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Abstract We study the stability and Hopf bifurcation
analysis of a coupled two-neuron system involving both
discrete and distributed delays. First, we analyze sta-
bility of equilibrium point. Choosing delay term as a
bifurcation parameter, we also show that Hopf bifurca-
tion occurs under some conditionswhen the bifurcation
parameter passes through a critical value. Moreover,
some properties of the bifurcating periodic solutions
are determined by using the center manifold theorem
and the normal form theory. Finally, numerical exam-
ples are provided to support our theoretical results.
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1 Introduction

In recent years, researchers in the field of recurrent
neural networks (RNNs) have been increasing due to
their applications to signal processing, pattern recog-
nition, associative memories, optimization and other
fields (see, e.g., [3,5,6,9,19,21,25,26,30,31] and ref-
erences therein). In 1984, Hopfield [10] described a
new neural network model which is capable of per-
forming computational tasks using energy function.
Following this pioneer study, due to the transmission
of signals in a network, time delays have been incorpo-
rated into neural network models by many researchers
[1,2,15,16].

In biological neural networks, it is well known that
time delay may force a stable system to oscillate (see
[31] for a detailed reference list). It is also known that
time delay is one of the main sources to lead instabil-
ity. For example, for biological neurons, it has been
observed that autapses (a specific synapse which con-
nects to its dendrite) which include time delays can
affect the dynamical behavior of systems [18,24]. In
practical applications, because of finite time of the
switching and transmission of signals, time delays are
indispensable in the artificial neural networks which
underlines that the history influences the present. Since
delays may cause oscillation or chaos, effects of time
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delays have been investigated in neural network mod-
els, in particular in RNNs, intensively. RNNs which
generate chaotic dynamics can be used to model oscil-
lations in the cortex and to control chaotic dynamical
systems [27].

In 1994, Baldi and Atiya [2] studied a network
that consists of different delays between the adja-
cent neurons. Following this work, neural networks
including multiple delays have become popular [4,
7,17,20,22,25,28]. Also, instead of considering dis-
crete time delays, researchers have incorporated time
delays which are continuously distributed over an infi-
nite interval reflecting the fact that the distant past has
less influence compared to the most recent neurons’
states on the current states of system. Actually, since
a distributed delay becomes a discrete delay when the
delay kernel is a Dirac delta function at a certain time,
infinite time delay is more general [13,23,29].We refer
to [3,11,12,14,20,32] and the references therein for
related work on networks including distributed delays.

For the motivation of the model, let us first look at
the following two-neuron system consisting of discrete
time delays that was studied by Guo et al. [17]:

u
′
1(t) = −u1(t) + a11 f (u1(t − τ1))

+ a12 f (u2(t − τ2)),

u
′
2(t) = −u2(t) + a21 f (u1(t − τ1))

+ a22 f (u2(t − τ2)).

(1)

The authors studied several cases, including τ1 = τ2,
a11 = a22. They found that system (1) undergoes a
Hopf bifurcation at certain values of delay.

Recently, Li and Hu [14] studied the following sys-
tem of differential equations with multiple delays:

x
′
1(t) = −x1(t) + a11 f

(∫ t

−∞
F(t − s)x1(s)ds

)

+ a12 f (x2(t − τ)),

x
′
2(t) = −x2(t) + a21 f (x1(t − τ))

+ a22 f

(∫ t

−∞
F(t − s)x2(s)ds

)
.

(2)

First, they investigated the stability of the zero equilib-
rium using Routh–Hurwitz criterion when delay term
τ = 0. And then taking discrete delay term τ as a bifur-
cation parameter, they showed the existence of local
Hopf bifurcation using Hopf bifurcation theorem.

In this paper, we focus on periodic solutions of a
system of two neurons involving multiple discrete and
distributed delays. The system we consider has self-
feedback terms with distributed time delays as in sys-
tem (2), but the signals that neurons send to each other
is different, that is,

x
′
1(t) = −x1(t) + a11 f11

(∫ t

−∞
F(t − s)x1(s)ds

)

+ a12 f12(x2(t − τ2)),

x
′
2(t) = −x2(t) + a21 f21(x1(t − τ1))

+ a22 f22

(∫ t

−∞
F(t − s)x2(s)ds

)
,

(3)

where x
′
i (t) = dxi

dt , xi (t) represents the state of the
ith neuron at time t and ai j (i = 1, 2 and j = 1, 2)
are real constants. Here, F(·) is nonnegative bounded
delay kernel defined on [0,∞)which reflects the influ-
ence of the past states on the current dynamics. System
(3) is reduced to system (2) if fi j = f (i = 1, 2 and
j = 1, 2) and τ1 = τ2. Similarly, it is reduced to sys-
tem (1) when the delay kernel is taken as Dirac delta
function and fi j = tanh. Therefore, system (3) that
we are interested in is more general than systems (1)
and (2). The architecture of system (3) is illustrated in
Fig. 1.

This paper is organized as follows. In Sect. 2, we
study the stability of the zero solution when τ1 = 0
and τ2 = 0. Following it, regarding τ = τ1 + τ2 as
a bifurcation parameter the dynamical behavior near
Hopf bifurcation is investigated using Hopf bifurcation
theorem. In Sect. 3, the direction of Hopf bifurcation
and the stability and period of bifurcating periodic solu-
tions on the center manifold are determined applying
the normal form theory in [8]. Finally, in Sect. 4, we

Fig. 1 Architecture of the model (3). Two neurons send signals
to each other with a discrete delay (solid line), τ j , j = 1, 2. One
element receives one delayed input from itself with distributed
delay which is denoted by dashed line
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Hopf bifurcation analysis of coupled two-neuron system 1041

consider an example and simulate it by usingMATLAB
to support our theoretical results.

2 Stability analysis and Hopf bifurcation

In this section, we consider only the weak kernel, that
is,

F(s) = αe−αs,

where α > 0, and 1/α reflects the mean delay of the
weak kernel. In order not to affect the equilibrium val-
ues, we normalize the kernel satisfying the normaliza-
tion condition

∫ ∞
0 F(s)ds = 1. Now, it is necessary to

make the following assumptions:

(H1) fi j ∈ C3, fi j (0) = 0, (i = 1, 2 and
j = 1, 2),

(H2) τ = τ1 + τ2.

For convenience, we define new variables as follows:

x3(t) =
∫ t

−∞
F(t − s)x1(s)ds,

x4(t) =
∫ t

−∞
F(t − s)x2(s)ds.

Applying the linear chain trick technique, system (3)
can be transformed into the following system:

x
′
1(t) = −x1(t) + a11 f11(x3(t))

+ a12 f12(x2(t − τ2)),

x
′
2(t) = −x2(t) + a21 f21(x1(t − τ1))

+ a22 f22(x4(t)),

x
′
3(t) = −αx3(t) + αx1(t),

x
′
4(t) = −αx4(t) + αx2(t).

(4)

By the hypothesis H1, it is easy to see that the ori-
gin (0, 0, 0, 0) is an equilibrium point of system (4).
Let us define u1(t) = x1(t − τ1), u2(t) = x2(t),
u3(t) = x3(t − τ1), u4(t) = x4(t). Now using these
new variables together with the hypothesis H2, system
(4) can be rewritten as the following equivalent system:

u
′
1(t) = −u1(t) + a11 f11(u3(t)) + a12 f12(u2(t−τ)),

u
′
2(t) = −u2(t) + a21 f21(u1(t)) + a22 f22(u4(t)),

u
′
3(t) = −αu3(t) + αu1(t),

u
′
4(t) = −αu4(t) + αu2(t).

(5)

Under the hypothesis H1, the linearization of system
(5) at (0, 0, 0, 0) is

u
′
1(t) = −u1(t) + α11u3(t) + α12u2(t − τ),

u
′
2(t) = −u2(t) + α21u1(t) + α22u4(t),

u
′
3(t) = −αu3(t) + αu1(t),

u
′
4(t) = −αu4(t) + αu2(t),

(6)

where αi j = ai j
d fi j
dui

∣∣∣∣
ui=0

, (i = 1, 2 and j = 1, 2).

The corresponding characteristic equation of (6) is

λ4 + a3λ
3 + a2λ

2 + a1λ + a0

+ (b2λ
2 + b1λ + b0)e

−λτ = 0, (7)

where

a3 = 2α + 2

a2 = α2 + 4α + 1 − α(α11 + α22)

a1 = 2α2 + 2α − α(α11 + α22) − α2(α11 + α22)

a0 = α2 − α2(α11 + α22) + α2α11α22

b2 = −α12α21

b1 = −2αα12α21

b0 = −α2α12α21.

(8)

If τ = 0, that is, when there is no discrete time delay,
Eq. (7) will be

λ4 + a3λ
3 + (a2 + b2)λ

2

+ (a1 + b1)λ + (a0 + b0) = 0. (9)

Now, it is necessary to investigate the distribution of
roots of Eq. (9) in order to determine the stability of
the origin. Using Routh–Hurwitz criteria for n = 4, all
roots of the polynomial (9) are negative or havenegative
real parts if and only if the following conditions hold:

1. a3 > 0,
2. a0 + b0 > 0,
3. a1 + b1 > 0,
4. a3(a1 + b1)(a2 + b2) > (a1 + b1)2 + a23(a0 + b0).

Now, let us take τ �= 0.We shall investigate the roots
of the transcendental equation (7) that lie in the left half
of the complex plane. Suppose that λ = iω be a root of
the characteristic equation (7) withω > 0. Substituting
this in Eq. (7) and separating real and imaginary parts
yield the following equations:
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ω4 − a2ω
2 + a0 + (b0 − b2ω

2) cosωτ

+ b1ω sinωτ = 0, (10)

− a3ω
3 + a1ω + b1ω cosωτ

+ (b2ω
2 − b0) sinωτ = 0. (11)

By taking square of (10) and (11) and then adding them
up, one obtains

ω8 + pω6 + qω4 + rω2 + s = 0, (12)

where p = −2a2 + a23 , q = 2a0 + a22 − 2a1a3 − b22,

r = −2a0a2 + a21 + 2b0b2 − b21 and s = a20 − b20.
Setting z = ω2, Eq. (12) can be written as follows:

z4 + pz3 + qz2 + r z + s = 0. (13)

Let us denote Eq. (13) as

g(z) = z4 + pz3 + qz2 + r z + s. (14)

First, suppose that s < 0. Since limz→∞ g(z) = ∞,
Eq. (14) has at least one positive root, as well Eq. (12) .
On the other hand, suppose now s > 0. From Eq. (14),
we have

dg(z)

dz
= 4z3 + 3pz2 + 2qz + r. (15)

Now, we need to find the roots of Eq. (15). Let us
denote the right-hand side of it by h(z) = 4z3 + 3pz2

+ 2qz + r . By applying Cardano’s formula and using
the transformation: y = z+ p

4 , we obtain the depressed
cubic terms, that is,

y3 + 3Qy − 2R = 0, (16)

where

Q = 8q−3p2

48 , R = 4pq − 8r − p3

64
. (17)

Let y = u + v, where uv = −Q. Then we can obtain
the resolvent equation as follows:

u6 − 2Ru3 − Q3 = 0. (18)

Thus, we can write the roots of Eq. (16) as

y =

⎧⎪⎨
⎪⎩
S + T,

− S+T
2 + m(S − T ),

− S+T
2 − m(S − T ),

(19)

where

S = 3
√
R + √

Δ,

T = 3
√
R − √

Δ, (20)

m = i
√
3

2
,

Δ = Q3 + R2. (21)

Since y = z + p
4 , the roots of Eq. (15) are obtained as

z1 = S + T − p

4
,

z2 = − S + T

2
+ m(S − T ) − p

4
,

z3 = − S + T

2
− m(S − T ) − p

4
.

Assume thatΔ > 0, fromCardano’s formula, we know
that the equation h(z) = 0 has only one real root z∗1 =
z1. If Δ = 0, then the equation h(z) = 0 has three
real roots, namely z1, z2 and z3 (at least two of them
are equal) and we can define z∗2 as max{z1, z2, z3}. If
Δ < 0, then all roots z1, z2 and z3 of the equation
h(z) = 0 are real and distinct. In this case, assume that
z∗3 = max{z1, z2, z3}. Now, we can give the following
lemma without proof (see [14] for its proof).

Lemma 1 For Eq. (13), we have the followings:

1. If s < 0, Eq. (13) has at least one positive root.
2. If s ≥ 0, then Eq. (13) has no positive root if one

of the following conditions holds: (a) Δ > 0 and
z∗1 ≤ 0; (b) Δ = 0 and z∗2 ≤ 0; (c) Δ < 0 and
z∗3 ≤ 0.

3. If s ≥ 0, then Eq. (13) has at least one positive root
if one of the following conditions holds: (a)Δ > 0,
z∗1 > 0 and g(z∗1) < 0; (b) Δ = 0, z∗2 > 0 and
g(z∗2) < 0; (c) Δ < 0, z∗3 > 0 and g(z∗3) < 0.

Suppose that Eq. (13) has positive roots. Without
loss of generality, we can assume that it has four pos-
itive roots denoted by z1, z2, z3 and z4, respectively.
Then, Eq. (12) has four positive roots ω1 = √

z1, ω2 =√
z2, ω3 = √

z3 and ω4 = √
z4. For k = 1, 2, 3, 4,

there exists a sequence {τ j
k | j = 1, 2, 3, . . .} such that

Eq. (7) holds. One can easily obtain

τ
( j)
k = 1

ωk

{
arccos

(
c4ω6 + c3ω4 + c2ω2 + c1

(b2ω2 − b0)2 + b21ω
2

)
+ 2π j

}
,

(22)
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Hopf bifurcation analysis of coupled two-neuron system 1043

where

c1 = −a0b0

c2 = a0b2 + a2b0 − a1b1

c3 = a3b1 − a2b2 − b0

c4 = b2.

Thus, ±iωk is a pair of purely imaginary roots of Eq.
(7) with τ = τ

( j)
k .

Define τ0 = τ
(0)
k0

= min{τ (0)
k |k = 1, 2, 3, 4}, ω0 =

ωk0 and let λ(τ) = α(τ) + iω(τ) be the root of Eq. (7)
near τ = τ0 satisfying α(τ0) = 0, ω(τ0) = ω0. Then
we have the following transversality condition.

Lemma 2 Suppose that zk = ω2
k and g′(zk) �= 0,

where g(z) is defined by (14). Then[
d(Reλ(τ))

dτ

]
τ=τ

( j)
k

�= 0 (23)

and [(d(Reλ(τ))/dτ)]
τ=τ

( j)
k

and g′(zk) have the same
sign (see Lemma 4 in [32]).

The following main theorem summarize the results
obtained on the stability andHopf bifurcation of system
(5).

Theorem 1 For system (5) the followings hold:

(i) If s ≥ 0 and one of the following conditions holds:
(a) Δ > 0 and z∗1 ≤ 0; (b) Δ = 0 and z∗2 ≤ 0; (c)
Δ < 0 and z∗3 ≤ 0,
then the equilibrium point (0, 0, 0, 0) of system
(5) is asymptotically stable for all τ ≥ 0.

(ii) If either s < 0 or s ≥ 0 and one of the following
conditions holds:
(a) Δ > 0, z∗1 > 0 and g(z∗1) < 0; (b) Δ = 0,
z∗2 > 0 and g(z∗2) < 0; (c) Δ < 0, z∗3 > 0 and
g(z∗3) < 0.
then the equilibrium point (0, 0, 0, 0) of system
(5) is asymptotically stable for τ ∈ [0, τ0),

(iii) If the conditions of (ii) are satisfied, and g′(zk) �=
0, then system (5) undergoes a Hopf bifurcation
at origin when τ = τ0.

3 Direction and stability of Hopf bifurcation

In Sect. 2, we have shown that system (5) undergoes
a Hopf bifurcation when τ passes through the critical
value τ0. In this section, we investigate the direction

and stability of periodic solutions by using the normal
form theory and center manifold reduction presented
in [8].

For fixed k ∈ {1, 2, 3, 4} and j ∈ {0, 1, 2, . . .}, let
us introduce μ = τ − τ

( j)
k as a new parameter of the

system. Normalizing the delay τ by the time scaling
t → t/τ and denoting τ

( j)
k = τ ( j), Eq. (5) can be

rewritten as

⎡
⎢⎢⎢⎣
x ′
1(t)

x ′
2(t)

x ′
3(t)

x ′
4(t)

⎤
⎥⎥⎥⎦ = (τ ( j) + μ)A(τ )

⎡
⎢⎢⎣
x1(t)
x2(t)
x3(t)
x4(t)

⎤
⎥⎥⎦

+ (τ ( j) + μ)B(τ )

⎡
⎢⎢⎣
x1(t − 1)
x2(t − 1)
x3(t − 1)
x4(t − 1)

⎤
⎥⎥⎦

+ (τ ( j) + μ) f (x1, x2, x3, x4), (24)

where

A(τ ) =

⎡
⎢⎢⎣

−1 0 α11 0
α21 −1 0 α22

α 0 −α 0
0 α 0 −α

⎤
⎥⎥⎦ , B(τ ) =

⎡
⎢⎢⎣
0 α12 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ,

f (x1, x2, x3, x4) = (τ ( j) + μ)

⎡
⎢⎢⎣

f1
f2
f3
f4

⎤
⎥⎥⎦ ,

where

f1 = β11x23 (t) + σ11x33(t) + β12x22 (t − 1)

+ σ12x32(t − 1) + H.O.T.,

f2 = β21x21 (t) + σ21x31(t) + β22x24 (t) + σ22x34(t)

+H.O.T.,

f3 = 0,

f4 = 0

inwhichβi j = 1
2ai j

d2 fi j
du2i

∣∣∣∣∣
ui=0

,σi j = 1
6ai j

d3 fi j
du3i

∣∣∣∣∣
ui=0

(i = 1, 2 and j = 1, 2), andH.O.T. denotes the higher-
order terms. Notice that all coefficients αi j , βi j and σi j
depend on ai j . Let u(t) = (x1(t), x2(t), x3(t), x4(t))T .
The linearization of Eq. (24) around the origin is given
by u′(t) = (τ ( j) + μ)A(τ )u(t) + (τ ( j) + μ)B(τ )

u(t − 1).
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1044 E. Karaoğlu et al.

For φ = (φ1, φ2, φ3, φ4)
T ∈ Ω = C([−1, 0],R4)

we can define Lμ : Ω −→ R
4 as follows:

Lμ(φ) = (τ ( j)+μ)A(τ )φ(0)+(τ ( j)+μ)B(τ )φ(−1).

(25)

Now, system (24) can be written as a functional differ-
ential equation in Ω as

u′(t) = Lμ(ut ) + f (μ, ut ), (26)

where ut (θ) = u(t+θ) = (x1(t+θ), x2(t+θ), x3(t+
θ), x4(t + θ))T and f : R × Ω → R

4 where

f (μ, φ) = (τ ( j) + μ) ×

⎡
⎢⎢⎣

fφ1
fφ2
fφ3
fφ4

⎤
⎥⎥⎦ (27)

in which

fφ1 = β11φ
2
3(0) + σ11φ

3
3(0) + β12φ

2
2(−1)

+ σ12φ
3
2(−1) + H.O.T.,

fφ2 = β21φ
2
1(0) + σ21φ

3
1(0) + β22φ

2
4(0)

+ σ22φ
3
4(0) + H.O.T.,

fφ3 = 0,

fφ4 = 0.

By Riesz Representation theorem, there exists a 4 × 4
matrix-valued function η(θ, μ), θ ∈ [−1, 0], whose
elements are of bounded variation such that

Lμφ =
∫ 0

−1
dη(θ, μ)φ(θ). (28)

In fact, we can choose

η(θ, μ) = (τ ( j)+μ)Aδ(θ)+(τ ( j)+μ)Bδ(θ+1), (29)

where δ is the Dirac delta function. For φ ∈ Ω , define

A(μ)φ =
⎧⎨
⎩

dφ(θ)

dθ
, θ ∈ [−1, 0),∫ 0

−1 dη(ξ, μ)φ(ξ), θ = 0,
(30)

and

R(μ)φ =
{
0, θ ∈ [−1, 0),
f (μ, φ), θ = 0.

(31)

Then the functional differential equation (26) is equiv-
alent to the following abstract differential equation:

.
ut = A(μ)ut + R(μ)ut , (32)

where ut (θ) = u(t + θ) for θ ∈ [−1, 0). For ψ ∈
C([0, 1], (R4)∗), define

A∗ψ(s) =
⎧⎨
⎩

−dψ(s)
ds , s ∈ (0, 1],∫ 0

−1 dη
T(ξ, 0)ψ(−ξ), s = 0,

(33)

and a bilinear form

〈ψ(s), φ(θ)〉 = ψ(0)φ(0)

−
0∫

−1

θ∫
ξ=0

ψ(ξ − θ)dη(θ)φ(ξ)dξ, (34)

where η(θ) = η(θ, 0). Thus, A(0) and A∗(0) are
adjoint operators. Suppose that q(θ) and q∗(s) are
eigenvectors of A(0) and A∗(0) corresponding to
λ = iω0 and λ = −iω0, respectively. Let us
take q(θ) = [1, q1, q2, q3]T eiω0θ and q∗(s) =
1
D

[
1, q∗

1 , q∗
2 , q∗

3

]T eiω0s . Using A(0)q(θ) = iω0q(θ)

and A∗(0)q∗(θ) = −iω0q∗(θ), one can easily obtain

q1 = ((α − αα11)k2 + (kα + k)iω0 − ω2
0)e

iω0

α12(kα + iω0)
,

q2 = kα

kα + iω0
,

q3 = (k + iω0)q1 − kα21

α22k
,

q∗
1 = k + iω0 − kαq∗

2

α21k
,

q∗
2 = kα11

kα + iω0
,

q∗
3 = kα22q∗

1

kα + iω0
, (35)

where k = τ ( j). Furthermore, using the relation
〈q∗(s), q(θ)〉 = 1 one can calculate D as follows:

D = 1 + q∗
1q1 + q∗

2q2 + q∗
3q3 + τ ( j)e−iω0α12q1.

In the remainder of this section, we use the same nota-
tions as in [8]. We first compute the coordinates to
describe the center manifoldC0 atμ = 0. Let ut be the
solution of Eq. (32) with μ = 0. Define

z(t) = 〈
q∗, ut

〉
, w(t, θ) = ut − 2Re{z(t)q(θ)}. (36)

123



Hopf bifurcation analysis of coupled two-neuron system 1045

On the center manifold, we have

w(t, θ) = w(z(t), z(t), θ)

= w20(θ)
z2

2
+ w11(θ)zz + w02(θ)

z2

2
+ · · · ,

(37)

where z and z are local coordinates for the center man-
ifold C0 in the direction of q and q∗. For ut ∈ C0 we
have
.
z(t) = 〈

q∗, .
ut

〉 = 〈
q∗, Aut + Rut

〉
= iω0

〈
q∗, ut

〉 + q∗(0) f0(z, z) ≡ iω0z(t) + g(z, z),

where

g(z, z) = q∗(0) f0(z, z)

= g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ · · · .

(38)

Here, f0(z, z) denotes f (z, z) at μ = 0. Notice that
ut (u1t (θ), u2t (θ), u3t (θ), u4t (θ)) = w(t, θ)+zq(θ)+
zq(θ) and q(θ) = [1, q1, q2, q3]T eiω0θ , so we have

u1t (0) = z + z + w
(1)
20 (0)

z2

2
+ w

(1)
11 (0)zz

+w
(1)
02 (0)

z2

2
+ O(|z, z|3),

u3t (0) = zq2 + zq2 + w
(3)
20 (0)

z2

2
+ w

(3)
11 (0)zz

+w
(3)
02 (0)

z2

2
+ O(|z, z|3),

u4t (0) = zq3 + zq3 + w
(4)
20 (0)

z2

2
+ w

(4)
11 (0)zz

+w
(4)
02 (0)

z2

2
+ O(|z, z|3),

u2t (−1) = zq1e
−iω0 + zq1e

−iω0 + w
(2)
20 (−1)

z2

2

+ w
(2)
11 (−1)zz + w

(2)
02 (−1)

z2

2
+ O(|z, z|3).

Thus, it follows from the definition of f (μ, φ) and (38)
that

g(z, z)=q∗(0) f0(z, z) = τ ( j)

D
[1, q∗

1 , q∗
2 , q∗

3 ]

⎡
⎢⎢⎢⎢⎣

f 01
f 02
f 03
f 04

⎤
⎥⎥⎥⎥⎦ ,

where

f 01 = β11u
2
3t (0) + σ11u

3
3t (0) + β12u

2
2t (−1)

+ σ12u
3
2t (−1),

f 02 = β21u
2
1t (0) + σ21u

3
1t (0) + β22u

2
4t (0)

+ σ22u
3
4t (0),

f 03 = 0,

f 04 = 0,

so that g has the following form:

g(z, z) = q∗(0) f0(z, z)

= τ ( j)

D

{[
β11q

2
2 + β12q

2
1 e

−2iω0

+β21q∗
1 + β22q∗

1q
2
3

]
z2

+ [
2β11q2q2 + 2β12q1q1e

−2iω0

+ 2β21q∗
1 + 2β22q∗

1q3q3
]
zz

+ [
β11q2

2 + β12q1
2e−2iω0

+β21q∗
1 + β22q∗

1q3
2]z2 + [

2β11q2w
3
11(0)

+β11q2w
3
20(0) + 3σ11q

2
2q2

+ 2β12q1e
−iω0w2

11(−1)

+β12q1e
−iω0w2

20(−1) + 3σ12q
2
1q1e

−3iω0

+ 2β21q∗
1w1

11(0) + β21q∗
1w1

20(0) + 3σ21q∗
1

+ 2β22q3q∗
1w4

11(0) + β22q3q∗
1w4

20(0)

+ 3σ22q3q∗
1q

2
3

]
z2z

}
+ H.O.T.

Comparing the coefficients in (38) one obtains the coef-
ficients as follows:

g20 = 2
τ ( j)

D

[
β11q

2
2 + β12q

2
1 e

−2iω0 + β21q∗
1

+β22q∗
1q

2
3

]
,

g11 = τ ( j)

D

[
2β11q2q2 + 2β12q1q1e

−2iω0 + 2β21q∗
1

+ 2β22q∗
1q3q3

]
,

g02 = 2
τ ( j)

D

[
β11q2

2 + β12q1
2e−2iω0 + β21q∗

1

+β22q∗
1q3

2],
g21 = 2

τ ( j)

D

[
2β11q2w

3
11(0) + β11q2w

3
20(0)

+ 3σ11q
2
2q2 + 2β12q1e

−iω0w2
11(−1)

+β12q1e
−iω0w2

20(−1) + 3σ12q
2
1q1e

−3iω0
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+ 2β21q∗
1w1

11(0) + β21q∗
1w1

20(0) + 3σ21q∗
1

+ 2β22q3q∗
1w4

11(0) + β22q3q∗
1w4

20(0)

+ 3σ22q3q∗
1q

2
3

]
.

In order to determine g21, we need to compute w11(θ)

and w20(θ). From (36) we have

.
w(t, θ) = .

xt − 2Re{ .

z(t)q(θ)}

=
{
Aw − 2Re

{
q∗(0) f0q(θ)

}
, θ ∈ [−1, 0)

Aw − 2Re
{
q∗(0) f0q(θ)

} + f0, θ = 0

:≡ Aw + H(z, z, θ),

where

H(z, z, θ) = H20
z2

2
+ H11zz + H02

z2

2
+ · · · . (39)

On the other hand, one has

.
w = wz

.
z + wz

.

z

on the center manifold. Thus, comparing the coeffi-
cients one obtains that

(A − 2iω0) w20(θ) = −H20(θ),

Aw11(θ) = −H11(θ). (40)

For θ ∈ [−1, 0), it is easy to see that

H(z, z, θ) = −2Re{ .
z(t)q(θ)}.

Comparing the coefficients of (40) with those of (39)
we obtain the following equalities:

H20(θ) = − (
q(θ)g20 + q(θ)g02

)
,

H11(θ) = − (
q(θ)g11 + q(θ)g11

)
,

H02(θ) = − (
q(θ)g02 + q(θ)g20

)
.

From (40) and the definition of A (see Eq. 30), we get

w
′
20(θ) − 2iω0w20(θ) = q(θ)g20 + q(θ)g02.

Then, since q(θ) = q(0)eiω0θ , we have

w20(θ) = i

ω0
g20q(0)eiω0θ + i

3ω0
g02q(0)e−iω0θ

+ E1e
2iω0θ ,

where E1 =

⎡
⎢⎢⎢⎣

E (1)
1

E (2)
1

E (3)
1

E (4)
1

⎤
⎥⎥⎥⎦ ∈ R

4 is a constant vector. Simi-

larly,

w11(θ) = −i

ω0
g11q(0)eiω0θ + i

ω0
g11q(0)e−iω0θ + E2,

where E2 =

⎡
⎢⎢⎢⎣

E (1)
2

E (2)
2

E (3)
2

E (4)
2

⎤
⎥⎥⎥⎦ ∈ R

4 is a constant vector. Let us

find the values of E1 and E2. If we take θ = 0 at (40),
then one obtains that
0∫

−1

dη(θ)w20(θ) = 2iω0w20(0) − H20(0), (41)

0∫
−1

dη(θ)w11(θ) = −H11(0). (42)

Also, for θ = 0,

H20(0) = −g20q(0) − g02q(0)

+ 2τ ( j)

⎡
⎢⎢⎣

β11q22 + β12q21 e
−2iω0

β21 + β22q23
0
0

⎤
⎥⎥⎦

(43)

and

H11(0) = −g11q(0) − g11q(0)

+ τ ( j)

⎡
⎢⎢⎣
2β11q2q2 + 2β12q1q1e−2iω0

2β21 + 2β22q3q3
0
0

⎤
⎥⎥⎦ .

(44)

On the other hand, since A(0)q(0) = iω0q(0) and
A(0)q(0) = iω0q(0) we can write⎡
⎣iω0 I −

0∫
−1

eiω0θdη(θ)

⎤
⎦ q(0) = 0, (45)

⎡
⎣−iω0 I −

0∫
−1

e−iω0θdη(θ)

⎤
⎦ q(0) = 0. (46)
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Substituting (43) in (41) and then using (45) we obtain⎡
⎣2iω0 I −

0∫
−1

e2iω0θdη(θ)

⎤
⎦ E1

= 2τ ( j)

⎡
⎢⎢⎢⎢⎣

β11q22 + β12q21 e
−2iω0

β21 + β22q23
0

0

⎤
⎥⎥⎥⎥⎦

which is equal to⎡
⎢⎢⎢⎢⎣

2iω0 + τ ( j) −τ ( j)α12 −τ ( j)α11 0

−τ ( j)α21 2iω0 − τ ( j) 0 −τ ( j)α22

−τ ( j)α 0 2iω0 + τ ( j)α 0

0 −τ ( j)α 0 2iω0 + τ ( j)α

⎤
⎥⎥⎥⎥⎦ E1

= 2τ ( j)

⎡
⎢⎢⎢⎢⎣

β11q22 + β12q21 e
−2iω0

β21 + β22q23

0

0

⎤
⎥⎥⎥⎥⎦ . (47)

Now, if one solves this system for E1 one can find that

E (1)
1 = 2τ ( j)

A1

∣∣∣∣∣∣∣∣∣∣∣

β11q22 + β12q21 e
−2iω0 −τ ( j)α12 −τ ( j)α11 0

β21 + β22q23 2iω0 − τ ( j) 0 −τ ( j)α22

0 0 2iω0 + τ ( j)α 0

0 −τ ( j)α 0 2iω0 + τ ( j)α

∣∣∣∣∣∣∣∣∣∣∣
,

E (2)
1 = 2τ ( j)

A1

∣∣∣∣∣∣∣∣∣∣∣

2iω0 + τ ( j) β11q22 + β12q21 e
−2iω0 −τ ( j)α11 0

−τ ( j)α21 β21 + β22q23 0 −τ ( j)α22

−τ ( j)α 0 2iω0 + τ ( j)α 0

0 0 0 2iω0 + τ ( j)α

∣∣∣∣∣∣∣∣∣∣∣
,

E (3)
1 = 2τ ( j)

A1

∣∣∣∣∣∣∣∣∣∣∣

2iω0 + τ ( j) −τ ( j)α12 β11q22 + β12q21 e
−2iω0 0

−τ ( j)α21 2iω0 − τ ( j) β21 + β22q23 −τ ( j)α22

−τ ( j)α 0 0 0

0 −τ ( j)α 0 2iω0 + τ ( j)α

∣∣∣∣∣∣∣∣∣∣∣
,

E (4)
1 = 2τ ( j)

A1

∣∣∣∣∣∣∣∣∣∣∣

2iω0 + τ ( j) −τ ( j)α12 −τ ( j)α11 β11q22 + β12q21 e
−2iω0

−τ ( j)α21 2iω0 − τ ( j) 0 β21 + β22q23

−τ ( j)α 0 2iω0 + τ ( j)α 0

0 −τ ( j)α 0 0

∣∣∣∣∣∣∣∣∣∣∣
,

where

A1=

∣∣∣∣∣∣∣∣∣∣

2iω0 + τ ( j) −τ ( j)α12 −τ ( j)α11 0

−τ ( j)α21 2iω0 − τ ( j) 0 −τ ( j)α22

−τ ( j)α 0 2iω0 + τ ( j)α 0

0 −τ ( j)α 0 2iω0 + τ ( j)α

∣∣∣∣∣∣∣∣∣∣
.

Similarly, substituting (44) in (42) and then utilizing
(46) we can easily get⎡
⎢⎢⎢⎢⎢⎣

−1 α12 α11 0

α21 −1 0 α22

α 0 −α 0

0 α 0 −α

⎤
⎥⎥⎥⎥⎥⎦
E2

=

⎡
⎢⎢⎢⎢⎢⎣

−2β11q2q2 − 2β12q1q1e−2iω0

−2β21 − 2β22q3q3

0

0

⎤
⎥⎥⎥⎥⎥⎦

.
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1048 E. Karaoğlu et al.

Solving this system for E2, we have

E (1)
2

= 1

A2

∣∣∣∣∣∣∣∣

−2β11q2q2 − 2β12q1q1e−2iω0 α12 α11 0
−2β21 − 2β22q3q3 −1 0 α22

0 0 −α 0
0 α 0 −α

∣∣∣∣∣∣∣∣
,

E (2)
2

= 1

A2

∣∣∣∣∣∣∣∣

−1 −2β11q2q2 − 2β12q1q1e−2iω0 α11 0
α21 −2β21 − 2β22q3q3 0 α22

α 0 −α 0
0 0 0 −α

∣∣∣∣∣∣∣∣
,

E (3)
2

= 1

A2

∣∣∣∣∣∣∣∣

−1 α12 −2β11q2q2 − 2β12q1q1e−2iω0 0
α21 −1 −2β21 − 2β22q3q3 α22

α 0 0 0
0 α 0 −α

∣∣∣∣∣∣∣∣
,

E (4)
2

= 1

A2

∣∣∣∣∣∣∣∣

−1 α12 α11 −2β11q2q2 − 2β12q1q1e−2iω0

α21 −1 0 −2β21 − 2β22q3q3
α 0 −α 0
0 α 0 0

∣∣∣∣∣∣∣∣
,

where

A2 =

∣∣∣∣∣∣∣∣

−1 α12 α11 0
α21 −1 0 α22

α 0 −α 0
0 α 0 −α

∣∣∣∣∣∣∣∣
.

Finally, we substitute E1 and E2 in w11(θ) and
w20(θ) and find the coefficients of g(z, z) to determine
the following formulae to investigate the properties of
bifurcating periodic solution on the center manifold at
the critical value τ

( j)
k . The formulae have the following

forms:

c1(0) = i

2ω0

(
g11g20 − 2 |g11|2 − |g02|2

3

) + g21
2

,

μ2 = − Re{c1(0)}
Re{λ′(τ ( j)

k )}
,

β2 = 2Re{c1(0)},

T2 = − Im{c1(0)} + μ2Im{λ′(τ ( j)
k )}

τ
( j)
k ω0

.

These are the quantities that determine the properties
of bifurcating periodic solutions on the center mani-
fold at τ ( j)

k . Here, μ2 determines the direction of Hopf
bifurcation, β2 determines the stability of the bifurcat-
ing periodic solution and T2 determines the period of

the bifurcating solution. Hence, we have the following
result.

Theorem 2 μ2 determines the direction of Hopf bifur-
cation;

– Ifμ2 > 0, then theHopf bifurcation is supercritical
and the bifurcating periodic solutions exist for τ >

τ0,
– If μ2 < 0, then the Hopf bifurcation is subcritical
and the bifurcating periodic solutions exist for τ <

τ0.

β2 determines the stability of the bifurcating periodic
solution;

– If β2 < 0, bifurcating periodic solutions are stable,
– If β2 > 0, bifurcating periodic solutions are unsta-
ble.

T2 determines the period of the bifurcating solution;

– If T2 > 0, the period increases,
– If T2 < 0, the period decreases.

4 Numerical simulations

In this section, we present some numerical simulations
to support our results in Lemmas 1, 2 and Theorem 1.
As an example, we simulate system (5) with a11 =
−0.5, a12 = −1.8, a21 = 1.3, a22 = 1.7 and α = 1. In
addition, for simplicity, we take fi j (.) = tanh(.) for
i = 1, 2 and j = 1, 2 so that the system we simulate
has the following form:

u
′
1(t) = −u1(t) − 0.5tanh(u3(t))

− 1.8tanh(u2(t − τ)),

u
′
2(t) = −u2(t) + 1.3tanh(u1(t))

+ 1.7tanh(u4(t)),

u
′
3(t) = −u3(t) + u1(t),

u
′
4(t) = −u4(t) + u2(t).

(48)

Then, we have

ω8 + (6.4)ω6 + (2.6644)ω4 + (1.6888)ω2

− 4.3731 = 0. (49)

Equation (49) has only one positive root, that is,
ω0 ≈ 0.8152. Also, one can easily obtain τ 00 ≈ 1.4040
from Eq. (22). For the simulation, we choose τ1 = 0.5
and τ2 = 0.7 so that τ = τ1 + τ2 = 1.2 < τ 00 . Thus,
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Fig. 2 Graphsof solutions of system (5)with τ1 = 0.5, τ2 = 0.7,
τ1 + τ2 = 1.2 < τ 00 . The origin is asymptotically stable
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Fig. 3 Graphsof solutions of system (5)with τ1 = 0.5, τ2 = 0.7,
τ1 + τ2 = 1.2 < τ 00 . The origin is asymptotically stable

from Theorem 1, the equilibrium (0, 0, 0, 0) is stable
when τ < τ 00 as it can be seen in Figs. 2 and 3. Since
μ2 > 0,when τ passes through the critical value τ 00 , the
equilibrium loses its stability and a Hopf bifurcation
occurs, i.e., a family of periodic solutions bifurcates
from the origin when delay increases. Figures4 and 5
show the periodic solutions when τ = τ1+τ2 = 1.5 ≈
τ 00 . Since T2 > 0 and β2 < 0, the period of the periodic
solutions increases as τ increases and periodic orbits
are stable. If we choose τ1 = 0.9 and τ2 = 0.9, then
τ = τ1 + τ2 = 1.8 > τ 00 . When τ = 1.8 > τ 00 , Figs. 6
and 7 represent that the corresponding periodic solu-
tions have larger period than in Fig. 4. Since our system
has four dependent variables (depends on time), one can
choose three of them randomly and observe bifurcation
diagram partially. One can also see the restricted limit
cycles with increasing periods as τ increases in Fig. 8.

5 Conclusion

In this paper, we investigate local stability of the equi-
librium (0, 0, 0, 0) and local Hopf bifurcation in a cou-
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Fig. 4 Bifurcating periodic solutions when τ1 = 0.75, τ2 =
0.75, τ1 + τ2 = 1.5 > τ 00
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Fig. 5 Bifurcating periodic solutions when τ1 = 0.75, τ2 =
0.75, τ1 + τ2 = 1.5 > τ 00
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Fig. 6 Bifurcating periodic solutions when τ1 = 0.9, τ2 = 0.9,
τ1 + τ2 = 1.8 > τ0
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Fig. 7 Bifurcating periodic solutions when τ1 = 0.9, τ2 = 0.9,
τ1 + τ2 = 1.8 > τ0

123



1050 E. Karaoğlu et al.
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Fig. 8 Some limit cycles when τ increases from τ = 1.5 to
τ = 1.58

pled two-neuron system consisting of multiple discrete
and distributed delays. We show that the equilibrium
is asymptotically stable when τ ∈ [0, τ0) and unstable
for τ > τ0. In particular, employing theRouth–Hurwitz
criterion and the results on distribution of the zeros of
transcendental functions, we get a set of conditions to
determine the stability of the fixed point of model (3)
and the existence of Hopf bifurcations. Also, we paid
attention to the direction and the stability of the bifur-
cating periodic solutions by applying the normal form
theory and the center manifold theorem. Finally, we
have performed some numerical simulations to sup-
port our analytical results. In particular, if we choose
the kernel as delta function instead of weak kernel,
that is, F(s) = δ(s − τi ) i = 1, 2, respectively, and
all fi j (·) = f for i = 1, 2 and j = 1, 2, then our
system (3) reduces the model (1) that was studied in
[17]. In summary, all theoretical results obtained in the
present paper are generalization of former studies given
in [11,14,17].
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