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Abstract The study of soliton interactions is a sig-
nificance for improving pulse qualities in nonlinear
optics. In this paper, a generalized coupled cubic–
quintic nonlinear Schrödinger (GCCQNLS) equation
with the group-velocity dispersion, fiber gain-or-loss
and nonlinearity coefficient functions is studied, which
describes the evolution of a slowly varyingwave packet
envelope in the inhomogeneous optical fiber. In partic-
ular, based on the similarity transformation, we report
several families of nonautonomous wave solutions of
the GCCQNLS equation. It is reported that there are
possibilities to manipulate the interactions of nonau-
tonomous wave solution through manipulating nonlin-
ear and gain/loss functions. Interactions between the
different-type bright two solitons have been asymptot-
ically analyzed and presented. And, the two parabolic-
type bright solitons propagating with the opposite
directions both change their directions after the inter-
action. Interactions between the linear-, parabolic- and
periodic-type bright two solitons are elastic. At last,
the numerical simulations on the evolution and col-
lision of two soliton solutions are performed to ver-
ify the prediction of the analytical formulations. We
present the general approach can provide many pos-
sibilities to manipulate soliton waves experimentally
and consider the potential applications for the optical

F. Yu (B)
School of Mathematics and Systematic Sciences,
Shenyang Normal University, Shenyang 110034, China
e-mail: yufajun888@163.com

self-routing, non-Kerr media and Bose–Einstein con-
densates (BEC).

Keywords Coupled cubic–quintic nonlinear
Schrödinger equation · Nonautonomous soliton ·
Interaction · Controllable behavior

1 Introduction

The nonlinear Schröinger (NLS) equation is a key
model describingwave processes in plasmaphysics [1],
Bose–Einstein condensates (BEC), nonlinear optics
[2]. In general, the cubic nonlinearity is considered in
the NLS equation. However, when the intensity of the
incident light field becomes stronger to produce ultra-
short optical pulses, the higher-order effects such as
the third-order dispersion (TOD), self-steepening and
self-frequency shift must be added to that equation [3],
and non-Kerr nonlinearity must also be considered.

Nonlinear interactions are usually of a cubic nature,
there are systems which engender cubic and quintic
(CQ) nonlinearities, and the intensity of the optical
pulse propagating inside a nonlinear medium exceeds
a certain value or the two and three-body interactions
in BEC. Optical solitons (bright and dark) in a fibers,
which are created by a balance of group-velocity dis-
persion (GVD) and self-phase modulation (SPM), are
governed by the NLS equation under idealized condi-
tions and are inherently stable. There aremanywork for
the NLS equation with (time, space)-modulated poten-
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tial and nonlinearity [4–9]. Some pioneering works
on multidimensional ground states of NLS-like equa-
tions have been considered; the analytical treatments
of multi-dimensional singular NLS equation solutions
with parabolic inhomogeneity were presented [11],
which lens influence shortens the focal time of the
wave. Berge and co-workers studied the propagation
of intense optical beams in layered Kerr media [12]
and analyzed the shape and stability of localized states
in nonlinear cubic media with space-dependent poten-
tialsmodeling an inhomogeneity [13]. Especially, Tow-
ers and Malomed presented a most essential result
of optical beams in layered Kerr media in Ref. [14].
They introduced a model of an optical medium con-
sisting of alternating layers with positive and nega-
tive Kerr nonlinearity, which demonstrates that sta-
ble quasi-stationary (2+1)-dimensional soliton beams
exist in these media. The influence of higher-order
optical nonlinearities on the self-guiding of femtosec-
ond pulses in the atmosphere was investigated the-
oretically in Ref. [15]. The cubic–quintic nonlinear
Schrödinger (CQNLS) equationwith Raman effect i.e.,
the Kundu Eckhaus (KE) equation has been derived in
Refs. [16,17], the KE equation can be used to describe
the propagation of the ultrashort optical pulses in opti-
cal fibers [18].

On the other hand, in inhomogeneous systems, the
characteristic parameters of the optical fiber are not
constant but variable coefficients [19]. Thus, the gen-
eralized coupled cubic–quintic nonlinear Schrödinger
(GCCQNLS) equationwith variable coefficients should
be considered [20,21]. Recently, there has been an
increased interest in the CQNLS equation with vari-
able coefficients because of the possibility of the soli-
ton management and control through modulating non-
linearities in real experiments [22].

Recently, some new and important scientific stud-
ies of the optical solitons with Kerr law, power law
nonlinearity and spatiotemporal dispersion are derived
in nonlinear Schrödinger–Hirota equation and dense
wavelength divisionmultiplexed (DWDM)model [23–
32]. Zhou and Guzman et al. consider the bright, dark
optical solitons with nonlocal nonlinearity in parabolic
law medium and spatiotemporal dispersion and reveal
many specific features of optical solitons in [33–38].
Optical soliton in birefringent fibers with spatiotem-
poral dispersion is introduced in [39], and three types
of solitons are obtained: bright, dark and singular soli-
tons. Bhrawy and Abdelkawy study the propagation

of optical solitons through nonlinear optical fibers in
(1+1) and (2+1) dimensions [40]. Furthermore, they
construct the numerical solution for the time fractional
Schrödinger equations subject to initial boundary by
the Jacobi Gauss–Lobatto quadrature rule [41].

The soliton solutions of the CQNLS equation with
variable coefficients can maintain their overall shapes,
but allow their widths, amplitudes and the pulse cen-
ter to change according to the management of the sys-
tem’s parameters. Because of their special properties,
a lot of influential works have been performed to con-
struct exact analytical solutions of theCQNLSequation
with variable coefficients. The study of soliton solu-
tions for theCQNLSequationwith variable coefficients
began with the pioneering work of Serkin et al. [42].
By assuming an ansatz solution, Hao et al. [43] con-
structed the exact quasi-soliton of the CQNLS equation
with variable coefficients. He et al. [44] presented the
exact bright, dark and gray self-similar solitarywave
solutions. Tang et al. [45] gave some analytical soli-
ton solutions of the spatially inhomogeneous CQNLS
equation with an external potential. Yang and Zhang
[46] derived bright, dark and kink quasi-soliton solu-
tions under certain parametric conditions. However,
most of the studies only considered the higher-order
nonlinearity, i.e., the quintic nonlinearity, the inhomo-
geneous CQNLS equation with Raman effect, have not
been reported up to now.

However, as far as we know, until recently no
work has been reported on a general method used for
solving the high-order dispersive GCCQNLS equa-
tion with time-modulated potential and nonlinearity.
In this work, extending the ideas of Refs. [8,9,47,48],
we use the similarity transformation to reduce the
variable coefficients GCCQNLS equation to the cou-
pled CQNLS equation. Furthermore, we obtain two
kinds of nonautonomous analytical matter-wave soli-
tons. Then, the exact soliton solutions can be obtained
with proper choices for the relevant parameters. At last,
the interactions between the different-type bright two
solitons have been asymptotically analyzed and pre-
sented, including the interactions between the linear-,
parabolic- and periodic-type bright two solitons. There
are many possibilities for managing these solitons,
strongly justifying a quest for further analytical solu-
tions. We present the general approach can provide
many possibilities to manipulate soliton waves experi-
mentally and consider the potential applications for the
applications of optical fiber.
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The paper is organized as follows. In Sect. 2, the
similarity transformations for the variables coefficients
GCCQNLS equation are obtained. In Sect. 3, we
consider nonautonomous one-bright wave solution of
GCCQNLS equation and present the general approach
to manipulate soliton wave propagation. In Sect. 4, we
present the nonautonomous bi-bright solutions of the
GCCQNLS equation and manipulate the interactions
of nonautonomous wave solution through manipulat-
ing nonlinear and gain/loss functions. In Sect. 5, we
consider the trapping potential for both components is
composed of a harmonic and a periodic potential in
BEC. In Sect. 6, the numerical simulations of inter-
action properties between solitons are performed. The
outcomes are summarized in the conclusion.

2 Similarity reduction in the variable coefficients
GCCQNLS equation

We consider a GCCQNLS equation with variable coef-
ficients and more arbitrary values, which describes the
effects of quintic nonlinearity for the ultrashort opti-
cal pulse propagation in a non-Kerr medium, or in the
twin-core nonlinear optical fiber or waveguide:

i�1t + r(t)�1xx + m(t)(|�1|2 + |�2|2)�1

+ v1(x, t)�1 + n(t)(p1|�1|2 + p2|�2|2)2�1

+ h(t)((τ1 − p1)|�1|2 + (τ2 − p2)|�2|2)|�2|2�1

− i p(t)[(p1|�1|2 + p2|�2|2)�1]x
+ is(t)(p1�

∗
1�1x + p2�

∗
2�2x )�1 + iγ (t)�1 = 0,

i�2t + y(t)�2xx + k(t)(|�1|2 + |�2|2)�2

+ v2(x, t)�2 + w(t)(τ1|�1|2 + τ2|�2|2)2�2

+ g(t)((p1 − τ1)|�1|2 + (p2 − τ2)|�2|2)|�1|2�2

− ia(t)[(τ1|�1|2 + τ2|�2|2)�2]x
+ ib(t)(τ1�

∗
1�1x + τ2�

∗
2�2x )�2 + iγ (t)�2 = 0,

(1)

where p1, p2, τ1 and τ2 are real free parameters, �1 =
�1(x, t) and �2 = �2(x, t) denote the two compo-
nents of the electromagnetic fields, vi (x, t) is the trap-
ping potential, the subscripts x and t , respectively, rep-
resent the partial derivatives with respect to the normal-
ized distance along the direction of the propagation and
local time, r(t) and y(t) describe the group-velocity
dispersions,m(t) and k(t) are the nonlinearity parame-
ters, n(t), w(t), h(t) and g(t) are the saturations of the

nonlinear refractive indexes, p(t) and a(t) are the self-
steepening, s(t) and b(t) present the delayed nonlinear
response effects, and the gain/loss coefficient γ (t) is
real-valued function of time.

In fact, this nonlinear model (1) contains many spe-
cial models. It is evident that with a symmetric reduc-
tion p1 = p2 = τ1 = τ2 we can recover coupled
CQNLS equation from (1), while a different reduction
with �1 = q, �2 = 0 and γ (t) = 0 (or �1 = 0
and �2 = q) yields the integrable KE equation with
variable coefficients [49]

iqt + r(t)qxx + m(t)|q|2q + n(t)|q|4q
− i p(t)(|q|2q)x + is(t)|q|2qx = 0, (2)

We search for a similar transformation connecting
solutions of Eq. (1) with the constant coefficients cou-
pled CQNLS Eq. [49], i.e.,

i�1T + �1ηη + 2(|�1|2 + |�2|2)�1

+ (p1|�1|2 + p2|�2|2)2�1

+ 2p2[(τ1 − p1)|�1|2 + (τ2 − p2)|�2|2]|�2|2�1

− 2i[(p1|�1|2 + p2|�2|2)�1]η
+ 2i(p1�

∗
1�1η + p2�

∗
2�2η)�1 = 0,

i�2T + �2ηη + 2(|�1|2 + |�2|2)�2

+ (τ1|�1|2 + τ2|�2|2)2�2

+ 2τ2[(p1 − τ1)|�1|2 + (p2 − τ2)|�2|2]|�1|2�2

− 2i[(τ1|�1|2 + τ2|�2|2)�2]η
+ 2i(τ1�

∗
1�1η + τ2�

∗
2�2η)�1 = 0.

(3)

The physical fields �i = �i (η, T ) (i = 1, 2) are a
function of two variables η = η(x, t) and T = T (t),
which are to be determined. The boundary conditions
satisfy the following constraints η −→ 0 at x −→
0 and η −→ ∞ at x −→ ∞ [50].

Let a Lax pair U and V is presented as follows

U =
⎛
⎝

−iλ �1 �2

−�∗
1 −iθ1η + iλ 0

−�∗
2 0 −iθ2η + iλ

⎞
⎠ (4)

and

M = 4

⎛
⎝

M11 2λ�1 + i�1η + θ1η�1 M13

M21 2iλ2 − i |�1|2 − iθ1τ M23

M31 −i�1�
∗
2 M33

⎞
⎠ ,
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where the M11, M21, M31, M13, M23, M33, θ1 and θ2
are given in “Appendix 1”. R is a column matrix R =(
r
s

)
, the dependent variables r = r(η, τ ) and s =

s(η, τ ). Considering a linear system as following:

Rη = UR, Rτ = VR, (5)

from the system (5) and the condition of compatibility

Rητ = Rτη,

we get the coupled CQNLS Eq. (3).
Take using the Ansatz method [8–10], we search for

the solutions of the physical fields �1(x, t),�2(x, t),

�1(x, t) = ρ(t)eiϕ(x,t)�1(η(x, t), τ (t)),

�2(x, t) = ρ(t)eiϕ(x,t)�2(η(x, t), τ (t)), (6)

with ρ(t) and ϕ(x, t) being the real-value functions of
the indicatedvariables. TheAnsatz (6) can construct the
relations between Eqs. (1) and (3). And, we substitute
the transformation (6) into Eq. (1) and get the following
system:

ηxx = 0,

vi (x, t) − ϕt − r(t)ϕ2
x = 0(i = 1, 2),

ργ (t) + r(t)ρϕxx + ρt = 0,

ηt + 2r(t)ϕxηx = 0,

r(t)η2x − τt = 0.

(7)

According to Eq. (7) and integrable condition, we
obtain the functions ρ(t), r(t),m(t), n(t), h(t), p(t),
a(t), s(t), b(t) in the following forms

r(t) = y(t), m(t) = k(t), n(t) = w(t),

τ2h(t) = p2g(t), p(t) = a(t) = s(t) = b(t),

r(t)η2x = n(t)ρ4, m(t) = 2n(t)ρ2,

h(t) = 2p2n(t), p(t)ηx = 2n(t)ρ2. (8)

We solve ηxx = 0 and ϕxx = 0 and obtain the func-
tionsη(x, t), τ (t), ρ(t). If the function r(t) is given, the
functions n(t),m(t), h(t), p(t), k(t), w(t), g(t), a(t),
b(t), s(t) and ϕ(x, t) can be expressed. Thus, we can
establish a correspondence between selected solutions
of Eqs. (1) and (3). In particular, we can obtain the
nonautonomous wave solutions of Eq. (1).

Solving Eq. (7), we get the similarity variables
η(x, t), τ (t) and the phase ϕ(x, t) in the forms (case
A):

η(x, t) = Ax + c0 − 2AC
∫ t

0
r(s)ds,

τ (t) = A2
∫ t

0
r(s)ds,

ϕ(x, t) = Cx + c1 − 2C2
∫ t

0
r(s)ds,

ρ(t) = ρ0e
− ∫ t

0 γ (s)ds,

vi (x, t) = −C2r(t),

(9)

we can also get the similarity variables η(x, t), τ (t) and
the phase ϕ(x, t) in the forms (case B):

η(x, t) = A(t)x + c0 + B(t),

τ (t) =
∫ t

0
r(s)A2(s)ds,

ϕ(x, t) = − Ȧ(t)

4A(t)r(t)
x2 − Ḃ(t)

2A(t)r(t)
x + c1,

ρ(t) = ρ0e
− ∫ t

0 (γ (s)− Ȧ(s)
A(s) )ds,

vi (x, t) = ω(t)x2 + ε(t)x + Ḃ2(t)

4A2(t)r(t)
, (10)

andω(t)= Ȧ2(t)
4A2(t)r(t)

−(
Ȧ(t)

4A(t)r(t) )
′
, ε(t) = − Ȧ(t)Ḃ(t)

2A2(t)r(t)
−

(
Ḃ(t)

2A(t)r(t) )
′
, where the fourth-order dispersion parame-

ter r(t) influences the phase and effective propagation
distance; the c0 and c1 are constants. We choose the
free parameters and r(t); Fig. 1 depicts the profiles of
the potential η(x, t), τ (t) and the phase ϕ(x, t).

3 Nonautonomous one-bright soliton solution and
propagation manipulation

Although many people have investigated the GCC-
QNLSequation, but fewpeople have studied the soliton
dynamics of controllable propagation with free func-
tions. Different from those work in the previous stud-
ies, we will aim to analyze the soliton dynamics of Eq.
(1) with the management effects of r(t) and γ (t). The
results have some guiding significance for controllable
management of soliton and can provide some theoret-
ical analysis for carrying out optical soliton communi-
cation experiments.

In Ref. [49], the one-bright soliton solutions are
obtained via the Hirota bilinear method for a coupled
Eq. (3). Based on the similarity transformation (7) and
the bright soliton solutions of the Eq. (3), we present
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(a) (b)

(c)

Fig. 1 (Color online) a is the τ(t) of (9) with r(t) = 0.5sin(2t), A = 1, b is the η(x, t) of (9) with r(t) = sin(2t), A = 0.2,C = −10,
c is ϕ(x, t) of (9) with r(t) = cn(0.8t, 0.5), and C = 1, respectively

the nonautonomous one-bright soliton solution of Eq.
(1) in the form

�1(x, t) = αρ0sech(υ(η − vτ + δ))e− ∫ t
0 γ (s)ds

ei(δ1tanh(υ(η−vτ+δ))+ϕ(x,t))ei(κη+ωT ),

�2(x, t) = βρ0sech(υ(η − vτ + δ))e− ∫ t
0 γ (s)ds

eiδ2tanh(υ(η−vτ+δ))+ϕ(x,t))ei(κη+ωT ),

(11)

where η(x, t) = Ax + c0 − 2AC
∫ t
0 r(s)ds, τ (t) =

A2
∫ t
0 r(s)ds, ϕ(x, t) = Cx + c1 − C2

∫ t
0 r(s)ds, the

different parameters of the solution are related to the
spectral parameter λ = υ + iκ and the parameters of
the model as v = 2κ,w = υ2 − κ2, δ1 = 1

υ
(p1|α|2 +

p2|β|2), δ2 = 1
υ
(τ1|α|2 + τ2|β|2) and the phase δ is a

constant.
To illustrate the wave propagation of the obtained

nonautonomous one-bright soliton solution (11), we
can choose these free parameters in the formυ, κ, ρ0, δ.
The evolution of the intensity distribution for the one-
bright soliton solution given by Eq. (11) is illustrated in
Fig. 2a, b with functions r(t) = 0.5t ; such a structure
of the soliton is known as “Parabola-like.” Moreover,
it follows from Fig. 2 that the amplitude of the one-
bright soliton solution is invariant as time increases. It
can be observed that with the increasing distance, the
amplitude and the width of the soliton remain the same.
However, we can shown that the opening direction of
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1208 F. Yu

Fig. 2 (Color online). Color-coded plot of wave intensity a |�1|2 of (11) with r(t) = 0.5t and κ = 1, υ = 0.3, δ = 1. b |�2|2 of (11)
with r(t) = 0.5t and κ = 0.5, υ = 0.2, δ = 0.1. And γ (t) = 0.1cos(4t)ρ0 = 1, A = −3,C = 8/3, α = 1, β = 1

Fig. 3 (Color online). Color-coded plot of wave intensity a |�1|2 of (11) with r(t) = t2 and κ = 0.4, υ = 0.2, δ = 2. b |�1|2 of (11)
with r(t) = cost and κ = 0.4, υ = 1, δ = 1. And γ (t) = 0.1sin(2t)ρ0 = 1, A = −1,C = −0.6, α = 1, β = 1

the parabola in�1(x, t) and�2(x, t) is opposite, when
we choose the different parameters υ, κ .

In particular, we consider the properties of r(t) = t2

in �1(x, t), the evolution of the intensity distribution
for the one-bright soliton solution given by Eq. (11) is
illustrated in Fig. 3a, and such a structure of the soliton
is known as “S-like.” The evolution of the one-bright
soliton solution�1(x, t) given by Eq. (11) is illustrated
in Fig. 3b with functions r(t) = cost ; such a structure
of the soliton is known as “Snaking-like.” Hence, we
can control the soliton propagation through the differ-
ent functions r(t) in Figs. 2 and 3.

If ρ0 = A = r(s) = 1, c0 = c1 = C = γ (s) = 0
in Eq. (11), this means that ϕ(x, t) is a constant. In this
case, the obtained one-bright soliton solutions�1(x, t)
and �2(x, t) in the following form

�1(x, t) = αeiδ1tanh(υ(x−vt+δ))sech(υ(x − vt + δ))

ei(κx+ωt),

�2(x, t) = βeiδ2tanh(υ(x−vt+δ))sech(υ(x − vt + δ))

ei(κx+ωt), (12)

Figure 4 is plotted to describe the one-soliton solu-
tions (12). Figure 4a shows that, when r = constant,
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Fig. 4 (Color online). Color-coded plot of wave intensity a |�1|2 of (12) with α = 1 and κ = 1, υ = 0.3, δ = 1. b |�1|2 of (12) with
β = 2 and κ = 1, υ = 0.3, δ = 1. And ρ0 = A = r(s) = 1, c0 = c1 = C = γ (s) = 0

neither the soliton amplitude nor velocity changes dur-
ing the propagation. From the comparison between
Fig. 4a, b, we can see that the amplitudes of the soliton
become invariant during the propagation, which are the
propagation of linear type with r(t) = 1 in Fig. 4.

Figures 2, 3 and 4 are plotted to describe the wave
propagation of nonautonomous bright one-soliton solu-
tions. From the comparison between Figs. 2, 3 and 4,
we can see that the amplitudes of the soliton are invari-
ant during the propagation with different function r(t),
but the wave propagations of solitons depend on func-
tion r(t). As we can see in Fig. 4, the soliton is linear
type, while in Fig. 2 it is parabolic type, and in Fig. 3 it
is periodic type, which means that r(t) can control the
wave propagation in the inhomogeneous optical fibers
influencing the soliton type.

4 Nonautonomous two bright soliton solutions and
interaction managements

Although Eq. (1) with constant coefficients has been
investigated in such aspects as the conservation laws,
Lax pair and multi-soliton solutions, few people have
studied the soliton dynamics of controllable interac-
tions with free functions. Different from those work in
the previous studies, we will aim to analyze the soli-
ton dynamics of Eq. (1) with themanagement effects of
r(t) and γ (t), based on the two bright soliton solutions.

We consider the analysis of functions r(t) and γ (t)
to control the soliton interactions. The results have
some guiding significance for controllable manage-
ment of soliton and can provide some theoretical analy-
sis for carrying out optical soliton communication
experiments. Based on the two bright soliton solutions
of Eq. (3) and the similarity transformation (7), we
obtain the nonautonomous two bright soliton solutions
of Eq. (1) in the following form

�1(x, t) = αρ0e
− ∫ t

0 γ (s)dseiϕ(x,t)�1M

ei
∫
(p1|�1M |2+p2|�2M |2))dx ,

�2(x, t) = βρ0e
− ∫ t

0 γ (s)dseiϕ(x,t)�2M

ei
∫
(τ1|�1M |2+τ2|�2M |2))dx , (13)

with

�1M = α1eη1 + α2eη2 + eδ1+η1+η∗
1+η2 + eδ2+η1+η2+η∗

2

1 + eη1+η∗
1+R1 + eη1+η∗

2+δ0 + eη∗
1+η2+δ∗

0 + eη2+η∗
2+R2 + R

,

�2M = β1eη1 + β2eη2 + eδ
′
1+η1+η∗

1+η2 + eδ
′
2+η1+η2+η∗

2

1 + eη1+η∗
1+R1 + eη1+η∗

2+δ0 + eη∗
1+η2+δ∗

0 + eη2+η∗
2+R2 + R

,

(14)

In the above equations, η1 = k1(η + ik1τ), η2 =
k2(η + ik2τ), R = eη1+η∗

1+η2+η∗
2+R3 and the detailed

expressions for other quantities can be obtained from
the “Appendix 2”.

To illustrate the interaction between the obtained
nonautonomous two bright soliton solutions, we can
choose these free functions in the form r(t) and
γ (t). Figure 5 shows the interaction between the two
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Fig. 5 (Color online). Color-coded plot of wave intensity a
|�1|2 of (13) with r(t) = 0.5t2 and α1 = 1, α2 = (39 −
80i)/89, β1 = 1, β2 = 1, k1 = 1.5 + 0.5i, k2 = 2 − 0.7i, A =
−0.2,C = 0.3. b |�2|2 of (13) with r(t) = t and α1 = 5i, α2 =

(39 − 80i)/89, β1 = 10i, β2 = 2 − 2i, k1 = 1.5 + 0.5i, k2 =
2 − 0.7i, A = −3,C = −0.33. And γ (t) = 0, ρ0 = 1, α =
1, β = 1

Fig. 6 (Color online). Color-coded plot of wave intensity a
|�1|2 of (13) with r(t) = 2sn(5t, 0.8) and α1 = 1, α2 =
(39 − 80i)/89, β1 = 1, β2 = 1, k1 = 1.5 + 0.5i, k2 =
2 − 0.7i, A = 1,C = 0.001. b |�2|2 of (13) with r(t) =

2sn(5t, 0.8) and α1 = 5i, α2 = (39 + 80i)/89, β1 = 10i, β2 =
2 + 2i, k1 = 1.5 + 0.5i, k2 = 2 − 0.7i, A = 0.2,C = 0.1. And
γ (t) = 0.1cos(t), ρ0 = 1, α = 1, β = 1

parabolic-type bright solitons propagating with the
identical direction (Fig. 5a) and opposite direction (Fig.
5b). Seen on the x–t plane, the two bright solitons prop-
agate along the same direction, before and after the
interaction in Fig. 5a. Seen on the x–t planes, the two
bright solitons propagate toward each other before the
interaction,while they bounce back after the interaction
in Fig. 5b.

Figure 6 illustrates the interaction between the two
periodic-type bright solitons. As seen in Fig. 6a, the
two bright solitons propagating on x–t planes share
the same period. There exists a phase shift for the
two solitons at each interaction region, but the velocity
and amplitude of each soliton remain unchanged after
the interaction, implying that the interaction is elastic.
Meanwhile, the periodical interaction of the two soli-
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tons is observed in Fig. 6b. It can be seen that the cen-
tral positions of the two solitons oscillate periodically,
but the separation of the two solitons remains constant
along the optical fiber. And it can also be seen that
the single soliton has the same shape as “Snake-like.”
Moreover, the amplitudes of solitons depend on para-
metersα1, α2, β1 and β2 in Fig. 6. The two solitonswill
be parallel with each other as Fig. 6b shows, whichmay
be undistinguishable under equal amplitudes condition.
Through the parameters α1, α2, β1 and β2, we can also
change state from the parallel state to the bound state,
as Fig. 6a. In conclusion, different states of two solitons
can exist in two sides, which will be a benefit for state
transition control and decrease soliton interactions.

In particular, ρ0 = A = r(s) = 1, c0 = c1 =
C = γ (s) = 0 in Eq. (13), this means that ϕ(x, t) is
a constant. In this case, the obtained nonautonomous
two bright soliton solutions �1(x, t),�2(x, t) are in
the following forms

�1(x, t) = �1Mei
∫
(p1|�1M |2+p2|�2M |2))dx ,

�2(x, t) = �2Mei
∫
(τ1|�1M |2+τ2|�2M |2))dx , (15)

and

�1M = α1eη1 + α2eη2 + eδ1+η1+η∗
1+η2 + eδ2+η1+η2+η∗

2

1 + eη1+η∗
1+R1 + eη1+η∗

2+δ0 + eη∗
1+η2+δ∗

0 + eη2+η∗
2+R2 + R

,

�2M = β1eη1 + β2eη2 + eδ
′
1+η1+η∗

1+η2 + eδ
′
2+η1+η2+η∗

2

1 + eη1+η∗
1+R1 + eη1+η∗

2+δ0 + eη∗
1+η2+δ∗

0 + eη2+η∗
2+R2 + R

,

(16)

where η1 = k1(x + ik1t), η2 = k2(x + ik2t), R =
eη1+η∗

1+η2+η∗
2+R3.

When r(t) is taken as a constant, interaction between
the linear-type bright two solitons has been given and
the bright two soliton velocities may decrease as r(t)
decreases, as seen in Fig. 7. Fig. 7 shows the process
of the interaction managements between two solitons
with different controllable parameters. In Fig. 7a–c,
when two solitons encounter with each other, they join
together. After the interactions, two solitons separate
fromeachother and revert to their original states,whose
shapes keep invariant except for some phase shifts.
Moreover, two solitons encounter with each other; they
have not the phenomena of interactions in Fig. 7d.

Compared to Fig. 7, these free parameters k1, k2
effect on the angle of interaction between the linear-
type bright two solitons. Figure 7a, b shows that the
modulus value k1, k2 is increased, while the angles
of interaction are decreased. And the free parameters
β1, β2 have not affect the angle of interaction between

the linear-type bright two solitons through comparing
the Fig. 7a, d and b, c.

Figures 5, 6 and 7 show the process of the inter-
action managements between two solitons with differ-
ent controllable functions r(t), γ (t). In Figs. 6a and 7,
when two solitons encounter with each other, they join
together. After the interactions, two solitons separate
fromeachother and revert to their original states,whose
shapes keep invariant except for some phase shifts.
Moreover, two solitons encounter with each other; they
have not the phenomena of interactions in Fig. 6b.

It can be seen that the central positions of two soli-
tons oscillate periodically, but the separation of two
solitons remains constant along the optical fiber. And
it can also be seen that the single soliton has the
same shape as “Snake-like.” In this work, the parallels
between nonlinear guided wave phenomena in optics
and nonlinear guided wave phenomena in Bose con-
densates can be clearly demonstrated by considering
optical andmatter-wave soliton dynamics in the frame-
work of nonautonomous evolution equations.

To observe nonautonomous soliton conveniently, all
following discussions are made with the condition. It
is meaningful to manipulate nonautonomous soliton to
understand their fundamental character or even mech-
anism. We will study the evolution of nonautonomous
solitonwith exponential increasing and periodic chang-
ing nonlinearity in the following, to show possibilities
tomanipulate them in nonautonomous nonlinear optics
and BEC systems.

5 BEC with two internal states (case B)

When the two coupled nonautonomous GCCQNLS
models in BEC with two different internal states, we
consider n(t) = A−2(t) and ρ(t) = A(t). With this
choice, we have r(t) = y(t) = 1 (constant mass) and
γ (t) = 0 (conservative system). We consider the con-
ditions

B
′′
(t) = 0, A(t) = 1 + ν2sn(ν1t, A0), (17)

ϕ(x, t) = −1/4
ν1 ν2 Cn (ν2 t,A0)Dn (ν2 t,A0)

(1 + ν1 Sn (ν2 t,A0))
2 x2

− sn2(ξ |q)

2(1 + ν2sn(ν1t, A0))
x, (18)

such that the trapping potential for both components
is composed of a harmonic potential and a periodic
potential as following
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Fig. 7 (Color online). Color-coded plot of wave intensity a
|�1|2 withβ1 = 1, β2 = 1, k1 = 1.5+0.5i, k2 = 2−0.7i in (15)
. b |�1|2 with β1 = 1, β2 = 1, k1 = 2 + 2i, k2 = 2 − i in (15).
c |�1|2 with β1 = 2 − 2i, β2 = 2 + 2i, k1 = 2 + 2i, k2 = 2 − i

in (15). And α1 = 10i, α2 = (39 + 80i)/89, β = 1, α = 1.
d |�1|2 with β1 = 10i, β2 = 2 + 2i, k1 = 1.5 + 0.5i, k2 =
2 − 0.7i, α1 = 5i, α2 = (39 + 80i)/89, β = 1, α = 1 in (15)

vi (x, t) = ω(t)x2+ sn2(ξ |q)

4(1 + ν2sn(ν1t, A0))2
, i=1, 2.

(19)

The external potential functions v1(x, t) and v2(x, t)
include a magnetic trap and an optical lattice, which
are important ingredients of experimental BEC setups
[51–53] (Fig. 8 shows this trapping potential). The
sn(ξ |q) is the Jacobi elliptic function defined by
sn(ξ |q) = sinθ , with respect to the integral ξ =∫ θ

0 dα/(1−qsin2α)1/2 , where θ is called the amplitude
and q(0 ≤ q ≤ 1) is the elliptic parameter.

And, the choice of A(t) implies that the nonlinear-
ities n(t),m(t), h(t), p(t), s(t), k(t), w(t), g(t), a(t)

and b(t) are periodic functions in time, which is
a desirable feature for the coefficients that describe
the strength management of the interaction between
two atoms [m(t)], [k(t)] and three atoms [n(t)], [h(t)]
[w(t)], [g(t)].

6 The numerical simulation of collision

In these numerical simulations, a pseudo-spectral
method in the time domain and a Runge–Kutta scheme
with an adaptive step-size control in the spatial domain
are employed. The initial conditions for the fiber are
given by
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Fig. 8 (Color online) vi (x, t) with ν2 = 1, ν1 = 0.8, A0 = 0.5
and q = 0.5, respectively

�1(x, 0) = α[1 + 0.01R(X)]eiδ1tanh(υ(x+δ))

sech(υ(x + δ))ei(κx),

�2(x, 0) = β[1 + 0.01R(X)]eiδ2tanh(υ(x+δ))

sech(υ(x + δ))ei(κx), (20)

where R(X) is a random number between 0 and 1.
Running this code, we get Fig. 9, which shows that

the collision is a position shift. In Fig. 9a, b, when two
solitons encounter with each other, they join together.
After the interactions, two solitons separate from each
other and revert to their original states, whose shapes
keep invariant except for some phase shifts.

We next present our simulation results regarding the
interaction between two solitary wave solutions. To
reveal and understand the collision properties of soli-
tons, the initial condition in this code is taken as two
solitons of (15), which are moving toward each other.
The initial conditions of a two soliton solution are given
as following

�1(x, 0) = �1Mei
∫
(p1|�1M |2+p2|�2M |2))dx ,

�2(x, 0) = �2Mei
∫
(τ1|�1M |2+τ2|�2M |2))dx . (21)

It can be seen that the central positions of the two
solitons oscillate periodically, but the intensity of soli-
tons has no change in this case, which means that
energy transfer and energy loss do not exist during the
collision in Fig. 10a. This is the ideal situation of large-
capacity, multi-channel soliton transmission systems.
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Fig. 9 (Color online). Evolution of the amplitude a for the
interaction between two solutions |�1(x, t)| with α = 1.2
in Eq. (20). Evolution of the amplitude b for the interaction
between two solutions |�2(x, t)| with β = 1.5 in Eq. (20). And
δ1 = δ2 = 1, ν = 1, δ = 20
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Fig. 10 (Color online). Evolution of the amplitude a the solution
|�1|with the sameparameters as those given inFig. 6b. Evolution
of the amplitude b for the interaction between two solutions |�2|
with the same parameters as those given in Fig. 7b

Through the expressions in Fig. 10b, we find that the
amplitudes after collision of two soliton solution can
be related to those before collision, which means that
the intensities of solitons keep the same after collision.
This implies that the collision between two solitons in
system (1) is elastic.
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7 Conclusions

In this paper, we used similarity reductions in the vari-
able coefficients GCCQNLS equation to the coupled
CQNLS equation. Furthermore, we can also obtain
the nonautonomous bright one and two wave solu-
tions of Eq. (1). It is reported that there are possibili-
ties to manipulate the interactions of nonautonomous
wave solution through manipulating nonlinear and
gain/loss functions. Interactions between the different-
type bright two solitons have been asymptotically ana-
lyzed and presented. The interactions between the
linear-, parabolic- and periodic-type bright two solitons
are elastic. And, the two parabolic-type dark solitons
propagating with the opposite directions both change
their directions after the interaction. In order to better
understand the interaction properties between solitons,
we perform the numerical simulation for Eq. (1). We
present the general approach can provide many possi-
bilities tomanipulate soliton waves experimentally and
consider the potential applications in non-Kerr media
and BEC.
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Appendix 1

M11 = −2iλ2 + i(|�1|2 + |�2|2),
M21 = −2λ�∗

1 + i�∗
1η − θ1η�

∗
1,

M31 = −2λ�∗
2 + i�∗

2η − θ2η�
∗
2,

M13 = 2λ�2 + i�2η + θ2η�2,

M23 = −i�∗
1�2,

M33 = 2iλ2 − i |�2|2 − iθ2τ ,

θ1 =
∫ η

−∞
(p1|�1|2 + p2|�2|2)dη′,

θ2 =
∫ η

−∞
(τ1|�1|2 + τ2|�2|2)dη′.

Appendix 2

eδ0 = k12
k1 + k∗

2
,

eR1 = k11
k1 + k∗

1
,

eR2 = k22
k2 + k∗

2
,

eδ1 = k1 − k2
(k1 + k∗

1)(k
∗
1 + k2)

(α1k21 − α2k11),

eδ2 = k2 − k1
(k2 + k∗

2)(k1 + k∗
2)

(α2k12 − α1k22),

eδ
′
1 = k1 − k2

(k1 + k∗
1)(k

∗
1 + k2)

(β1k21 − β2k11),

eδ
′
2 = k2 − k1

(k2 + k∗
2)(k1 + k∗

2)
(β2k12 − β1k22),

eR3 = |k1 − k2|2
(k1 + k∗

1)(k2 + k∗
2)|k1 + k∗

2 |2
(k11k22 − k12k21),

ki j = (αiα
∗
j + βiβ

∗
j )

ki + k j
.
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