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Abstract In this paper, a novel online motion plan-
ning method for double-pendulum overhead cranes
is proposed. The proposed trajectory is made up of
two parts: anti-sway component and trolley position-
ing component. The objective of the first part is to
suppress and eliminate the swings of hook and pay-
load. Lyapunov techniques, LaSalle’s invariance theo-
rem, and Barbalat’s lemma are used to demonstrate that
the trolley can be driven to arrive at the desired position,
while the unexpected hook swing and payload swing
are damped out simultaneously with the proposed tra-
jectory. Numerical simulation results indicate that the
proposed control trajectory achieves superior perfor-
mance and admits strong robustness against parameter
variations and external disturbances.

Keywords Underactuated systems · Double-
pendulum overhead cranes · Motion planning ·
Kinematic coupling

1 Introduction

In practice, cranes have been applied to far-ranging
fields, such as harbors, factories, construction sites,
manufacturing plants, for handling goods [1–3]. Based
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on the difference of cranes’ mechanical structures,
cranes can be roughly classified into three categories as
overhead cranes, tower cranes, and boom cranes [4,5].
Regardless of the type of cranes, the underactuated
characteristic is the fundamental nature of cranes. In
modern industries, there have been a surge of applica-
tions of underactuated mechatronic systems because of
suchmerits as high flexibility, simplemechanical struc-
ture, lowmanufacturing cost, reduced energy consump-
tion, and so on [6]. Yet, compared with fully actuated
mechatronic system, control of underactuated systems
is much challenging. Therefore, a considerable amount
of studies have been done to address the control prob-
lem of underactuated systems [7–15].

Overhead cranes are the most widely used ones in
all types of cranes. As with the other cranes, the control
objective of overhead cranes is to transport the payload
to the desired position accurately as well as to suppress
and eliminate the payload swing rapidly. In order to
increase transportation efficiency and decrease payload
swing, various control methods have been proposed
recently. These methods can be classified into sev-
eral categories: input shaping methods [16–18], opti-
mal control methods [19–21], stabilization/regulation
control methods [22–30], and motion planning meth-
ods [31–36]. Input shaping control method is a feed-
forward control method, which is implemented by con-
volving the human-generated signal with a chosen
impulsive sequence. Optimal control method aims to
find an optimal solution to minimize (or maximize)
the defined performance indicators. However, input
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shaping and optimal control methods are open-loop
control methods, which are sensitive to the external
disturbances. For most stabilization/regulation meth-
ods, the initial control force becomes much larger as
the transferring distance gets longer; therefore, large-
amplitude payload swing is excited by the correspond-
ing large acceleration. The potential issue of stabiliza-
tion/regulation methods can be addressed by motion
planning methods. The importance of motion planning
method has been illustrated in [37,38]. In [31–33], the
smooth trolley positioning trajectory is combined with
anti-sway tracking control laws without taking the pay-
load motion into account and the tracking control laws
have a big influence on the control performance. There-
fore, these control methods are not motion planning in
the sense of simultaneous trolley positioning and swing
elimination. In this paper, motion planning means the
trajectory design of trolley displacement, velocity, and
acceleration, which are supposed to be control inputs
of the overhead crane systems. Based on this, Sun et
al. [34,35] propose phase plane analysis-based meth-
ods by analyzing the natural frequency of the over-
head crane systems, and the obtained trajectories have
analytical expressions. Yet, the phase plane analysis-
based methods cannot eliminate external disturbances.
In [6,36], an online trajectory generating method and
a kinematic coupling-based motion planning method
are proposed by incorporating swing-damping compo-
nents in a smooth trolley positioning trajectory.

In the aforementioned control methods, the payload
swing is treated as that of a simple pendulum.However,
specific types of payloads and hoisting mechanisms
lead to double-pendulum dynamics [39]. The double-
pendulum effects make most existing crane control
methods fail towork normally, and hence, it is of impor-
tant significance to design effective controlmethods for
double-pendulum overhead crane systems. Numerous
researchers have devoted themselves to the challeng-
ing control problems for two-pendulum overhead crane
system. In [39], the input shaping techniques are suc-
cessfully employed to reduce the oscillatory dynamics
of double-pendulum overhead cranes. To reduce oscil-
lations, Masoud and Nayfeh [40] design a delayed con-
trol law; Al-Sweiti and Söffker [41] design a variable
gain observer and a variable gain controller; Guo et al.
[42] propose a passivity-based control method; Tuan
and Lee [43] design CSMC and HSMC controllers;
Liu et al. [44] design a GA-based composite sliding
mode fuzzy control method. By using parallel distrib-

uted fuzzy LQR controller, Adeli et al. [45] propose an
anti-swing control method for double-pendulum over-
head cranes. However, due to the nonlinear and strong-
coupling behavior, the motion planning problem for
double-pendulum overhead cranes is very challenging
for which no results have ever been reported.

An online motion planning method for double-
pendulum overhead cranes is proposed in this paper.
With the proposed control method, the trolley can be
driven to the desired location accurately and the pay-
load swing can be suppressed and eliminated rapidly.
Inspired by [6,36], we introduce an anti-sway compo-
nent into a smooth trolley trajectory generated online
in real time.1 The proposed trajectory achieves the pay-
load swing elimination objective without any tracking
controllers. Moreover, the anti-sway component has
no effect on the performance of trolley positioning.
The planned trajectory is composed of anti-swing com-
ponent and trolley positioning component. It should
be pointed out that the trolley positioning trajectory
satisfies physical constraints of overhead cranes, such
as maximum trolley velocity, acceleration, and even
jerk constraints, and the anti-swing component does
not affect the trolley positioning performance. Lya-
punov techniques, LaSalle’s invariance theorem, and
Barbalat’s lemma are used to prove the performance
of the planned trajectory, including trolley position-
ing precision and swing elimination. Some simulation
results are provided to demonstrate the superior perfor-
mance and strong robustness of the constructed trajec-
tory.

Briefly speaking, the main contribution lies in the
following.

(1) The planned trajectory is robust over different cable
lengths, payloadmasses, and external disturbances.

(2) The planned trajectory can be implemented online
without the need of advance or offline planning.

(3) To the best of our knowledge, the method proposed
in this paper is the first motion planning method for
double-pendulum overhead crane systems.

The rest of this paper is structured as follows. In
Sect. 2, we introduce the double-pendulum overhead

1 In this paper, we refer to the term ‘offline’ as calculating the
trajectory commands in advance of implementation. By contrast,
the term ‘online’ implies that the trajectory commands are gen-
erated real time to the system. For example, assume that the
control period is 5ms, and then the trajectory commands for the
next control action are calculated within the current 5ms.
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Fig. 1 Physical model of a double-pendulum overhead crane
system

crane system model. Main results are provided in
Sect. 3. In Sect. 4, some simulation results are pre-
sented. Section 5 summarizes this paper.

2 System modeling

Figure1 shows the physical model of a double-
pendulum overhead crane system. As can be seen from
Fig. 1, the payload is suspended on the cable by a hook.
According to the Lagrangian mechanics, the dynamic
equations of a double-pendulum overhead crane sys-
tem are described as:

(M+m1+m2) ẍ+(m1+m2) l1
(
cos θ1θ̈1−θ̇21 sin θ1

)

+m2l2θ̈2 cos θ2 − m2l2θ̇
2
2 sin θ2 = F (1)

(m1 + m2) l1 cos θ1 ẍ + (m1 + m2) l
2
1 θ̈1

+m2l1l2 cos (θ1 − θ2) θ̈2

+m2l1l2 sin (θ1 − θ2) θ̇1θ̇2

+ (m1 + m2) gl1 sin θ1 = 0 (2)

m2l2 cos θ2 ẍ + m2l1l2 cos (θ1 − θ2) θ̈1 + m2l
2
2 θ̈2

−m2l1l2 sin (θ1 − θ2) θ̇21 + m2gl2 sin θ2 = 0 (3)

where M ,m1 andm2 denote the trolley mass, the hook
mass, and the payload mass, respectively, l1 and l2 rep-
resent the cable length and the distance of the payload
cg from the hook cg, respectively, ϑ1 and ϑ2 are the
swings of hook and payload, respectively, F represents
the resultant force imposed on the trolley.

Equations (2)–(3) indicate the kinematic coupling
relationship among the trolley translation, the hook
swing, and the payload swing, which is the analytical

basis of the online motion planning method proposed
in this paper. It can be obtained from (2) and (3) that:
[
l21 θ̇1 + m2

m1 + m2
l1l2 cos (θ1 − θ2) θ̇2

]
θ̈1

+
[

m2l2l1
m1 + m2

cos (θ1 − θ2) θ̇1 + m2

m1 + m2
l22 θ̇2

]
θ̈2

+ m2

m1 + m2
l2gθ̇2 sin θ2 + l1gθ̇1 sin θ1

= −
[
l1 cos θ1θ̇1 + m2

m1 + m2
l2 cos θ2θ̇2

]
ẍ (4)

In order to facilitate the subsequent motion plan-
ning method development and analysis, the following
approximations are made based on the fact that the
swings of hook and payload are small enough during
the whole motion process:

cos (θ1 − θ2) ≈ 1, cos θ1 ≈ 1, cos θ2 ≈ 1 (5)

Substituting (5) into (4), (4) is rewritten as:
[
l21 θ̇1+ m2

m1+m2
l1l2 θ̇2

]
θ̈1+

[
m2l2l1
m1+m2

θ̇1+ m2

m1+m2
l22 θ̇2

]
θ̈2

+ m2

m1 + m2
l2gθ̇2 sin θ2 + l1gθ̇1 sin θ1

= −
[
l1θ̇1 + m2

m1 + m2
l2 θ̇2

]
ẍ (6)

3 Main results

In order to drive the trolley to the desired position
accurately and eliminate the swings of hook and pay-
load rapidly, swing-eliminating component is com-
bined with the trolley positioning reference acceler-
ation trajectory to construct the ultimate acceleration
trajectory through the following linear combination:

ẍf (t) = ẍd (t) + ẍe (t) (7)

where ẍe(t) represents the swing-eliminating compo-
nent, ẍd(t) denotes the trolley positioning reference
acceleration trajectory, ẍf(t) is the final acceleration
trajectory designed in this paper.

3.1 The swing elimination component

The purpose of the swing elimination component is
to damp out the payload swing efficiently. Consider-
ing the coupling relationship (4) between the trolley
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motion and the swings of hook and payload, the swing-
eliminating component is designed as follows:

ẍe (t) = k1

[
θ̇1 + m2

(m1 + m2) l1
l2θ̇2

]
(8)

where k1 ∈ R+ represents a positive control gain. The
swing-eliminating component ẍe(t) has the following
properties:

Theorem 1 The swing-eliminating component ẍe(t)
guarantees the swing angles (θ1andθ2), angular veloc-
ity (θ̇1and θ̇2), and angular acceleration (θ̈1and θ̈2)

asymptotically converge to zero.

Proof A function V (t) is defined as:

V (t) = 1

2
l21 θ̇

2
1 + 1

2

m2

m1 + m2
l22 θ̇

2
2 + m2

m1 + m2
l1l2θ̇1θ̇2

+ l1g (1 − cos θ1) + m2

m1 + m2
l2g (1 − cos θ2)

(9)

Byutilizing the arithmetic andgeometricmeans inequal-
ity, (9) is calculated as:

V (t) ≥
√

m2

m1 + m2
l1l2

∣∣θ̇1
∣∣ ∣∣θ̇2

∣∣ + m2

m1 + m2
l1l2θ̇1θ̇2

+ l1g (1 − cos θ1) + m2

m1 + m2
l2g (1 − cos θ2) ≥ 0

(10)

which indicates that the function V (t) is nonnegative.
Taking the time derivative of (9) and substituting (4)
into the resulting formula yields:

V̇ (t) = −
[
l1θ̇1 + m2

m1 + m2
l2θ̇2

]
ẍe

= −k1l1

[
θ̇1 + m2

(m1 + m2) l1
l2θ̇2

]2
≤ 0 (11)

Without loss of generality, the initial payload swing
angles θ1(t), θ2(t) and angular velocity θ̇1(t), θ̇2(t) are
considered as zero. To further prove Theorem1, let M
as the largest invariant set contained in S, and S is
defined as follows:

S = {(
θ1, θ2, θ̇1, θ̇2, θ̈1, θ̈2

) : V̇ (t) = 0
}

(12)

Then, in M , the following expression is obtained:

l1θ̇1 + m2

m1 + m2
l2θ̇2 = 0 ⇒ θ̇1 = − m2l2

l1 (m1 + m2)
θ̇2

(13)

Substituting (13) into (8), it can be obtained that:

ẍe (t) = 0 (14)

It follows from (13) and the initial swing angles θ1(0) =
θ2(0) = 0 that:

θ̈1 = − m2l2
l1 (m1 + m2)

θ̈2 (15)

θ1 = − m2l2
l1 (m1 + m2)

θ2 (16)

Substituting (13)–(16) into (4), one has:

m2l2
m1 + m2

gθ̇2 (sin θ2 − sin θ1) = 0 (17)

It follows from (17) that:

θ̇2 = 0, or θ2 = θ1 (18)

To complete the proof, the cases when θ̇2 = 0 and
θ2 = θ1 are examined.
Case 1 In this case:

θ̇2 = 0 (19)

is considered. It can be obtained from (13), (15), and
(19) that:

θ̈2 = 0, θ̇1 = 0, θ̈1 = 0 (20)

Substituting (14), (19), and (20) into (2), and (3), it is
derived that:

(m1 + m2) gl1 sin θ1 = 0 (21)

m2gl2 sin θ2 = 0 (22)

Based on the fact that the swings of hook and payload
are small enough during the whole motion process, the
following results are obtained:

θ1 = 0, θ2 = 0 (23)

Case 2 In this case

θ2 = θ1 (24)

is examined. It is straightforward to obtain from (16)
and (24) that:

θ2 = θ1 = 0 (25)
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Thus, it can be obtained from (25) that:

θ̇2 = θ̇1 = 0, θ̈2 = θ̈1 = 0 (26)

Based on the previous analysis, it can be concluded
that, only the equilibrium point of

S = {(
θ1, θ2, θ̇1, θ̇2, θ̈1, θ̈2

) : θ1, θ2, θ̇1, θ̇2, θ̈1, θ̈2 ≡ 0
}

(27)

is included in the largest invariant set M . By invok-
ing the LaSalle’s invariance theorem [46], Theorem1
is proved. �	

3.2 The positioning reference trajectory

For the trolley, an S-shape smooth function is chosen
as the positioning reference trajectory [31]:

xd (t) = pd
2

+ k2v
4ka

ln

⎛
⎝ cosh (2kat/kv − ε)

cosh
(
2kat/kv − ε − 2pdka/k

2
v

)
⎞
⎠

(28)

where pd is the desired position, kv and ka denote the
maximum permitted velocity and maximum permitted
acceleration of the trolley. Define kj as the maximum
permitted jerk of the trolley. The purpose of introduc-
ing ε ∈ R+ is to regulate the initial acceleration of the
trolley. Taking the first, second, and third derivatives of
(28) with respect to time, the reference velocity, accel-
eration, and jerk trajectory of the trolley can be obtained
as:

ẋd (t) = kv
tanh (2ka t/kv − ε) − tanh

(
2ka t/kv − ε − 2pdka/k2v

)

2
(29)

ẍd (t) = ka

(
1

cosh2 (2kat/kv − ε)

− 1

cosh2
(
2kat/kv − ε − 2pdka/k2v

)
)

(30)

x (3)
d (t) = 4k2a

kv

(− sinh (2kat/kv − ε)

cosh3 (2kat/kv − ε)

+ sinh
(
2kat/kv − ε − 2pdka/k2v

)

cosh3
(
2kat/kv − ε − 2pdka/k2v

)
)

(31)

wherein ẋd(t), ẍd(t), and x (3)
d (t) denote the reference

velocity, acceleration, and jerk of the trolley, respec-
tively.

The positioning reference trajectory (29) has the fol-
lowing properties

(1) Positioning reference trajectory (29) takes the limit
of pd, namely:

lim
t→∞ xd (t) = pd (32)

(2) Referencevelocity (30) is positive, and it is bounded
bykv, in the sense that:

0 < ẋd (t) ≤ kv (33)

(3) Reference acceleration (31) and jerk (32) are
bounded by ka and kj, respectively, that is:

−ka ≤ ẍd (t) ≤ ka, −kj ≤ ẋ (3)
d (t) ≤ kj (34)

where kj = 4k2a/kv.
(4) The initial trolley displacement and velocity are

zero, in the sense that:

xd (0) = 0, ẋd (0) = 0 (35)

3.3 The ultimate trajectory generating and analysis

By combining the positioning reference acceleration
trajectory (30) with the swing elimination component
(8), the ultimate acceleration trajectory of the trolley is
constructed as:

ẍf (t) = ẍd (t) + k1

[
θ̇1 + m2

(m1 + m2) l1
l2θ̇2

]
(36)

Hereon, k1 is selected as:

k1 > l1/2 (37)

The ultimate velocity trajectory and displacement tra-
jectory of the trolley can be obtained as:

ẋf (t) = ẋd (t) + k1

[
θ1 + m2

(m1 + m2) l1
l2θ2

]
(38)

xf (t) = xd (t) + k1

∫ t

0

(
θ1 + m2l2

(m1 + m2) l1
θ2

)
dt

(39)
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The main results of the paper are given in the following
theorems.

Theorem 2 The trolley ultimate trajectory ẍf(t)
ensures asymptotically convergence of the swingangles
θ1 and θ2, in the sense that:

lim
t→∞

[
θ1 (t) θ2 (t) θ̇1 (t) θ̇2 (t) θ̈1 (t) θ̈2 (t)

] = [0 0 0 0 0 0]

(40)

Proof Define the nonnegative function V (t) in (10) as
the Lyapunov candidate function. Substituting (36) into
(11), the following result is obtained:

V̇ (t) = −
[
l1θ̇1 + m2

m1 + m2
l2θ̇2

]
ẍ f

= −
[
l1θ̇1 + m2

m1 + m2
l2θ̇2

]
ẍd (t)

− k1l1

[
θ̇1 + m2

(m1 + m2) l1
l2θ̇2

]2
(41)

Based on the arithmetic and geometric means inequal-
ity, (41) can be rewritten as:

V̇ (t) ≤ 1

2
ẍ2d (t) + 1

2
l21

[
θ̇1 + m2

(m1 + m2) l1
l2θ̇2

]2

− k1l1

[
θ̇1 + m2

(m1 + m2) l1
l2θ̇2

]2

≤ 1

2
ẍ2d (t) + l1

(
1

2
l1 − k1

)

×
[
θ̇1 + m2

(m1 + m2) l1
l2θ̇2

]2
(42)

By integrating both sides of (42) with respect to time,
one derives:

V (t) ≤ 1

2

∫ t

0
ẍ2d (t)dt + l1

(
1

2
l1 − k1

)

∫ t

0

[
θ̇1 + m2

(m1 + m2) l1
l2θ̇2

]2
dt + V (0)

(43)

By some integration-by-parts operations, the first term
of (43) is calculated as:

1

2

∫ t

0
ẍ2d (t)dt = 1

2
ẍd (t) ẋd (t)+1

2
x (3)
d (t) xd (t) ∈ L∞

(44)

It can be concluded from (37) that:

l1

(
1

2
l1 − k1

) ∫ t

0

[
θ̇1 + m2

(m1 + m2) l1
l2θ̇2

]2
dt ≤ 0

(45)

Thus, from (43), (44), and (45), it can be obtained that:

V (t) ∈ L∞ (46)

From (9), it is obtained as:

θ̇1 (t) , θ̇2 (t) ∈ L∞ (47)

It is clear from (34), (36), and (47) that:

ẍ f ∈ L∞ (48)

Substituting (36) into (2) and (3), one has:

m1l1θ̈1 = −m1 ẍf︸ ︷︷ ︸
g1(t)

−m2l2 sin (θ1 − θ2) θ̇1θ̇2 − m2l1 sin (θ1 − θ2) θ̇21 − (m1 + m2) g sin θ1 + m2g sin θ2︸ ︷︷ ︸
g2(t)

(49)

m1l2θ̈2 = (m1 + m2) l1 sin (θ1 − θ2) θ̇21 + m2l2 sin (θ1 − θ2) θ̇1θ̇2 + (m1 + m2) g (sin θ2 − sin θ1)︸ ︷︷ ︸
f (t)

(50)

where the approximations of (5) have been utilized.
It can concluded from (47) and (48) that:
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θ̈1 (t) ∈ L∞, θ̈2 (t) ∈ L∞, (51)

After some arrangements, (43) is rewritten as:

l1

(
k1 − 1

2
l1

) ∫ t

0

[
θ̇1 + m2

(m1 + m2) l1
l2θ̇2

]2
dt

≤ 1

2

∫ t

0
ẍ2d (t)dt + V (0) − V (t) ∈ L∞ (52)

which indicates that:

θ̇1 + m2

(m1 + m2) l1
l2θ̇2 ∈ L2 (53)

It can concluded from (47), (51), and (53) that:

θ̇1 + m2

(m1 + m2) l1
l2θ̇2 ∈ L2 ∩ L∞, θ̈1, θ̈2 ∈ L∞

(54)

By invoking Barbalat’s lemma [45], the following
result is obtained:

lim
t→∞

[
θ̇1 + m2

(m1 + m2) l1
l2θ̇2

]
= 0 (55)

It follows from (8) and (55) that:

lim
t→∞ ẍe (t) = 0 (56)

It is easy to conclude from (30) that:

lim
t→∞ ẍd (t) = 0 (57)

which, together with (56), indicates that:

lim
t→∞ ẍf (t) = 0 (58)

It can concluded from (49), (50), and the results of (47),
(51), (58) that:

ġ2 (t) ∈ L∞, lim
t→∞ g1 (t) = 0 (59)

ḟ (t) ∈ L∞ (60)

Therefore, by invoking the extended Barbalat lemma
[45] yields:

lim
t→∞ θ̈1 = 0, lim

t→∞ θ̈2 = 0 (61)

After rearranging (2) and (3), the following equations
can be obtained as:

(m1 + m2) g sin θ1 = − (m1 + m2) ẍ f − (m1 + m2) l1θ̈1 − m2l2θ̈2︸ ︷︷ ︸
p1(t)

−m2l2 sin (θ1 − θ2) θ̇1θ̇2︸ ︷︷ ︸
p2(t)

(62)

g sin θ2 = − cos θ2 ẍ f − l1 cos (θ1 − θ2) θ̈1 − l2θ̈2︸ ︷︷ ︸
q1(t)

+l1 sin (θ1 − θ2) θ̇21︸ ︷︷ ︸
q2(t)

(63)

Similarly, it can be obtained from (47), (51), (58), and
(61) that:

lim
t→∞ p1 (t) = 0, ṗ2 (t) ∈ L∞ (64)

lim
t→∞ q1 (t) = 0, q̇2 (t) ∈ L∞ (65)

Extended Barbalat’s lemma and the fact that the swings
of hook and payload are small enough during the whole
motion process are utilized to show that:

lim
t→∞ sin θ1 = 0, lim

t→∞ sin θ2 = 0 ⇒ lim
t→∞ θ1 (t)

= 0, lim
t→∞ θ2 (t) = 0 (66)

Based on the swings and angular velocities of hook and
payload is small during the transportation process, (3)
can be simplified as

ẍ f + l1θ̈1 + l2θ̈2 + gθ2 = 0 (67)

By integrating both sides of (67), it is derived that:

∫ t

0
gθ2dt = −ẋf︸︷︷︸

m1

−l1θ̇1 − l2θ̇2︸ ︷︷ ︸
m2

(68)

where the initial conditions θ̇1(0) = θ̇2(0) = 0 and
ẋd(0) = 0 are used.
It follows from (33), (38), and (66) that:

lim
x→∞m1 (t) = 0 (69)
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It is easy to conclude from (51) that:

lim
x→∞ ṁ2 (t) ∈ L∞ (70)

which, together with (69), indicates that:

lim
t→∞

(−l1θ̇1 − l2θ̇2
) = 0 (71)

by utilizing the extended Barbalat’s lemma [45].
Then the following results are obtained from (55) and
(71) as:

lim
t→∞ θ̇1 = 0, lim

t→∞ θ̇2 = 0 (72)

Hereto, it can be concluded from (61), (66) and (72)
that:

lim
t→∞

[
θ1 (t) θ2 (t) θ̇1 (t) θ̇2 (t) θ̈1 (t) θ̈2 (t)

] = [0 0 0 0 0]

�	
Theorem 3 The trolley ultimate trajectory ẍf(t) can
drive the trolley to the desired position and ensure
the asymptotically convergence of the trolley velocity,
acceleration, in the sense that:

lim
t→∞ [xf (t) ẋf (t) ẍf (t)] = [pd 0 0] (73)

From (29), (38), and (66), one has:

lim
t→∞ ẋf (t) = 0 (74)

Based on the swings and angular velocities of hook and
payload is small during the transportation process, (2)
is rearranged as:

(m1 + m2) ẍf + (m1 + m2) l1θ̈1 + m2l2θ̈2

+ (m1 + m2) gθ1 = 0 (75)

Integrating both sides of (67) and (75) with respect to
time, and then taking the time limit, one has:

(m1 + m2) g
∫ ∞

0
θ1dt = − (m1 + m2) ẋf (∞)

− (m1 + m2) l1θ̇1 (∞) − m2l2θ̇2 (∞)

(76)

g
∫ ∞

0
θ2dt = −ẋ f (∞) − l1θ̇1 (∞) − l2θ̇2 (∞)

(77)

where the initial conditions θ1(0) = θ2(0) = 0, θ̇1(0)
= θ̇2(0) = 0, xd(0) = 0, ẋd(0) = 0 are utilized.
It follows from (72), (74) that:

g
∫ ∞

0
θ1dt = 0, g

∫ ∞

0
θ2dt (78)

It can be concluded from (32), (39), and (78) that:

lim
t→∞ xf (t) = lim

t→∞ xd (t) = pd (79)

The following results are concluded from (58), (74),
and (79) that:

lim
t→∞ [xf (t) ẋf (t) ẍf (t)] = [pd 0 0]

4 Simulation results

In this section, to verify the superior performance
of the online motion planning method proposed in
this paper, we implement some numerical simulations.
More specifically, the whole simulation process is
divided into three groups. In thefirst group,we compare
our method with the passivity-based control method in
[41], and the CSMC method in [42]. Subsequently, the
tolerance of the system to parameter variations (internal
disturbance) is tested in the second group. Finally, the
robustness of the two-pendulumoverhead crane system
against various external disturbances is further veri-
fied.

For literature completeness, the expression of the
passivity-based control method in [41] is provided as
follows:

F = −
(
kEI + kDZM

−1(q)ZT
)−1 (

kp (x − pd)
)

+ kDZM
−1(q)(C(q, q̇)q̇ + G(q) + kẋ (80)

wherein kE, kD, kp, k ∈ R+ are the control gains, I rep-
resents the appropriate unit matrix, Z = [1 0 0], q =
[xϑ1ϑ2]T ∈ R3 is the system state vector, M(q) ∈
R3∗3 represents the inertia matrix, C(q, q̇) ∈ R3∗3
denotes the centripetal-Coriolis matrix, G(q) ∈ R3 is
the gravity vector, which are defined in detail as fol-
lows:
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M(q) =
⎡
⎣
M + m1 + m2 (m1 + m2) l1 cos θ1 m2l2 cos θ2
(m1 + m2) l1 cos θ1 (m1 + m2) l21 m2l1l2 cos (θ1 − θ2)

m2l2 cos θ2 m2l1l2 cos (θ1 − θ2) m2l22

⎤
⎦

C(q, q̇) =

⎡
⎢⎢⎣

0 − (m1 + m2) l1θ̇1 sin θ1 −m2l2 θ̇2 sin θ2

0 0 m2l1l2 θ̇1 sin (θ1 − θ2)

0 −m2l1l2 θ̇1 sin (θ1 − θ2) 0

⎤
⎥⎥⎦

G(q) = [0 (m1 + m2) gl1 sin θ1 m2gl2 sin θ2]
T

q = [x θ1 θ2]
T

I =

⎡
⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎦ , Z = [1 0 0]

and the expression of theCSMCmethod in [42] is given
below:

F = − (m1 + m2) l1
(
cos θ1θ̈1 − θ̇21 sin θ1

)

−m2l2θ̈2 cos θ2 + m2l2θ̇
2
2 sin θ2

− (M + m1 + m2)
(
λẋ + αθ̇1 + βθ̇2

) − K sgn (s)

(81)

where λ, α, K ∈ R+, and β ∈ R− represent the control
gains, s is the sliding surface, which is defined as:

s = ẋ + λ (x − pd) + αθ1 + βθ2 (82)

The physical parameters of the system and the para-
meters of the three control methods are described in
Table1.

Simulation group 1 In this group, we intend to vali-
date the superior performance of the proposed motion
planning method in comparison with the passivity-
based controller and the CSMC controller.

The simulation results are shown in Figs. 2, 3 and 4.
It can be concluded from Figs. 2, 3 and 4 that swings of
hook and payload are better eliminated by the proposed
motion planning method and there is almost no resid-
ual swing as the trolley stops, although the transferring
time is a bit longer than the passivity-based controller
and the CSMC controller.

Simulation group 2 In this group, the robustness
against parameter variations of the planned trajectory is
verified. To this end, the following two extreme cases
(it is noted that parameter sudden changes are much
harsher than parameter time variation) are considered.
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Fig. 2 Simulation group 1: results for passivity-based control
method

Table 1 Design parameters System parameters The proposed
method

Passivity-based
controller

CSMC
controller

M = 10kg, m1 = 1kg,
m2 = 2kg, l1 = 0.7m,
l2 = 0.3m, g = 9.8m/s2,
ka = 0.3m/s, ka = 0.3m/s2,
ε = 5, x (0) = ẋ (0) = 0,
θ1 (0) = θ̇1 (0) = 0 θ2 (0) =
θ̇2 (0) = 0, pd = 1m

k1 = 5 kE = 1, kD = 0,
kp = 8, k = 18

λ = 0.5, α = 17,
β = −11,
K = 90
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Fig. 3 Simulation group 1: results for CSMC method
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Fig. 4 Simulation group 1: results for the proposedmotion plan-
ning method

Case 1 The payload mass is increased from 2 to 3kg
abruptly at t = 2 s.

Case 2The cable length is changed from 0.7 to 1.5m
abruptly at t = 2 s.

The derived results are recorded in Figs. 5, 6. As can
be seen fromFigs. 5, 6, under different cases, the trolley
arrives the desired position accurately, and during the
whole transportation process, the hook swing and the
payload swing are <1.2◦ and converge to zero soon
after the trolley stops. It can be concluded from Figs. 5,
6 that the performance of the constructed trajectory is
not influenced by parameter variations, indicating the
strong robustness of the closed-loop system.

Simulation group 3 In this group, the control per-
formance of the planned trajectory is validated in the
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Fig. 5 Results for simulation group 2. (Red solid line) No para-
meter variations. (Green solid line) Case 1. (Color figure online)
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Fig. 6 Results for simulation group 2. (Red solid line) No para-
meter variations. (Green solid line) Case 2. (Color figure online)

presence of external disturbances. Toward this end, we
add an impulsive disturbance between 7 and 8s, a sinu-
soid disturbance between 11 and 12s, and a random
disturbance between 15 and 16s, respectively, all with
a maximum amplitude of 2◦, to the hook swing and the
payload swing.

The simulation results are given in Fig. 7. It is
noticed that the external disturbances are suppressed
and eliminated rapidly, indicating the strong robustness
of the proposed method.
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Fig. 7 Simulation group 3: results for the proposedmotion plan-
ning method with respect to different external disturbances

5 Conclusions

Most of current researches on double-pendulum over-
head crane systems are input shaping methods and reg-
ulation/stabilization methods, and no motion planning
methods have ever been proposed for double-pendulum
overhead cranes. This paper proposes an online motion
planningmethod for double-pendulumoverhead cranes
systems. The advantages of the proposed method are
that it is robust over different cable lengths, pay-
load masses, desired trolley positions, and external
disturbances, and can be implemented online with-
out advance or offline planning. The convergence and
swing-eliminating performance of the constructed tra-
jectory are proven by Lyapunov techniques, LaSalle’s
invariance theorem, and Barbalat’s lemma. Simula-
tion results illustrate the superior performance of the
planned trajectory and its robustness with respect to
parameter variations and external disturbances. In our
future work, we will extend the proposed method to the
control of 3D overhead crane systems.
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