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Abstract In this paper, an efficient and accurate com-
putational method based on the Legendre wavelets
(LWs) together with the Galerkin method is proposed
for solving a class of nonlinear stochastic Itô–Volterra
integral equations. For this purpose, a new stochas-
tic operational matrix (SOM) for LWs is derived. A
collocation method based on hat functions (HFs) is
employed to derive a general procedure for forming
this matrix. The LWs and their operational matrices of
integration and stochastic Itô-integration and also some
useful properties of these basis functions are used to
transform such problems into corresponding nonlinear
systems of algebraic equations, which can be simply
solved to achieve the solution of such problems. More-
over, the efficiency of the proposed method is shown
for some concrete examples. The results reveal that the
proposedmethod is very accurate and efficient. Further-
more as some useful applications, the proposedmethod
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is applied to obtain approximate solutions for some sto-
chastic problems in the mathematics finance, biology,
physics and chemistry.

Keywords Legendre wavelets (LWs) · Stochastic
operational matrix (SOM) · Nonlinear stochastic Itô–
Volterra integral equations ·Brownianmotion process ·
Stochastic volatility models · Stochastic Lotka–
Volterra model · Duffing–Van der Pol Oscillator ·
Stochastic Brusselator problem

1 Introduction

Approximation by orthogonal families of basis func-
tions has found wide applications in sciences and engi-
neering [1]. The main idea of using an orthogonal basis
is that the problem under consideration is reduced into
solving a system of algebraic equations which can be
simply solved to achieve the solution of the problem
under study. This can be done by truncated series of
orthogonal basis functions for the solution of the prob-
lem and using the operational matrices of these basis
functions [1]. Depending on their structure, the orthog-
onal functions may be mainly classified into three fam-
ilies [2]. The first family includes sets of piecewise con-
stant orthogonal functions such as theWalsh functions,
block pulse functions, etc. The second family consists
of sets of orthogonal polynomials such as Laguerre,
Legendre, Chebyshev, etc., and the third family is the
widely used sets of sine-cosine functions. It is worth
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noting that approximating a continuous function with
piecewise constant basis functions results in an approx-
imation that is piecewise constant. On the other hand
if a discontinuous function is approximated with con-
tinuous basis functions, the resulting approximation is
continuous and can not properly model the discontinu-
ities. In remote sensing, images often have properties
that vary continuously in some regions and discontinu-
ously in others. Thus, in order to properly approximate
these spatially varying properties, it is necessary to
use approximating functions that can accurately model
both continuous and discontinuous phenomena. There-
fore, neither continuous basis functions nor piecewise
constant basis functions taken alone can efficiently and
accurately model these spatially varying properties.
However, wavelets basis functions are another basis set
which offers considerable advantages over alternative
basis sets and allows us to attack problems not accessi-
ble with conventional numerical methods. Their main
advantages are [1]: the basis set can be improved in
a systematic way, different resolutions can be used in
different regions of space, the coupling between dif-
ferent resolution levels is easy, there are few topolog-
ical constraints for increased resolution regions, the
Laplace operator is diagonally dominant in an appro-
priate wavelet basis, thematrix elements of the Laplace
operator are very easy to calculate and the numerical
effort scales linearly with respect to the system size.

It is also well known that we can approximate any
smooth function by the eigenfunctions of certain singu-
lar Sturm–Liouville problems such asLaguerre, Legen-
dre or Chebyshev orthogonal polynomials. In this man-
ner, the truncation error approaches zero faster than
any negative power of the number of basis functions
used in the approximation [3]. This phenomenon is
usually referred to as “The spectral accuracy” [3]. But,
in the case that the function under approximation is
not analytic, these basis functions do not work well
and therefore spectral accuracy does not happen. For
these situations, wavelet functions will be more effec-
tive. In this communication, it is worth mentioning that
theLWshavemutually spectral accuracy, orthogonality
and other useful properties of wavelets.

Nonlinear stochastic functional equations have been
extensively studied over a long period of time since
they are fundamental for modeling science and engi-
neering phenomena [4–8]. As the computational power
increases, it becomes feasible to use more accurate
functional equation models and solve more demand-

ing problems. Moreover, the study of stochastic or ran-
dom functional equations can be very useful in applica-
tion, due to the fact that they arise in many situations.
For example, stochastic integral equations arise in a
wide range of problems such as the stochastic formula-
tion of problems in reactor dynamics [9,10], the study
of the growth of biological populations [11], the the-
ory of automatic systems resulting in delay-differential
equations [12], and in many other problems occurring
in the general areas of biology, physics and engineer-
ing. Also, nowadays, there is an increasing demand
to investigate the behavior of even more sophisticated
dynamical systems in physical, medical, engineering
andfinancial applications [13–19]. These systemsoften
depend on a noise source, like a Gaussian white noise,
governed by certain probability laws, so that modeling
such phenomena naturally involves the use of various
stochastic differential equations (SDEs) [11,20–26], or
in more complicated cases, stochastic Volterra integral
equations and stochastic integro-differential equations
[27–34]. In most cases it is difficult to solve such prob-
lems explicitly. Therefore, it is necessary to obtain their
approximate solutions by using some numerical meth-
ods [9–15,20,29–31].

In recent years, the LWs have been used to estimate
solutions of some different types of functional equa-
tions, for instances see [1,35–40]. In this paper, the
LWs will be used for solving the following nonlinear
stochastic Itô–Volterra integral equation:

X (t) = h(t) +
∫ t

0
f (τ )μ (X (τ )) dτ

+
∫ t

0
g(τ )σ (X (τ )) dB(τ ), t ∈ [0, 1], (1)

where X (t), f (t), g(t), h(t), are the stochastic
processes defined on sameprobability space (�,F ,P),
X (t) is an unknown stochastic function to be found,
B(t) is a Brownianmotion process and the second inte-
gral in (1) is an Itô integral.Moreover, it is assumed that
μ and σ are analytic functions.

It is worth mentioning that a real-valued stochastic
process B(t), t ∈ [0, 1] is called Brownian motion, if
it satisfies the following properties [41]:

(i) B(0) = 0 (with the probability 1).
(ii) For 0 ≤ s < t ≤ 1 the random variable given by

the increment B(t)− B(s) is normally distributed
with mean zero and variance t − s; equivalently,
B(t) − B(s) ∼ √

t − s N (0, 1), where N (0, 1)
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Legendre wavelets Galerkin method 1187

denotes a normally distributed random variable
with zero mean and unit variance.

(iii) For 0 ≤ s < t < u < v ≤ 1 the increments
B(t) − B(s) and B(v) − B(u) are independent.

In order to compute an approximate solution for Eq.
(1), we first obtain some new useful properties for the
LWs and then derive an operational matrix of stochas-
tic Itô-integration for these basis functions to eliminate
the stochastic integral operation and reduce the prob-
lem into solving a system of algebraic equations. The
operationalmatrix of stochastic Itô-integration for LWs
can be expressed as:

∫ t

0
�(τ)dB(t) � Ps�(t), (2)

where B(t) is a Brownian motion process and �(t) =
[ψ1(t), ψ2(t), . . . , ψm̂(t)]T , in which ψi (t) (i = 1,
2, . . . , m̂) are LWs and Ps is the operational matrix
of stochastic Itô-integration for LWs.

The proposed method is based on reducing the
problem under study to a system of nonlinear alge-
braic equations by expanding the solution as LWs with
unknown coefficients and using the operational matri-
ces of integration and stochastic integration. Moreover,
a new technique for computation of the nonlinear terms
in such equations is presented.

This paper is organized as follows: In Sect. 2, the
LWs and their properties are described. In Sect. 3, the
proposedmethod is described for solving nonlinear sto-
chastic Itô–Volterra integral equations. In Sect. 4, the
proposedmethod is applied for solving some numerical
examples. In Sect. 5, some applications of the proposed
computational method are described. Finally, a conclu-
sion is drawn in Sect. 6.

2 The LWs and their properties

In this section, we briefly review the LWs and their
properties which are used further in this paper.

2.1 Wavelets and the LWs

Wavelets constitute a family of functions constructed
from dilation and translation of a single function ψ(t)
called themother wavelet.When the dilation parameter
a and the translation parameter b vary continuously,

we have the following family of continuous wavelets
as [35]:

ψab(t) = |a|− 1
2 ψ

(
t − b

a

)
, a, b ∈ R, a �= 0. (3)

If we restrict the parameters a and b to discrete values
as a = a−k

0 , b = nb0a
−k
0 , where a0 > 1, b0 > 0, we

have the following family of discrete wavelets:

ψkn(t) = |a0| k2 ψ
(
ak0 t − nb0

)
, k, n ∈ Z, (4)

where the functions ψkn(t) form a wavelet basis for
L2(R). In practice, when a0 = 2 and b0 = 1, the
functions ψkn(t) form an orthonormal basis.

The LWs ψnm(t) = ψ(k, n,m, t) have four argu-
ments,n = 1, 2, . . . , 2k , k is any arbitrary non-negative
integer, m is the degree of the Legendre polynomials
and independent variable t is defined on [0, 1]. They
are defined on the interval [0, 1] by [1]:

ψnm(t)=
⎧⎨
⎩

√
2m+12

k
2 Pm

(
2k+1t−2n+1

)
, t ∈

[
n−1
2k

, n
2k

]
,

0, o.w.

(5)

Here Pm(t) are the well-known Legendre polynomials
of degree m, which are orthogonal with respect to the
wight function w(t) = 1, on the interval [−1, 1] and
satisfy the following recursive relation [3]:

P0(t) = 1, P1(t) = t, Pm+1(t) = 2m + 1

m + 1
t Pm(t)

− m

m + 1
Pm−1(t), m = 1, 2, . . . . (6)

The set of the LWs is an orthogonal set with respect
to the weight function w(t) = 1.

2.2 Function approximation

A function f (t) defined over [0, 1] may be expanded
by the LWs as:

f (t) =
∞∑
n=1

∞∑
m=0

cnmψnm(t), (7)

where

cnm = ( f (t), ψnm(t)) =
∫ 1

0
f (t)ψnm(t)dt, (8)

and (., .) denotes the inner product in L2[0, 1].
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By truncating the infinite series in Eq. (7), we can
approximate f (t) as follows:

f (t) �
2k∑
n=1

M−1∑
m=0

cnmψnm(t) = CT�(t), (9)

where T indicates transposition, C and �(t) are m̂ =
2kM column vectors.

For simplicity, Eq. (9) can be also written as:

f (t) �
m̂∑
i=1

ciψi (t) = CT�(t), (10)

where ci = cnm and ψi (t) = ψnm(t), and the index i
is determined by the relation i = M(n − 1) + m + 1.

Thus we have:

C �
[
c1, c2, . . . , cm̂

]T
,

and

�(t) �
[
ψ1(t), ψ2(t), . . . , ψm̂(t)

]T
. (11)

By taking the collocation points:

ti = i

m̂ − 1
, i = 0, 1, . . . , m̂ − 1, (12)

into Eq. (11), we define the LWs matrix �m̂×m̂ as:

�m̂×m̂ �
[
�(0),�

(
1

m̂ − 1

)
, . . . , �(1)

]
. (13)

For example, for k = 1, M = 3, we have:

�6×6=√
2

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0
−√

3 − 1
5

√
3 3

5

√
3 0 0 0√

5 − 11
25

√
5 1

25

√
5 0 0 0

0 0 0 1 1 1
0 0 0 − 3

5

√
3 1

5

√
3

√
3

0 0 0 1
25

√
5 − 11

25

√
5

√
5

⎞
⎟⎟⎟⎟⎟⎟⎠

.

2.3 Operational matrix of stochastic Itô-integration

The stochastic Itô-integration of the vector �(t),
defined in Eq. (11), may be expressed as:

∫ t

0
�(τ)dB(τ ) � Ps�(t), (14)

where Ps is the m̂ × m̂ stochastic operational matrix
(SOM) for the LWs.

In the sequel we express an explicit form of the
matrix Ps . To this end, we need to introduce another
family of basis functions, namely hat functions (HFs).
An m̂-set of these basis functions is defined on the inter-
val [0, 1] as [42–44]:

φ0(t) =
⎧⎨
⎩

h − t

h
, 0 ≤ t < h,

0, o.w,
(15)

φi (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t − (i − 1)h

h
, (i − 1)h≤ t< ih,

(i+1)h − t

h
, ih ≤ t < (i + 1)h,

0, o.w,

i = 1, 2, . . . , m̂ − 2,

(16)

and

φm̂−1(t) =
⎧⎨
⎩

t − (1 − h)

h
, 1 − h ≤ t ≤ 1,

0, o.w,
(17)

where h = 1
m̂−1 .

From the definition of the HFs, we have:

φi ( jh) =
{
1, i = j,
0, i �= j.

(18)

An arbitrary function X (t) defined over [0, 1] may be
expanded by the HFs as:

X (t) �
m̂−1∑
i=0

xiφi (t) = XT�(t) = �(t)T X, (19)

where

X � [x0, x1, . . . , xm̂−1]T , (20)

and

�(t) � [φ0(t), φ1(t), . . . , φm̂−1(t)]T . (21)

The important aspect of using theHFs in approximating
a function X (t) lies in the fact that the coefficients xi
in Eq. (19) are given by:

xi = X (ih), i = 0, 1, . . . , m̂ − 1. (22)

Theorem 2.1 Suppose�(t) be the LWs vector, defined
in Eq. (11). Then the stochastic Itô-integration of the
vector �(t) can be expressed as follows:

∫ t

0
�(τ)dB(τ ) � Ps�(t) �

(
�m̂×m̂ P̂s�

−1
m̂×m̂

)
�(t),

(23)
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where �m̂×m̂ is the LWs matrix which is defined in Eq.
(13) and P̂s is the operational matrix of stochastic Itô-
integration for the HFs which is given in [44] by:

∫ t

0
�(τ)dB(τ ) � P̂s�(t), (24)

where

P̂s =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 α0(h) α0(h) 0 . . . α0(h) α0(h)

0 B(h) + α1(h) β1(h) 0 . . . β1(h) β1(h)

0 0 B(2h) + α2(h) β2(h) . . . β2(h) β2(h)
...

...
...

...
. . .

...
...

0 0 0 0 . . . B
(
(m̂ − 2)h

)+ αm̂−2(h) βm̂−2(h)

0 0 0 0 . . . 0 B(T ) + αm̂−1(h)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (25)

and

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α0(h) = 1

h

∫ h

0
B(τ )dτ,

αi (h) = −1

h

∫ ih

(i−1)h
B(τ )dτ, i = 1, 2, . . . , m̂ − 1,

βi (h) = −1

h

(∫ ih

(i−1)h
B(τ )dτ −

∫ (i+1)h

ih
B(τ )dτ

)
, i = 1, 2, . . . , m̂ − 2.

(26)

Proof By considering Eqs. (19) and (22), it can be sim-
ply seen that the LWs can be expanded in terms of an
m̂-set of HFs as:

�(t) � �m̂×m̂�(t). (27)

Now, by considering Eq. (14), and using Eqs. (27) and
(24), we obtain:∫ t

0
�(τ)dB(τ ) �

∫ t

0
�m̂×m̂�(τ)dB(τ )

= �m̂×m̂

∫ t

0
�(τ)dB(τ )

� �m̂×m̂ P̂s�(t). (28)

Also from Eqs. (14) and (28), we have:

Ps�(t) � �m̂×m̂ P̂s�(t). (29)

Then, by considering Eqs. (27) and (29), we obtain the
LWs operational matrix of stochastic Itô-integration Ps
as:

Ps � �m̂×m̂ P̂s�
−1
m̂×m̂, (30)

which completes the proof. 	


2.4 Operational matrix of integration

The integration of the vector �(t), defined in Eq. (11),
can be expressed as:

∫ t

0
�(τ)dτ � P�(t), (31)

where the m̂ × m̂ matrix P is called the operational
matrix of integration for the LWs.

Remark 1 By considering the process of proving The-
orem 2.1, we can approximate the matrix P as:

P � �m̂×m̂ P̂�−1
m̂×m̂, (32)

where the m̂ × m̂ matrix P̂ is called the operational
matrix of integration for the HFs and is given in [43]
as follows:

P̂ = h

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 . . . 1 1
0 1 2 . . . 2 2
0 0 1 . . . 2 2
...

...
...

. . .
...

...

0 0 0 0 1 2
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (33)
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2.5 Some new useful results for the LWs

In this section, we obtain some new useful results for
the LWs which will be used further in this paper.

Lemma 2.2 Suppose XT�(t) and Y T�(t) be the
expansions of X (t) and Y (t) by the HFs, respectively.
Then we have:

X (t)Y (t) � HT�(t), (34)

where H = X�Y , denotes pointwise product of X and
Y , so that for any two matrices A and B of the same
dimensions it yields a matrix of the same dimensions
with elements (A � B)i j = (A)i j (B)i j .

Proof By considering Eqs. (19) and (22), we have:

X (t) �
m̂−1∑
i=0

X (ih)φi (t) = XT�(t),

Y (t) �
m̂−1∑
i=0

Y (ih)φi (t) = Y T�(t),

and

X (t)Y (t) �
m̂−1∑
i=0

X (ih)Y (ih)φi (t) = HT�(t),

which completes the proof. 	

Corollary 2.3 Suppose XT�(t) be the expansion of
X (t) by the HFs. Then for any integer q ≥ 2 we have:

[X (t)]q � [xq0 , xq1 , . . . , xqm̂−1]�(t). (35)

Proof By considering Lemma 2.2, the proof will be
straightforward. 	

Theorem 2.4 [45] Suppose F be an analytic function
and XT�(t) be the expansion of X (t) by the general-
ized hat basis functions. Then we have:

F (X (t)) � F
(
XT
)

�(t), (36)

where F
(
XT
) = [F(x0), F(x1), . . . , F(xm̂−1)].

Theorem 2.5 Suppose F be an analytic function and
XT�(t) be the expansion of X (t) by the LWs. Then we
have:

F (X (t)) � F
(
X̃ T
)

�−1
m̂×m̂�(t), (37)

where X̃T = XT�m̂×m̂ .

Proof By considering Eq. (27) and Theorem 2.4, we
have:

F (X (t)) � F
(
XT�(t)

)
� F

(
XT�m̂×m̂�(t)

)

= F
(
X̃ T�(t)

)
� F

(
X̃ T
)

�(t). (38)

So from Eqs. (27) and (38), we have:

F (X (t)) � F
(
X̃ T
)

�(t) � F
(
X̃ T
)

�−1
m̂×m̂�(t),

(39)

which completes the proof. 	

Corollary 2.6 Suppose XT�(t) and Y T�(t) be the
expansions of X (t) and Y (t) by the LWs, respectively,
and also F and G be two analytic functions. Then we
have:

F (X (t))G (Y (t))

�
(
F
(
X̃ T
)

� G
(
Ỹ T
))

�−1
m̂×m̂�(t), (40)

Proof By considering Theorem 2.5, Eq. (27) and
Lemma 2.2, the proof will be straightforward. 	


3 Description of the proposed computational
method

In this section, we apply the operational matrices of
integration and stochastic Itô-integration of the LWs
together with some of their useful properties of these
basis functions for solving nonlinear stochastic Itô–
Volterra integral equation:

X (t) = h(t) +
∫ t

0
f (τ )μ (X (τ )) dτ (41)

+
∫ t

0
g(τ )σ (X (τ )) dB(τ ), t ∈ [0, 1],

where X (t), f (t), g(t) and h(t) are the stochas-
tic processes defined on the same probability space
(�,F ,P), X (t) is an unknown stochastic function to
be found, B(t) is a Brownian motion process and the
second integral in Eq. (41) is an Itô integral. Moreover
it is assumed that μ and σ are analytic functions.

For solving this equation, we approximate X (t),
h(t), f (t) and g(t) by the LWS as follows:

X (t) � XT�(t), (42)

h(t) � HT�(t), (43)

and
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Legendre wavelets Galerkin method 1191

{
f (t) � CT�(t),
g(t) � DT�(t),

(44)

where X , H , C and D are the LWs coefficient vectors.
From Eq. (42) and Theorem 2.5, we have:

⎧⎨
⎩

μ(X (τ )) � μ
(
X̃ T
)

�−1
m̂×m̂�(τ),

σ (X (τ )) � σ
(
X̃ T
)

�−1
m̂×m̂�(τ),

(45)

where X̃ T = XT�m̂×m̂ .
Now from Eqs. (44), (45) and Corollary 2.6, we

have:

⎧⎨
⎩

f (τ )μ (X (τ )) �
(
C̃T � μ

(
X̃ T
))

�−1
m̂×m̂�(τ),

g(τ )σ (X (τ )) �
(
D̃T � σ

(
X̃ T
))

�−1
m̂×m̂�(τ),

(46)

where C̃T = CT�m̂×m̂ and D̃T = DT�m̂×m̂ .
So by substituting Eqs. (42), (43) and (46) into Eq.

(41), and using operational matrices of integration and
stochastic Itô-integration, we can write the residual
function R(t) for stochastic integral equation (41) as
follows:

R(t) =
(
XT − HT −

(
C̃T � μ

(
X̃ T
))

�−1
m̂×m̂ P

−
(
D̃T � σ

(
X̃ T
))

�−1
m̂×m̂ Ps

)
�(t). (47)

As in a typical Galerkin method [3], we generate m̂
nonlinear algebraic equations:

(
R(t), ψ j (t)

)

=
∫ 1

0
R(t)ψ j (t)dt = 0, j = 1, 2, . . . , m̂, (48)

where ψ j (t) = ψnm(t), and the index j is determined
by the relation j = M(n − 1) + m + 1.

Finally, by solving this system for the unknown vec-
tor X , we obtain an approximate solution for the prob-
lem by substituting X in Eq. (42).

The algorithm of the proposed method is presented
as follows:

Algorithm 1
Input: M, N ∈ N, k ∈ Z

+; Brownian motion process B(t);
the functions h, f, g ∈ L2 [0, 1] and μ, σ ∈ C∞ [0, 1].
Step 1: Define the LWs ψnm(t) from Eq. (5).
Step 2: Construct the LWs vector �(t) from Eq. (11).
Step 3: Compute the LWs matrix �m̂×m̂ �[
�(0),�

(
1

m̂−1

)
, . . . , �(1)

]
.

Step 4: Compute the integration operational matrix P using
Eqs. (31)–(33) and SOM P̂s using Eq. (25).
Step 5:Compute the LWs stochastic operational matrix Ps =
�m̂×m̂ P̂s�

−1
m̂×m̂ .

Step 6: Compute the vectors H, C and D in Eqs. (43) and
(44) using Eq. (8).
Step 7: Compute the vectors C̃T = CT�m̂×m̂ and D̃T =
DT�m̂×m̂ .

Step 8: Put R(t) =
(
XT − HT − (

C̃T � μ
(
X̃ T
))

�−1
m̂×m̂ P

− (
D̃T � σ

(
X̃ T
))

�−1
m̂×m̂ Ps

)
�(t).

Step 9: Construct the nonlinear system of algebraic equations:∫ 1

0
R(t)ψ j (t)dt = 0, j = 1, 2, . . . , m̂.

Step 10: Solve the nonlinear system of algebraic equations
in Step 9 and obtain the unknown vector X .
Output: The approximate solution: X (t) � XT�(t).

4 Illustrative test problems

In this section, we consider some numerical examples
to illustrate the efficiency and reliability of the pro-
posed method. For computational purposes, it is useful
to consider discretized Brownian motion, where B(t)
is specified at t discrete values and employed an spline
interpolation to construct B(t). We thus set �t = 1

N
for some positive integer N and let Bi denote B(ti )
with ti = i�t . Condition (i) in introduction says that
B0 = 0 with the probability 1, and Conditions (ii) and
(iii) tell us that

Bi = Bi−1 + dBi , i = 1, 2, . . . , N ,

where each dBi is an independent random variable of
the form

√
�tN (0, 1).

Also we report the absolute errors in some points
t j ∈ [0, 1] as:∣∣e (t j )∣∣ =

∣∣∣XT�
(
t j
)− X

(
t j
)∣∣∣ .

Example 1 Let usfirst consider the followingnonlinear
stochastic Itô–Volterra integral equation [46]:

X (t) = X0 + a2
∫ t

0
cos (X (τ )) sin3 (X (τ )) dτ

+ a
∫ t

0
sin2 (X (τ )) dB(τ ),
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where X (t) is an unknown stochastic process defined
on the probability space (�,F ,P), and B(t) is a
Brownian motion process. The exact solution of this
problem is given in [46] by:

X (t) = arccot (aB(t) + cot (X0)) .

This problem is also solved by the proposed computa-
tionalmethod for X0 = a = 1

20 . Thegraphs of the exact
and approximate solutions for m̂ = 96 (k = 5, M = 3)
and N = 120 are shown in Fig. 1. The absolute
errors of the approximate solution at some different
points t ∈ [0, 1], for m̂ = 24 (k = 3, M = 3),
m̂ = 48 (k = 4, M = 3) and m̂ = 96 (k = 5, M = 3)
are shown in Table 1. From Fig. 1 and Table 1, it can
be seen that the proposed method is very efficient and
accurate in solving this problem.

Example 2 Consider the following nonlinear stochas-
tic Itô–Volterra integral equation [46]:

X (t) = X0 − a2

2

∫ t

0
tanh (X (τ )) sech2 (X (τ )) dτ

+a
∫ t

0
sech (X (τ )) dB(τ ),

where X (t) is an unknown stochastic process defined
on the probability space (�,F ,P), and B(t) is a
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Fig. 1 The graphs of the exact and approximate solutions for
Example 1

Table 1 The absolute errors of the approximate solution at some
different points for Example 1

m̂ t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

24 2.0645E−5 1.8513E−5 6.3995E−6 3.7607E−6 3.4588E−7

48 6.8033E−6 1.0172E−6 6.3954E−7 4.7170E−6 3.1923E−7

96 5.7369E−8 1.1786E−7 1.7839E−7 2.3998E−7 3.0300E−7
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Fig. 2 The graphs of the exact and approximate solutions for
Example 2

Table 2 The absolute errors of the approximate solution at some
different points for Example 2

m̂ t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

24 3.0807E−4 1.5827E−3 5.8391E−3 2.7070E−3 9.6720E−6

48 6.8570E−4 1.0130E−3 1.3281E−3 1.5258E−3 7.8065E−6

96 8.4116E−7 1.7767E−6 4.7233E−6 6.6628E−6 8.4139E−6

Brownian motion process. The exact solution of this
problem is given in [46] by:

X (t) = arcsinh (aB(t) + sinh (X0)) .

This problem is also solved by the proposed compu-
tational method for X0 = 0 and a = 1

30 . The graphs
of the exact and approximate solutions for m̂ = 96
and N = 82 are shown in Fig. 2. The absolute errors
of the approximate solution at some different points
t ∈ [0, 1], for m̂ = 24, m̂ = 48 and m̂ = 96 are shown
in Table 2. From Fig. 2 and Table 2, it can be seen that
the proposed method is very efficient and accurate in
solving this problem.

Example 3 Consider the following nonlinear stochas-
tic Itô–Volterra integral equation [46]:

X (t) = X0 +
∫ t

0

(
aX (τ ) + bX (τ )2

)
dτ

+
∫ t

0
cX (τ )dB(τ ),

where X (t) is an unknown stochastic process defined
on the probability space (�,F ,P), and B(t) is a
Brownian motion process. The exact solution of this
problem is given in [46] by:
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Fig. 3 The graphs of the exact and approximate solutions for
Example 3

Table 3 The absolute errors of the approximate solution at some
different points for Example 3

m̂ t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

24 1.4887E−5 2.0779E−4 2.4626E−4 1.0138E−3 1.3854E−4

48 1.4257E−4 2.2798E−5 4.8847E−5 3.6948E−4 1.3799E−4

96 2.5441E−5 5.2877E−5 7.7811E−5 1.0434E−4 1.3902E−4

X (t) = U (t)
1
X0

− b
∫ t
0 U (τ )dτ

,

where U (t) = exp
((

a − c2
2

)
t + cB(t)

)
, and a, b

and c are constants. This problem is also solved by the
proposed computational method for X0 = 1

10 , a = 1
8 ,

b = 1
32 and c = 1

20 . The graphs of the exact solution
and approximate solutions for m̂ = 96 and N = 60 are
shown in Fig. 3. The absolute errors of the approximate
solution at some different points t ∈ [0, 1], for m̂ = 24,
m̂ = 48 and m̂ = 96 are shown in Table 3. From Fig. 3
and Table 3, it can be seen that the proposed method is
very efficient and accurate in solving this problem.

Example 4 Consider finally the following nonlinear
stochastic Itô–Volterra integral equation [46]:

X (t) = X0 − a2
∫ t

0
X (τ )

(
1 − X2(τ )

)
dτ

+a
∫ t

0

(
1 − X2(τ )

)
dB(τ ),

where X (t) is an unknown stochastic process defined
on the probability space (�,F ,P), and B(t) is a
Brownian motion process. The exact solution of this
problem is given in [46] by:
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Fig. 4 The graphs of the exact and approximate solutions for
Example 4

Table 4 The absolute errors of the approximate solution at some
different points for Example 4

m̂ t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0

24 3.0697E−4 5.7637E−5 1.2910E−3 3.7701E−3 5.9236E−6

48 1.4019E−3 1.1434E−3 5.7682E−4 1.9447E−3 8.6169E−6

96 1.2937E−7 1.2398E−6 1.1533E−6 5.6874E−6 7.6646E−6

X (t) = tanh (aB(t) + arctanh(X0)) .

This problem is also solved by the proposed computa-
tional method for X0 = 1

100 and a = 1
30 . The graphs

of the exact and approximate solutions for m̂ = 96
and N = 65 are shown in Fig. 4. The absolute errors
of the approximate solution at some different points
t ∈ [0, 1], for m̂ = 24, m̂ = 48 and m̂ = 96 are shown
in Table 4. From Fig. 4 and Table 4, it can be seen that
the proposed method is very efficient and accurate in
solving this problem.

5 Some applications of the proposed method

This section deals with the proposed computational
method in Sect. 3, to obtain approximate solutions for
some practical stochastic problems.

5.1 The mathematical finance

A well-known stochastic model which is used to stock
prices, stochastic volatilities, and electricity prices is
as follows [47]:

dS(t) = κS(t) (μ̄ − ln(S(t))) dt + σ̄ S(t)dB(t),

S(0) = S0 > 0, (49)
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where κ > 0, μ̄ and σ̄ are constants and also stochastic
process S(t) for all t > 0 is positive.

It is worthmentioning that stochastic volatilitymod-
els have become popular for derivative pricing and
hedging in the last decade as the existence of a non-
flat implied volatility surface (or term-structure) has
been noticed and become more pronounced, especially
since the 1987 crash. This phenomenon, which is well-
documented [48,49], stands in empirical contradiction
to the consistent use of a classical Black–Scholes (con-
stant volatility) approach to pricing options and similar
securities. However, it is clearly desirable to maintain
asmany of the features as possible that have contributed
to thismodel’s popularity and longevity, and the natural
extension pursued both in the literature and in practice
has been to modify the specification of volatility in
the stochastic dynamics of the underlying asset price
model.

To solve stochastic model in Eq. (49), by the trans-
formation S(t) = X (t) + 1 in which X (t) is the
unknown stochastic process, we transform Eq. (49) to
the nonlinear stochastic differential equation:

dX (t) = κ (X (t) + 1) (μ̄ − ln(1 + X (t))) dt

+σ̄ (X (t) + 1) dB(t) X (0) = X0, (50)

where X0 = S0 − 1.
However, we can write the integral form of the non-

linear SDE (50) as:

X (t) = X0 + κ

∫ t

0
(X (τ ) + 1) (μ̄ − ln(1 + X (τ ))) dτ

+ σ̄

∫ t

0
(X (τ ) + 1) dB(τ ) (51)

It is obvious that the proposed computational method
can be used to obtain X (t) as the solution of (51).
Finally, S(t) as the solution of original problem is
S(t) = 1 + X (t).

As a numerical example, we consider the nonlin-
ear stochastic differential equation (49) with S0 =
0.1, κ = 1, μ̄ = 0.5 and σ̄ = 0.75. This problem is
also solved by the proposed computational method for
m̂ = 96 and N = 100. The graph of the approximate
solution is shown in Fig. 5.

5.2 The biological systems

One of the most popular nonlinear systems in the
biology is the Lotka–Volterra one [50]. As is well
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Fig. 5 The graph of the approximate solution for stochastic
finance problem

known, it was proposed by Volterra to account for the
observed periodic variations in a predator–prey sys-
tem. The Lotka–Volterra model can serve as a stepping
stone toward the understanding of most realistic but
still mathematically less tractable models of predator–
prey systems [50]. The deterministic system which can
be used to explain the problem is described by ordinary
differential equations and is given by [50]:

⎧⎪⎨
⎪⎩

Ṅ1(t) = dN1(t)

dt
= (a − bN2(t)) N1(t),

Ṅ2(t) = dN2(t)

dt
= (−c − gN1(t)) N2(t),

a, b, c, g > 0,

(52)

where N1(t)means the number of preys, and N2(t) the
number of predators.

One of the most simple stochastic models for Eq.
(52) is called stochastic Lotka–Volterra model and is
given as follows [50]:

{
dN1(t)=(b1−a1N2(t)) N1(t)dt+σ̄1N1(t)dB1(t), N1(0)=N10,

dN2(t)=(b2−a2N1(t)) N2(t)dt+σ̄2N2(t)dB2(t), N2(0)=N20,

(53)

where B1(t) and B2(t) are independent Brownian
motions.

We can write the integral form of the
two-dimensional SDE (53) as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

N1(t) = N10 +
∫ t

0
(b1 − a1N2(τ )) N1(τ )dτ

+ σ̄1
∫ t
0 N1(τ )dB1(τ ),

N2(t) = N20 +
∫ t

0
(b2 − a2N1(τ )) N2(τ )dτ

+ σ̄2
∫ t
0 N2(τ )dB2(τ ).

(54)
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To solve Eq. (54) using the proposed computational
method, we approximate N1(t) and N2(t) by the LWS
as follows:

{
N1(t) � NT

1 �(t),
N2(t) � NT

2 �(t),
(55)

where N1 and N2 are the LWs coefficient vectors which
should be found, and�(t) is the vectorwhich is defined
in Eq. (11).

Moreover, fromEq. (55) andCorollary 2.6, we have:

N1(t)N2(t) �
(
Ñ T
1 � Ñ T

2

)
�−1

m̂×m̂�(t), (56)

where Ñ T
1 = NT

1 �m̂×m̂ and Ñ T
2 = NT

2 �m̂×m̂ .
Moreover, by expanding N10 and N20 in terms of

the Lws, we have:{
N10 � N10e

T�(t),
N20 � N20e

T�(t),
(57)

where e is the LWs coefficients vector for the unit func-
tion.

Consequently by substituting Eqs. (55)–(57) into
Eq. (54), and considering Eqs. (14) and (31), we have:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

NT
1 �(t) �

(
N10e

T +
(
b1N

T
1

−a1
(
Ñ T
1 � Ñ T

2

)
�−1

m̂×m̂

)
P + σ̄1NT

1 Ps
)

�(t),

NT
2 �(t) �

(
N20e

T +
(
b2N

T
2

−a2
(
Ñ T
1 � Ñ T

2

)
�−1

m̂×m̂

)
P + σ̄2NT

2 Ps
)

�(t).

(58)

Now, fromEq. (58), we canwrite the residual functions
R1(t) and R2(t) for system (54) as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

R1(t) =
(
NT
1 − N10e

T −
(
b1N

T
1

−a1
(
Ñ T
1 � Ñ T

2

)
�−1

m̂×m̂

)
P − σ̄1NT

1 Ps
)

�(t),

R2(t) =
(
NT
2 − N20e

T −
(
b2N

T
2

−a2
(
Ñ T
1 � Ñ T

2

)
�−1

m̂×m̂

)
P − σ̄2NT

2 Ps
)

�(t).

(59)

As in a typical Galerkin method [3], we generate 2m̂
nonlinear algebraic equations:

⎧⎪⎪⎨
⎪⎪⎩

(
R1(t), ψ j (t)

) =
∫ 1

0
R1(t)ψ j (t)dt = 0, j = 1, 2, . . . , m̂,

(
R2(t), ψ j (t)

) =
∫ 1

0
R2(t)ψ j (t)dt = 0, j = 1, 2, . . . , m̂,

(60)

where ψ j (t) = ψnm(t), and the index j is determined
by the relation j = M(n − 1) + m + 1.

Finally, by solving system (60) for the unknown
vectors N1 and N2, we obtain the approximate solu-
tions of the problem as N1(t) � NT

1 �(t) and N2(t) �
NT
2 �(t).
The algorithm of the proposed computational

method is presented as follows:

Algorithm 2
Input: M ∈ N, k, N ∈ Z

+; Brownian motion processes B1(t)
and B2(t); ai , bi , σ̄i , Ni0 for i = 1, 2.
Step 1: Define the LWs ψnm(t) from Eq. (5).
Step 2: Construct the LWs vector �(t) from Eq. (11).
Step 3: Compute the LWs matrix �m̂×m̂ �[
�(0),�

(
1

m̂−1

)
, . . . , �(1)

]
.

Step 4: Compute the integration operational matrix P using
Eqs. (31)–(33) and SOM P̂s using Eq. (25).
Step 5: Compute the LWs stochastic operational matrix Ps =
�m̂×m̂ P̂s�

−1
m̂×m̂ .

Step 6: Compute the vectors eT using Eq. (8).
Step 7: Compute the vectors Ñ T

1 = NT
1 �m̂×m̂ and

Ñ T
2 = NT

2 �m̂×m̂ .

Step8:Put

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

R1(t)=
(
NT
1 − N10e

T −
(
b1N

T
1

−a1
(
Ñ T
1 � Ñ T

2

)
�−1

m̂×m̂

)
P−σ̄1NT

1 Ps
)

�(t),

R2(t)=
(
NT
2 −N20e

T −
(
b2N

T
2

−a2
(
Ñ T
1 � Ñ T

2

)
�−1

m̂×m̂

)
P−σ̄2NT

2 Ps
)

�(t).

.

Step 9: Construct the nonlinear system of algebraic
equations:⎧⎪⎪⎨
⎪⎪⎩

(
R1(t), ψ j (t)

)=
∫ 1

0
R1(t)ψ j (t)dt=0, j =1, 2, . . . , m̂,

(
R2(t), ψ j (t)

)=
∫ 1

0
R2(t)ψ j (t)dt=0, j =1, 2, . . . , m̂,

Step 10: Solve the nonlinear system of algebraic equa-
tions in Step 9 and obtain the unknown vectors N1 and
N2.
Output: The approximate solutions: N1(t) � NT

1 �(t)
and N2(t) � NT

2 �(t).

As a numerical example, we consider the nonlinear
system of stochastic integral equations (54) with a1 =
0.3, a2 = 0.1, b1 = 2.0, b2 = 1.5, σ̄1 = 0.2, σ̄2 =
0.4, N10 and N20 = 1.0. This problem is also solved
by the proposed method for m̂ = 48 and N = 80.
The behavior of the numerical solutions is shown in
Fig 6.
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Fig. 6 The graph of the approximate solution for stochastic bio-
logic problem

5.3 The Duffing–Van der Pol Oscillator

We investigate a simplified version of a Duffing–Van
der Pol oscillator [46]:

ẍ + ẋ −
(
α − x2

)
x = σ̄ xξ, (61)

driven by multiplicative white noise ξ(t) = dB(t)
dt ,

where α is a real-valued parameter. The corresponding
Itô stochastic differential equation is two-dimensional,
with components X1 and X2 representing the displace-
ment x and speed ẋ , respectively [46]:

{
dX1(t) = X2(t)dt, X1(0) = X10,

dX2(t) =
{
X1(t)

(
α − X2

1(t)
)

− X2(t)
}
dt + σ̄ X1(t)dB(t), X2(0) = X20,

(62)

where B(t) is a one-dimensional standard Wiener
process and σ̄ controls the strength of the induced mul-
tiplicative noise.

Wecanwrite the integral formof the two-dimensional
SDE (62) as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X1(t) = X10 +
∫ t

0
X2(τ )dτ,

X2(t)= X20+
∫ t

0

{
X1(τ )

(
α−X2

1(τ )
)
−X2(τ )

}
dτ

+σ̄
∫ t
0 X1(τ )dB(τ ),

(63)

To solve Eq. (63) using the proposed computational
method, we approximate X1(t) and X2(t) by the LWS
as follows:{

X1(t) � XT
1 �(t),

X2(t) � XT
2 �(t),

(64)

where X1 and X2 are the LWs coefficient vectors which
should be found, and�(t) is the vectorwhich is defined
in (11).

Also from Eq. (64) and Theorem 2.5, we have:

X3
1(t) �

(
X̃ T
1

)3
�−1

m̂×m̂�(t), (65)

where X̃ T
1 = XT

1 �m̂×m̂ .
Moreover, by expanding X10 and X20 in terms of

the Lws, we have:

{
X10 � X10e

T�(t),
X20 � X20e

T�(t),
(66)

where e is the LWs coefficients vector for the unit func-
tion.

Therefore by substituting Eqs. (64)–(66) into (63),
and considering Eqs. (14) and (31), we have:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

XT
1 �(t) �

(
X10e

T + XT
2 P

)
�(t),

XT
2 �(t) �

(
X20e

T +
(

αXT
1 −

(
X̃ T
1

)3
�−1

m̂×m̂

−XT
2

)
P + σ̄ XT

1 Ps
)

�(t).

(67)

Now, fromEq. (67), we canwrite the residual functions
R1(t) and R2(t) for system (63) as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

R1(t) =
(
XT
1 − X10e

T − XT
2 P

)
�(t),

R2(t)=
(
XT
2 − X20e

T −
(

αXT
1 −

(
X̃ T
1

)3
�−1

m̂×m̂

−XT
2

)
P − σ̄ XT

1 Ps
)

�(t).

(68)

As in a typical Galerkin method, we generate 2m̂ non-
linear algebraic equations:

⎧⎪⎪⎨
⎪⎪⎩

(
R1(t), ψ j (t)

) =
∫ 1

0
R1(t)ψ j (t)dt = 0, j = 1, 2, . . . , m̂,

(
R2(t), ψ j (t)

) =
∫ 1

0
R2(t)ψ j (t)dt = 0, j = 1, 2, . . . , m̂.

(69)
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Finally, by solving system (69) with respect to the
unknown vectors X1 and X2, we obtain the approxi-
mate solutions of the problem as X1(t) � XT

1 �(t) and
X2(t) � XT

2 �(t).
The algorithmof theproposed computationalmethod

is presented as follows:

Algorithm 3
Input: M ∈ N, k, N ∈ Z

+; Brownian motion process B(t);
α, σ̄ , X10 and X20.
Step 1: Define the LWs ψnm(t) from Eq. (5).
Step 2: Construct the LWs vector �(t) from Eq. (11).
Step 3: Compute the LWs matrix �m̂×m̂ �[
�(0),�

(
1

m̂−1

)
, . . . , �(1)

]
.

Step 4: Compute the integration operational matrix P using
Eqs. (31)–(33) and SOM P̂s using Eq. (25).
Step 5:Compute the LWs stochastic operational matrix Ps =
�m̂×m̂ P̂s�

−1
m̂×m̂ .

Step 6: Compute the vectors eT using Eq. (8).
Step 7: Compute the vector X̃ T

1 = XT
1 �m̂×m̂ .

Step 8: Put

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R1(t) =
(
XT
1 − X10e

T − XT
2 P

)
�(t),

R2(t) =
(
XT
2 − X20e

T −
(
αXT

1

− (
X̃ T
1

)3
�−1

m̂×m̂ − XT
2

)
P − σ̄ XT

1 Ps
)

�(t).

.

Step 9: Construct the nonlinear system of algebraic equations:⎧⎪⎪⎨
⎪⎪⎩

(
R1(t), ψ j (t)

) =
∫ 1

0
R1(t)ψ j (t)dt = 0, j = 1, 2, . . . , m̂,

(
R2(t), ψ j (t)

) =
∫ 1

0
R2(t)ψ j (t)dt = 0, j = 1, 2, . . . , m̂,

Step 10: Solve the nonlinear system of algebraic equations
in Step 9 and obtain the unknown vectors X1 and X2.
Output: The approximate solutions: X1(t) � XT

1 �(t) and
X2(t) � XT

2 �(t).

As a numerical example, we consider the Duffing–
Van der Pol Oscillator (62) with α = 0 and the two
different values σ̄ = 0.0 and σ̄ = 0.0 over the
interval [0, 8], starting at (X10, X20) = (−κε, 0) for
κ = 11, 12, . . . , 16, and ε = 0.2. This problem is
also solved by the proposed method for m̂ = 80 (k =
4, M = 5) and N = 16. The behavior of the numeri-
cal solutions for σ̄ = 0.0 (Deterministic solution) and
σ̄ = 1.0 (Stochastic solution) and some different val-
ues of κ are shown in Figs. 7, 8 and 9. The behavior

of the numerical solutions for the Duffing–Van der Pol
Oscillator in the phase space is shown in Fig. 10.

5.4 Stochastic Brusselator problem

The stochastic Brusselator problem is given in [51] as
follows:

⎧⎪⎨
⎪⎩
dX (t) =

{
(β − 1) X (t) + (X (t) + 1)2 Y (t)

}
dt + αX (t) (1 + X (t)) dB(t), X (0) = X0,

dY (t) = −
{
βX (t) + (X (t) + 1)2 Y (t)

}
dt − αX (t) (1 + X (t)) dB(t), Y (0) = Y0,

(70)

where α and β are real constants.
The deterministic Brusselator (α = 0) equation was

developed at the occasion of a scientific congress in
Brussels, Belgium, to develop a simplemodel for bifur-
cations in chemical reactions [51].

Wecanwrite the integral formof the two-dimensional
SDE (70) as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X (t) = X0 +
∫ t

0

{
(β − 1) X (τ ) + (X (τ ) + 1)2 Y (τ )

}
dτ

+ α

∫ t

0
X (τ ) (1 + X (τ )) dB(τ ),

Y (t) = Y0 −
∫ t

0

{
βX (τ ) + (X (τ ) + 1)2 Y (τ )

}
dτ

− α

∫ t

0
X (τ ) (1 + X (τ )) dB(τ ).

(71)

To solve Eq. (71) using the proposed computational
method, we approximate X (t) and Y (t) by the LWS
as:{
X (t) � XT�(t),
Y (t) � Y T�(t),

(72)

where X and Y are the LWs coefficient vectors which
should be found and�(t) is the vector which is defined
in (11).

Also from Eq. (72) and Theorem 2.5, we have:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X2(t) �
(
X̃ T
)2

�−1
m̂×m̂�(t),

X (t)Y (t) � (
X̃ T � Ỹ T

)
�−1

m̂×m̂�(t),

X2(t)Y (t) �
((

X̃ T
)2 � Ỹ T

)
�−1

m̂×m̂�(t),

(73)

where X̃ T = XT�m̂×m̂ and Ỹ T = Y T�m̂×m̂ .
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Fig. 7 The graphs of the approximate solutions in the case κ = 11 (left side) and κ = 12 (right side)
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Fig. 8 The graphs of the approximate solutions in the case κ = 13 (left side) and κ = 14 (right side)
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Fig. 9 The graphs of the approximate solutions in the case κ = 15 (left side) and κ = 16 (right side)
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Fig. 10 The graphs of the approximate solutions for the Duffing–Van der Pol Oscillator in the case σ̄ = 0.0 (left side) and σ̄ = 1.0
(right side)

Fig. 11 The graphs of the approximate solutions for the Brusselator problem in the case α = 0.1 (left side) and α = 0.2 (right side)

Moreover, by expanding X0 and Y0 in terms of the
Lws, we have:

{
X0 � X0e

T�(t),
Y0 � Y0e

T�(t),
(74)

where e is the LWs coefficients vector for the unit func-
tion.

So by substituting Eqs. (72)–(74) into (63), and con-
sidering Eqs. (14) and (31), we have:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

XT�(t) �
(
X0e

T +
{
(β − 1) XT

+
[((

X̃ T
)2 � Ỹ T

)

+2
(
X̃ T � Ỹ T

)]
�−1

m̂×m̂ + Y T
}
P

+α
{
XT + (

X̃ T
)2

�−1
m̂×m̂

}
Ps
)

�(t),

Y T�(t) �
(
Y0e

T −
{
βXT +

[((
X̃ T
)2 � Ỹ T

)

+2
(
X̃ T � Ỹ T

)]
�−1

m̂×m̂ + Y T
}
P

−α
{
XT + (

X̃ T
)2

�−1
m̂×m̂

}
Ps
)

�(t).

(75)
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Fig. 12 The graphs of the approximate solutions for the Brusselator problem in the case α = 0.3 (left side) and α = 0.4 (right side)

Now, fromEq. (75), we canwrite the residual functions
R1(t) and R2(t) for system (71) as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R1(t) =
(
XT − X0e

T −
{
(β − 1) XT

+
[((

X̃ T
)2 � Ỹ T

)
+2

(
X̃ T � Ỹ T

)]
�−1

m̂×m̂+Y T
}
P

− α
{
XT +(X̃ T

)2
�−1

m̂×m̂

}
Ps
)

�(t),

R2(t) =
(
Y T − Y0e

T +
{
βXT +

[((
X̃ T
)2 � Ỹ T

)

+2
(
X̃ T � Ỹ T

)]
�−1

m̂×m̂ + Y T
}
P

+ α
{
XT + (

X̃ T
)2

�−1
m̂×m̂

}
Ps
)

�(t).

(76)

As in a typical Galerkin method, we generate 2m̂ non-
linear algebraic equations:

⎧⎪⎪⎨
⎪⎪⎩

(
R1(t), ψ j (t)

) =
∫ 1

0
R1(t)ψ j (t)dt = 0, j = 1, 2, . . . , m̂,

(
R2(t), ψ j (t)

) =
∫ 1

0
R2(t)ψ j (t)dt = 0, j = 1, 2, . . . , m̂.

(77)

Finally, by solving system (77) with respect to the
unknown vectors X and Y , we obtain the approxi-
mate solutions of the problem as X (t) � XT�(t) and
Y (t) � Y T�(t).

The algorithmof theproposed computationalmethod
is presented as follows:

Algorithm 4
Input: M ∈ N, k, N ∈ Z

+; Brownian motion process B(t);
α, β, X0 and Y0.
Step 1: Define the LWs ψnm(t) from Eq. (5).
Step 2: Construct the LWs vector �(t) from Eq. (11).
Step 3: Compute the LWs matrix �m̂×m̂ �[
�(0), �

(
1

m̂−1

)
, . . . , �(1)

]
.

Step 4: Compute the integration operational matrix P using Eqs.
(31)–(33) and SOM P̂s using Eq. (25).
Step 5: Compute the LWs stochastic operational matrix Ps =
�m̂×m̂ P̂s�

−1
m̂×m̂ .

Step 6: Compute the vectors eT using Eq. (8).
Step 7: Compute the vectors X̃ T = XT �m̂×m̂ and Ỹ T =
Y T �m̂×m̂ .

Step 8: Put

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R1(t) =
(
XT − X0e

T −
{
(β − 1) XT

+
[((

X̃ T
)2 � Ỹ T

)
+2

(
X̃ T � Ỹ T

)]
�−1

m̂×m̂+Y T
}
P

−α
{
XT + (

X̃ T
)2

�−1
m̂×m̂

}
Ps
)

�(t),

R2(t)=
(
Y T − Y0e

T +
{
βXT +

[((
X̃ T
)2 � Ỹ T

)

+2
(
X̃ T � Ỹ T

)]
�−1

m̂×m̂ + Y T
}
P

+α
{
XT + (

X̃ T
)2

�−1
m̂×m̂

}
Ps
)

�(t).

.

Step 9: Construct the nonlinear system of algebraic equations:⎧⎪⎪⎨
⎪⎪⎩

(
R1(t), ψ j (t)

) =
∫ 1

0
R1(t)ψ j (t)dt = 0, j = 1, 2, . . . , m̂,

(
R2(t), ψ j (t)

) =
∫ 1

0
R2(t)ψ j (t)dt = 0, j = 1, 2, . . . , m̂,

.

Step 10: Solve the nonlinear system of algebraic equations in Step
9 and obtain the unknown vectors X and Y .
Output: The approximate solutions: X (t) � XT �(t) and
Y (t) � Y T �(t).
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As a numerical example, we consider the stochas-
tic Brusselator problem (70) with β = 2 and some
different values α over the interval [0, 6.5], starting at
(X0,Y0) = (−0.1, 0.0). This problem is also solved
by the proposed method for m̂ = 80 and N = 35. The
behavior of the numerical solutions for the stochas-
tic Brusselator problem in the phase space are shown
in Figs. 11 and 12. The non-noisy curve is the corre-
sponding deterministic limit cycle.

6 Conclusion

Some SDEs can be written as nonlinear stochastic
Volterra integral equations given in (1). It may be
impossible to find exact solutions of such problems.
So, it would be convenient to determine their numer-
ical solutions using a stochastic numerical method. In
this paper, the SOM of Itô-integration for the LWs
was derived and applied for solving nonlinear sto-
chastic Itô–Volterra integral equations. In the proposed
method, a new technique for commuting nonlinear
terms in problems under study was presented. Also
some useful properties of the LWs were derived and
used to solve problems under consideration. Applica-
bility and accuracy of the proposed method were
checked on some examples. Moreover, the results of
the proposedmethodwere in a good agreementwith the
exact solutions. Furthermore, as some applications, the
proposed computational method was applied to obtain
approximate solutions for some stochastic problems in
the mathematics finance, biology, physics and chem-
istry.
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