fig. 11 also shows

that the two ANN approaches produced very different
estimates even though they produced roughly the same
total RMS error. There were general estimation errors
for each method, in addition to the phase shifts and
off-sets, but those more demonstrable features clearly
contributed to the errors being in excess of 100%.

Table 6 presents the relative RMS errors for each
individual DOF, essentially providing a breakdown of
the RMS errors in Table 5. From this table it may be
observed that during the training simulation all of the
DOFs were generally estimated with the same degree

123



An evaluation of data-driven identification strategies 1313

Table 5 Relative RMS errors from various identification strate-
gies for the Bouc–Wen hysteretic nonlinear model

ID method Total RMS error (in %)

Training Testing

VWNN 3.64 5.31

PS—residual 64.63 157.26

PS—restoring force 64.07 115.90

Ch—restoring force 64.13 116.69

ANN—residual 1.07 170.08

ANN—global 44.86 172.37

of accuracy for each individual method under discus-
sion. However, this table also shows that during testing
all of the polynomial identification methods struggled
with estimating the accelerations for the 2nd and 3rd
DOFmuchmore than for the 1st DOF. Further, it shows
that the global ANN method produced a more reason-
able estimate for the 2nd DOF, even though its error
from the estimate for the 1st DOF approached 200%.
The residual ANN approach produced its best estimate
for the 2nd DOF and its worst for the 3rd DOF. Clearly,
none of the DOFs were universally favored by the dif-
ferent identification methods during testing but each
method seemed to find a particular DOF (or two) with
which it especially struggled.

4.1 Incomplete response information

The results shown above assumed that all of the
response information, including displacements and
velocities, would be available formeasurement at every
DOF. While this assumption helps each method to
produce the best possible estimates, it does not rep-
resent the most realistic scenario. More commonly,
only accelerations are available for measurement and
the velocity and displacement information must be
obtained through numerical integration [16,49]. To
properly integrate numerically, a series of high-pass
filters must be used before and after each integration
step. This helps reduce drift caused by low frequency
errors but does not eliminate it, meaning the resulting
numerical velocity and displacements will still contain
some degree of unavoidable error.

This poses a significant disadvantage for all meth-
ods, except the VWNN, as they all rely upon this addi-

tional response information. The error introduced dur-
ing integration will propagate through the estimation
process. In order to determine the potential impact of
numerical integration effects on these different identifi-
cation methods, the measured displacement and veloc-
ity responses were removed from the training and test
simulations for the polynomial nonlinear model and
these response quantities were replaced by their cor-
responding numerical integrals. The polynomial simu-
lation was chosen because the different methods pro-
duced their most accurate estimates for this nonlinear
system model, and therefore the effect of numerical
integration could be most readily observed.

The relative RMS errors in the estimates under
such conditions are given in Table 7. For the differ-
ent polynomial-based methods, the numerical integra-
tion of the acceleration resulted in a 20–25% rela-
tive increase in the relative RMS error. However, the
ANN methods were considerably more sensitive. The
ANN residual-based method had a minimal increase in
error during training, but its estimate for the test sim-
ulation had an order-of-magnitude larger error than it
had previously. The global ANN approach experienced
a large increase in error, too. However, this increase
was present for both the training and test simulation
results. The results serve to highlight the strength of
the VWNN’s identification abilities, since it only relies
upon the acceleration and external excitations.

4.2 Measurement noise

As opposed to incomplete information about the
responses, another possible scenario is that the sensors
being used to record the system responses all contain
some amount of noise. In order to replicate such a sce-
nario, noise was added to the response data (displace-
ments, velocities, and accelerations) from the polyno-
mial nonlinear model simulations. (As a clarification,
the datasets usedwere from the original simulation sce-
nario in which all of the responses, including displace-
ments and velocities, were measured and available).
The noise was modeled as additive Gaussian white
noise with zero-mean and standard deviations that had
ratios of 10% of their related response quantity, mean-
ing the signal-to-noise ratiowas 10.Nonoisewas added
to the excitation data.

The resulting RMS errors from the noisy response
data are given in Table 8. The addition of noise seemed
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Fig. 11 Comparison of
exact and estimated
accelerations for the a 1st,
b 2nd, and c 3rd DOFs from
the test simulation
conducted using Bouc–Wen
nonlinear models
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Table 6 Relative RMS
errors (in %) at each DOF
for the Bouc–Wen
hysteretic nonlinear model

ID method Training Testing

1st DOF 2nd DOF 3rd DOF 1st DOF 2nd DOF 3rd DOF

VWNN 4.26 1.47 2.26 6.23 2.11 3.42

PS—residual 67.38 73.59 53.26 95.13 256.59 216.60

PS—restoring force 67.90 57.09 56.06 91.45 155.75 146.75

Ch—restoring force 67.99 56.45 56.30 91.93 156.69 148.01

ANN—residual 1.04 1.30 1.05 155.71 151.16 206.01

ANN—global 43.87 47.83 46.19 199.10 85.50 119.56
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Table 7 Relative RMS errors from various identification strate-
gies for the polynomial nonlinear model using numerically inte-
grated response information

ID method Total RMS error (in %)

Training Testing

VWNN 3.43 4.71

PS—residual 15.24 13.25

PS—restoring force 16.21 14.29

Ch—restoring force 15.22 13.26

ANN—residual 0.65 33.07

ANN—global 8.37 9.98

Table 8 Relative RMS errors from various identification strate-
gies for the polynomial nonlinear model with sensor noise
included in the measured responses

ID method Total RMS error (in %)

Training Testing

VWNN 13.13 13.63

PS—residual 22.14 20.07

PS—restoring force 22.64 20.33

Ch—restoring force 22.18 20.07

ANN—residual 10.47 18.94

ANN—global 18.90 18.31

to lead to a near uniform 10% increase in the RMS
error as compared to the estimates in Table 4. Only the
global ANN approach suffered a more drastic increase
as its RMS error went from near zero to 18% with the
addition of the noise. The RMS error from polynomial-
basedmethods responded similarly for the introduction
of error via numerical integration, but since the error
was now present in all of the response data, the total
RMS error was larger than in Table 7 but still gener-
ally proportional. Unlike the case for the numerically
integrated responses, the VWNNmethod was compro-
mised by the addition ofmeasurement noise and saw its
error increase 10% (from 3–4 to 13%). However, the
more significant increase to the global ANN approach
meant that the VWNN provided the best results.

4.3 Parameter adjustments

It is possible that some of these methods could produce
better results if parameters were carefully adjusted or

tuned. For power series basis methods, different orders
could be investigated and used for each type of non-
linearity. For the Chebyshev polynomials the assumed
order of the generalized coordinates are independent,
and therefore several possible combinations could be
evaluated in hopes of finding on optimal basis order
for each nonlinear model. Perhaps most obviously,
the ANN architectures could be slightly modified to
include slightly fewer or slightly more hidden neurons
or hidden layers.However, even theVWNNhad its own
set of parameters with which experiments could have
been designed in order to fully realize its estimation
potential.

The authors took all of this into consideration prior
to running these simulations but felt that the main pur-
pose of this study was to determine the effectiveness
of a general set of parameters for a given identification
method, when applied to a variety of nonlinear models.
The results, especially those for the Bouc–Wen nonlin-
ear models, indicate that these methods have room for
improvement in terms of their parameters. However,
their overall performance for the other nonlinear mod-
els was generally consistent and reasonably accurate,
substantiating the claim that the present study provided
its intended “fair” comparison.

5 Conclusions

The variety of nonlinear models considered for the
restoring forces of the 3DOF system presented a strong
set of challenges for the nonlinear identification meth-
ods considered. By performing the identification using
batch estimation methodologies, each identification
technique was given the best opportunity to find its
optimal parameters. The case of polynomial nonlinear-
ity proved to be the easiest to accurately approximate
with the largest RMS errors at only 12–13% across all
methods. The Bouc–Wenmodel proved by far the most
difficult with every method except the VWNN failing
to provide an estimate from testing with RMS errors
below 100%. This was precipitated by the challenging
nature of the Bouc–Wen nonlinearities and the large
drifts in the hysteresis loops of the Bouc–Wen model
restoring forces, as every method but the VWNN relied
upon displacement and velocity response information
for its estimates.

The introduction of error due to numerical inte-
gration of the responses or measurement noise led
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to noticeable but small increases in error. Since the
VWNNonly requires acceleration and excitation infor-
mation, it was unaffected by the numerical integra-
tion error. However, its error rose in correspondence
with the other methods when measurement noise was
added. The unifying theme through this investigation,
though, was the resilience of the VWNN method in
nonlinear identification. Across all models and scenar-
ios, the VWN consistently performed well, often the
best, and had its error reach amaximum of only 13% (a
modest error, considering the complexity of the inves-
tigated nonlinear models). In comparison with other
neural network methods, the VWNN displayed much
less sensitivity than the ANN approaches, but that was
rather expected given how thosemethods rely upon dis-
placement and velocity information. In some ways the
VWNN actually operated more closely to the polyno-
mial methods in that the hyperbolic tangent sigmoid
functions served as basis functions, and its optimal lin-
ear coefficients could be determined via least squares.

Another advantage of the VWNN method is that it
already has a demonstrated its ability to work in an
adaptive on-line fashion, which could be quite valu-
able for control applications. While its possible some
of the other methods included in this study could be
similarly adapted for on-line identification, none have
developed that capability, yet. Even considering the rel-
atively impressive performance of the VWNNmethod,
it is not without its own faults.Many of the other identi-
fication methods may also be used for forward simula-
tions and computation, but the VWNN currently lacks
that ability. Additionally, even in its current form, the
VWNN is best suited for control-based applications as
it relies upon measurement information at each time
step. It is suggested that future research focus on har-
vesting the VWNN’s identification abilities and trans-
ferring them into a forward computational engine in
which the VWNN can use its own estimates as opposed
to measurements. In addition, this study is in no way
meant to be exhaustive as there are a variety of other
nonlinear models and topologies in need of further
investigation and evaluation for identificationpurposes.
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