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Abstract With symbolic computation, two classes
of lump solutions to the dimensionally reduced equa-
tions in (2+1)-dimensions are derived, respectively, by
searching for positive quadratic function solutions to
the associated bilinear equations. To guarantee analyt-
icity and rational localization of the lumps, two sets of
sufficient and necessary conditions are presented on the
parameters involved in the solutions. Localized charac-
teristics and energy distribution of the lump solutions
are also analyzed and illustrated.
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1 Introduction

In soliton theory [1–14], lump solutions have attracted
more and more attention [15–20]. As a kind of ratio-
nal function solutions, lump solutions localized in all
directions in the space. Such integrable equations as
the KPI equation [16,17], the BKP equation [18],
the three-dimensional three wave resonant interaction
equation [19], the Davey–Stewartson-II equation [17]
and the Ishimori I equation [20] have been found to
possess lump solutions.

Lump solutions can be studied based on the Hirota
bilinear equations and their generalized counterparts.
For example, a class of lump solutions to the KPI equa-
tion has been presented by making use of its Hirota
bilinear form [16]. The resulting lump solutions con-
tain six free parameters, two of which are due to the
translation invariance of the KP equation and the other
four of which satisfy a nonzero determinant condition
guaranteeing analyticity and rational localization of the
solutions. Further, based on generalized bilinear forms,
lump solutions to dimensionally reduced p-gKP and p-
gBKP equations in (2+1) dimensions have been com-
puted [15]. The sufficient and necessary conditions to
guarantee analyticity and rational localization of the
solutions have been given.

In our previous work [21], a new Hirota bilinear
equation has been proposed and studied, which reads

(Dt Dy − D3
x Dy − 3 D2

x + 3 D2
z ) f · f = 0, (1)
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that is,

2 [( f fty − ft fy + fxxx fy

+ 3 fxxy fx − 3 fxx fxy − f fxxxy

− 3( f fxx − f 2x ) + 3( f fzz − f 2z )] = 0, (2)

where f = f (x, y, z, t), and the derivatives Dt Dy ,
D3
x Dy , D2

x and D
2
z are theHirota bilinear operators [22]

defined by

Dα
x D

β
t ( f · g) =

( ∂

∂x
− ∂

∂x ′
)α( ∂

∂t
− ∂

∂t ′
)β

× f (x, t)g(x ′, t ′)
∣∣∣
x ′=x,t ′=t.

Bell polynomial theories (see, e.g., Refs. [23–27])
motivate us to consider a dependent variable transfor-
mation

u = 2
[
ln f (x, y, z, t)

]
x

= 2
fx (x, y, z, t)

f (x, y, z, t)
, (3)

and map Eq. (2) into

uyt − uxxxy − 3 (uxuy)x − 3 uxx + 3 uzz = 0. (4)

Eq. (4) is a (3+1)-dimensional model, and it is clear
that if f solves Eq. (2), then u = u(x, y, z, t) is a
solution to Eq. (4) through the transformation (3).

Via applying to Eq. (2) the linear superposition prin-
ciple [28,29], two types of resonant N -wave solutions
have been found and illustrated [21]. In this paper, we
will search for positive quadratic function solutions to
the dimensionally reduced Hirota bilinear Eq. (2) via
taking z = y or z = t cases1 , and begin with

f = g2 + h2 + a9, (5)

and

g = a1x + a2y + a3t + a4,

h = a5x + a6y + a7t + a8,

where ai (1 ≤ i ≤ 9) are all real parameters to be deter-
mined. To determine the lump solutions, we note that
the conditions guaranteeing the well-definedness of f ,
positiveness of f and localization of u in all directions
in the space need to be satisfied.

1 We found no lump solutions in the from of (5) to Eq. (2) via
taking z = x .

2 Lump solutions to reduction with z = y

With z = y, the dimensionally reduced form of the
Hirota bilinear Eq. (2) turns out to be

2
[
( f fty − ft fy + fxxx fy

+ 3 fxxy fx − 3 fxx fxy − f fxxxy

− 3( f fxx − f 2x ) + 3( f fyy − f 2y )
]

= 0, (6)

which is transformed into

uyt − uxxxy − 3 (uxuy)x − 3 uxx + 3 uyy = 0. (7)

through the link between f and u:

u = 2
[
ln f (x, y, t)

]
x

= 2
fx (x, y, t)

f (x, y, t)
. (8)

Symbolic computation manipulation on a direct substi-
tution of f in Eq. (5) into Eq. (6) leads to the following
set of constraining equations for the parameters:

{
a1 = a1, a2 = a2,

a3 = 3[a2(a21 − a22 − a25 − a26) + 2a1a5a6]
a22 + a26

,

a4 = a4, a5 = a5, a6 = a6,

a7 = −3[a6(a21+a22−a25+a26)−2a1a2a5]
a22 + a26

, a8 = a8,

a9 = − (a22 + a26)(a
2
1 + a25)(a1a2 + a5a6)

(a1a6 − a2a5)2

}
, (9)

which needs to satisfy the conditions

a1a6 − a2a5 �= 0, (10)

a1a2 + a5a6 < 0, (11)

to guarantee the well-definedness of f , the positive-
ness of f and the localization of u in all directions
in the space. The parameters in the set (9) yield a
class of positive quadratic function solution to Eq. (6)
as

f =
(
a1x + a2y + 3[a2(a21 − a22 − a25 − a26 ) + 2a1a5a6]

a22 + a26
t + a4

)2

+
(
a5x+a6y− 3[a6(a21+a22 − a25 + a26 ) − 2a1a2a5]

a22 + a26
t + a8

)2

− (a22 + a26 )(a
2
1 + a25 )(a1a2 + a5a6)

(a1a6 − a2a5)2
, (12)
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which, in turn, generates a class of lump solutions to
the dimensionally reduced Eq. (7) through transforma-
tion (8) as

u(I) = 4(a1g + a5h)

f
, (13)

where the function f is defined by Eq. (12), and the
functions g and h are given as follows:

g = a1x + a2y

+ 3[a2(a21 − a22 − a25 − a26) + 2a1a5a6]
a22 + a26

t + a4,

h = a5x + a6y

− 3[a6(a21 + a22 − a25 + a26) − 2a1a2a5]
a22 + a26

t + a8.

Note here that six parameters a1, a2, a4, a5, a6 and a8
are involved in the solution u, among which, a4 and a8
are arbitrary, while the rests are demanded to satisfy
conditions (10) and (11) to guarantee u(I) to be lump
solutions.

3 Lump solutions to reduction with z = t

With z = t , the dimensionally reduced form of the
Hirota bilinear Eq. (2) reads

2 [( f fty − ft fy + fxxx fy + 3 fxxy fx − 3 fxx fxy

− f fxxxy − 3( f fxx − f 2x ) + 3( f fyy − f 2y )] = 0,

(14)

which is cast into

uyt − uxxxy − 3 (uxuy)x − 3 uxx + 3 utt = 0. (15)

through the link between f and u, that is transforma-
tion (8).

For Eq. (14), a direct substitution of f gives rise
to the following set of constraining equations for the
parameters:

{
a1 = a1, a2 = 3[a3(a21 − a23 − a25−a27)+2a1a5a7]

a23+a27
,

a3 = a3, a4 = a4, a5 = a5,

a6 = −3[a7(a21 + a23 − a25 + a27) − 2a1a3a5]
a23 + a27

,

a7 = a7, a8 = a8,

a9 = −3(a21+a25)(a1a3+a5a7)(a21−a23+a25−a27)

(a1a7−a3a5)2

}
,

(16)

which needs to satisfy the conditions

a1a7 − a3a5 �= 0, (17)

(a1a3 + a5a7)(a
2
1 − a23 + a25 − a27) < 0, (18)

to guarantee thewell-definedness of f , the positiveness
of f and the localization of u in all directions in the
space. The parameters in the set (16) yield a class of
positive quadratic function solution to Eq. (14) as

f =
(
a1x + 3[a3(a21 − a23 − a25 − a27) + 2a1a5a7]

a23 + a27
y

+ a3t + a4

)2

+
(
a5x− 3[a7(a21+a23−a25+a27) − 2a1a3a5]

a23 + a27
y

+ a7t + a8

)2

− 3(a21+a25)(a1a3+a5a7)(a21 − a23 + a25 − a27)

(a1a7 − a3a5)2
,

(19)

which, in turn, generates a class of lump solutions to
the dimensionally reduced Eq. (15) through transfor-
mation (8) as

u(II) = 4(a1g + a5h)

f
, (20)

where the function f is defined by Eq. (19), and the
functions g and h are given as follows:

g = a1x + 3[a3(a21 − a23 − a25 − a27) + 2a1a5a7]
a23 + a27

y

+ a3t + a4,

h = a5x − 3[a7(a21 + a23 − a25 + a27) − 2a1a3a5]
a23 + a27

y

+ a7t + a8.
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Note here that six parameters a1, a3, a4, a5, a7 and a8
are involved in the solution u, among which, a4 and a8
are arbitrary, while the rests are demanded to satisfy
conditions (17) and (18) to guarantee u(II) to be lump
solutions.

4 Lump dynamics and energy distribution

For the exact solution u(x, y, t) to Eqs. (7) and (15) to
be lump ones, it is required that

lim
x2+y2→∞

u(x, y, t) = 0, ∀ t ∈ R.

By virtue of transformation (8), a sufficient condition
for u(x, y, t) to be a lump solution constraining on
f (x, y, t) is

lim
x2+y2→∞

f (x, y, t) = ∞, ∀ t ∈ R.

All the solutions derived in this paper (u(I) and u(II))
satisfy this criterion, and they are rationally localized
in all directions in the space.

The amplitude of a lump solution u is defined as
max |u|, and the location of a lump solution is then
defined as the place where the max |u| is attained. With
these definitions, we know that the amplitude of u(I) is

2|a1a6−a2a5|√
−(a1a2+a5a6)(a22+a26 )

and initially located at

⎛
⎝ ε

√
a21+a25(a2a8−a4a6) ± √

a9(a1a6−a2a5)

ε

√
a21 + a25(a1a6 − a2a5)

,
a4a5 − a1a8
a1a6 − a2a5

⎞
⎠ ,

where ai (1 ≤ i ≤ 9) are given in (9) and the ampli-
tude of u(II) is 2|a1a7−a3a5|√

−3(a1a3+a5a7)(a21−a23+a25−a27 )
and ini-

tially located at

⎛
⎝ ε

√
a21 + a25(a2a8 − a4a6) ± √

a9(a1a6 − a2a5)

ε

√
a21 + a25(a1a6 − a2a5)

,
a4a5 − a1a8
a1a6 − a2a5

⎞
⎠ ,

where ai (1 ≤ i ≤ 9) are given in (16), and

ε =
{
1, a5 > 0,

− 1, a5 < 0.

The localized characteristics and energy distribution
of the lump solutions can be seen clearly in Figs. 1
and 2 including 3-dimensional plots, density plots and
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Fig. 1 Lump dynamic characteristics of u(I) via Eq. (13) with
a1 = 1, a2 = 3, a4 = 0, a5 = −4, a6 = 2, a8 = 0 and t = 0: a
3-dimensional plot; b density plot; c x-curves and d y-curves
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Fig. 2 Lump dynamic characteristics of u(II) via Eq. (20) with
a1 = 2, a3 = 3, a4 = 0, a5 = 1, a7 = 6, a8 = 0 and t = 0: a
3-dimensional plot; b density plot; c x-curves and d y-curves

2-dimensional curves with particular choices of the
involved parameters in the potential function u.

5 Concluding remarks

Lump solution is a type of rational solution, and another
type of exact solutionwith rational function amplitudes
is rogue wave solution, which attracts recent attention
in describing nonlinear wave phenomena in oceanog-
raphy and nonlinear optics [30,31]. In this paper, we
have derived two classes of lump solutions (see Eqs. 13
and 20) to the dimensionally reduced Eqs. (7) and (15),
respectively, by searching for positive quadratic func-
tion solutions to the associated bilinear equations, i.e.,
Eqs. (6) and (14). Thismethod can be used to search for
rogue wave solutions, that is to say, rogue wave solu-
tions could be generated as well in terms of positive
polynomial solutions to the associated bilinear equa-
tions. Work of this aspect will be proceeded in our
future papers.

It should be noticed that we have studied lump solu-
tions to two types of dimensional reductionswith z = y
and z = t for Eq. (2), or correspondingly for Eq. (4).
For the reduction with z = x , Eq. (2) is reduced to

2 [( f fty − ft fy + fxxx fy + 3 fxxy fx

− 3 fxx fxy − f fxxxy] = 0, (21)

which is linked to

uyt − uxxxy − 3 (uxuy)x = 0, (22)

through the transformation (8).We have found no posi-
tive quadratic function solutions in terms of
Eqs. (5)–(21) such that no lump solutions to Eq. (22)
either. How to derive lump solutions or how to prove
its nonexistence to Eq. (22) is a further question.
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