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Abstract Neural electrical activities are due to the
movement of ions in/out of the neuron and can be mod-
ulated by an external electric field. Moreover, clini-
cal evidences reveal that the modulated activities of
brain tissue by an external electric field are associ-
ated with normal or pathological brain functions. In
this paper, we investigated the spatiotemporal activi-
ties of a network of neurons considering an AC elec-
tric field. It is shown that the external electric field
has a significant impact on the activities of the neural
network. The strong external electric field facilitates
the neuron firing action potentials and enhances the
mean firing rate of the network, but disrupts the syn-
chronicity of the activities of the neural network. The
information entropy revealed that the external field is
capable of changing the amount of information in the
neural network and the interspike internals distribu-
tion can also be changed by the external field regard-
less the network parameters. It is observed a v-shape
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resonant area in the Eappl-f (field intensity–field fre-
quency) parameter space, where the neural network
exhibits a high firing rate but weak synchronicity and
low value of information entropy. Moreover, the effect
of the electric field on the spatiotemporal activities
of the neural network is detected in different con-
nection fraction and network size. Our current work
gives the insight into the effect of the external elec-
tric field on the spatiotemporal activities of the neural
network.

Keywords External electric field · Information
entropy · Neural network activity · Firing pattern ·
Synchronization

1 Introduction

Information processing in the brain is based on spa-
tiotemporal patterns of electrical activities of neuronal
networks, and it is also believed that the spatiotempo-
ral patterns of neural activities are underlying features
of many cognitive as well as pathological phenom-
enons [1,2]. In the last two decades, the spatiotem-
poral activities of neuronal networks have received
much attention. It is revealed that neuronal synchro-
nization underlies spatiotemporal pattern formation in
the healthy and pathological brain [3–6]. The syn-
chronization mechanisms have been observed in many
neural process experimentally, including visual sys-
tem development [7], conscious attention to stimuli [8],
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movement preparation [9], and the maintenance of rep-
resentations in memory [10]. The former theoretical
research works also show that spatiotemporal pattern
formation in neuronal networks depends on many fac-
tors including the interplay among synapses [11–14],
external or intrinsic noise [15–17], network topology,
and cellular properties [18,19].

Neural electrical activities are due to movement of
ions across the neuronal membranes in the nervous sys-
tem. It is also reported that the weak electric field has a
significant effect on electrical activities of single neu-
ron as well as neural network [20–24]. With the effect
of the periodic electric field, neuron can response com-
pleted mode-locking behaviors and phase lockings as
well as chaotic dynamics depending on the parame-
ter values of the amplitude and frequency of the elec-
tric field [25]. There is also a rich bifurcation includ-
ing theHopf bifurcation, the period-adding bifurcation,
and the period-doubling bifurcation [26,27]. Neurons
exposed to the extremely low-frequency electric field
can also change normal firing properties [26]. Intro-
duced a external electric field, the spiral wave of a reg-
ular network of HH neurons encounters death, when
the intensity of the electric field exceeds the critical
threshold; otherwise, the spiral wave keeps alive com-
pletely [28].

External electric fields influence the human body
just as they influence the material made up of charged
particles. Extracellular electric fields exist through-
out the living brain. Moreover, due to wide utiliza-
tions of power line and electric equipments, elec-
tromagnetic exposure in the environment has been
nearly one hundred million times stronger than cen-
turies before, and many nervous diseases probably
caused by electromagnetic field [29,30]. Thus, it
is great importance that the research on activities
of neural network exposed to an external electric
field.

In the current work, we extend the numerical work
in this context from the firing pattern of a single neuron
to the spatiotemporal activities of a network of neurons
and focus on an AC external electric field. The rest of
this paper arranged as follows. In Sect. 2, brief intro-
duction of an one-compartment HH model under an
electric field and simulation methods are given. Then,
the simulation results are given in Sect. 3. Finally,
conclusions and discussions are made in the last sec-
tion.

2 Material and methods

2.1 Neuron model and external electric field

The neuron in our neural network is chosen as the
Hodgkin–Huxley conductance-based model, which
describes how action potentials are initiated and prop-
agated in a single neuron [31,32]. Here, the neuron is
a single-patch model, and the current along the axon is
ignored. In this paper, we consider small-world neural
network constructions, and the i th neuron in the net-
work is given as follows:

Cm
dVi
dt

= −gNam
3
i hi (Vi − ENa) − gK n

4
i (Vi − EK )

− gL(Vi − EL) + I syni (t) + ξ(t), (1)

dmi

dt
= αm(1 − mi ) − βmmi , (2)

dhi
dt

= αh(1 − hi ) − βhhi , (3)

dni
dt

= αn(1 − ni ) − βnni , (4)

The experimentally fited voltage-dependent transition
rates are given as follows

αm = (0.1 − 0.01Vi )

[exp(1 − 0.1Vi ) − 1] ,
βm = 0.125exp(−Vi/80),

αh = (2.5 − 0.1Vi )

[exp(2.5 − 0.1Vi ) − 1] ,
βh = 4exp(−Vi/18),

αn = 0.07exp(−Vi/20),

βn = 1/[exp(3 − 0.1Vi ) + 1].
where Vi is the membrane potential of the i th neuron.
mi , hi , and ni represent the activation and inactivation
of the sodium current and the activation of the potas-
siumcurrent, respectively.Cm = 1µF/cm2 is themem-
brane capacitance. The constants gNa = 120 mS/cm2,
gK = 36 mS/cm2, and gL = 0.3 mS/cm2 are the max-
imal conductances of the sodium, potassium, and leak-
age channels. ENa = 50 mV, EK = −77 mV, and
EL = −54.5 mV stand for the corresponding reversal
potentials, respectively. I syni (t) is the total synaptic cur-
rent of i th neuron. ξ(t) is Gaussian white noise, which
indicates the current noise and satisfies 〈ξ(t)〉 = 0 and
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〈ξi (t1)ξ j (t2)〉 = 2Dδi, jδ(t1 − t2). D is the noise inten-
sity and set as 2.5 mA/cm2 in our simulation.

We use the synaptic current I syni (t) between neurons
in the neural network described as follow [33]

I syni = gsyn

N∑

j

ai, j r j (Vi − Es). (5)

here gsyn is the conductance of the synapse controlling
the synaptic input amplitude, ai, j is the coupling con-
stant between the two neurons i and j , which is deter-
mined by the coupling pattern of the neural network.
r j represents the fraction of bound receptors, Vi is the
postsynaptic membrane potential, and Es = 0 mV is
the reversal potential of the excitatory synapse. The
fraction of bound receptors, r j , follows the equation

dr j
dt

= α[T ] j (1 − r j ) − βr j , (6)

where [T ] j = TmaxH(T j
0 + τsyn − t)H(t − T j

0 ) is
the concentration of neurotransmitter released into the
synaptic cleft. α = 0.94 and β = 1 are rise and decay
time constants, respectively, and T j

0 is the time atwhich
the presynaptic neuron j fires, which happens whenever
the presynapticmembrane potential exceeds a predeter-
mined threshold value. We chose 10 mV as the thresh-
old value in our simulation. H() is the Heaviside step
function.

When a external electric field is applied to the brain,
charges movement can be induced in brain tissue. In
thiswork,we consider the action of the exogenous elec-
tric fields at cellular level as amembrane voltage pertur-
bation and introducing an additive correction term VE

for the reversal potential [26,34,35]. Thus, the Eq. 1 of
the HH neuron model will then turn into:

Cm
dVi
dt

= −gNam
3
i hi (Vi + V i

E − ENa)

− gK n
4
i (Vi + V i

E − EK ) − gL(Vi + V i
E − EL)

+ I syni (t) + ξ(t).

The term V i
E in Eq. 7 is the induced membrane voltage

perturbation of the i th neuron by an applied electric
field Eappl. In our simulation, the neuron is considered
as an single patch and the sign of V i

E is depended on
angle between the field line and the exterior normal
direction of the patch of the i th neuron .

When an AC field is applied, the induced potential
difference can be derived from the basic electromag-
netic theory [36,37]:

V i
E = 1.5REappl sin(2π f t) cos(θi )/

√
1 + (2π f τ)2,

(7)

τ = RCm(ρint − ρext)/2. (8)

where R is the cell radius (typically, on the order of
10 µm). Eappl is the strength of applied field, and θi is
the angle between the field line and the exterior normal
direction of the patch of the i th neuron. It is noted that
the neurons in the network are supposed as uniformly
distributed in the electric field. Thus, θi (i = 1,2,3,…,N)
is set as uniform random numbers between 0 and 2π .
ρint = 7050
cm and ρext = 910
cm are the resistiv-
ity of the internal fluid and that of the external medium
of the neuron, respectively .

2.2 The measurements

To quantify observed spatiotemporal patterns of net-
work activities and distinguish various network behav-
iors, we introduce the population firing rate and busting
synchronization of neural network.

The average frequency of network,F, was defined as
the average firing rate of the whole neurons of network
over the duration of the simulation run:

F =
∑N

i Fi
N

, and (9)

here, Fi is the firing rate of neuron i, which is defined
as average spikes of neuron i in the simulation time.

We used an interspike distance synchrony measure
to monitor the degree of spiking synchrony in the net-
work. The bursting synchronization S is based on the
time-ordered set of network spikes and defined as fol-
lows [17,18,38]:

S = 1√
N

(√〈τ 2v 〉 − 〈τv〉2
τv

− 1

)
(10)

here, τv is the network interspike interval correspond-
ing to the time difference between spikes v and v + 1
of the network Note that the spike times do not neces-
sarily correspond to spikes of the same neuron in the
neural network.

2.3 Network connectivity and simulation method

Many studies in the past decade revealed that the
structural and functional neural networks exhibit the
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p=1.0p=0.5p=0.1

Fig. 1 Example of small-world network topologies with 20 neu-
rons. The rewiring parameter p is set as p = 0.1, 0.5, 1.0 from
left to right

small-world phenomenon fromCaenorhabditis elegans
to humans [39,40]. In this paper, the neural network
was constructed using the small-world network para-
digm [41]. The number of neurons in the network is
set as 100. The mean connectivity fraction (the mean
ratio of the number of synapse of each neuron) is set
as 5%. The rewiring parameter p is the probability of
replacing a local neighbor connection with a connec-
tion randomly assigned elsewhere in the network and
is set as a free parameter in this work. Figure 1 give the
schematic diagram of the small-world network in this
paper.

In our numerical simulation, the Box–Mueller algo-
rithm is usedwith step size 0.001ms [42].All numerical
results in the simulation are obtained by no less than
10 times averages.

3 Simulation results

3.1 Firing pattern of the neural network without
external field

Firstly, the mean firing rate and bursting synchroniza-
tion of neural network without external field are given
in Fig. 2. For the weak synaptic conductivity, the mean
firing rate of the network and the bursting synchro-
nization of the neural network are relatively small. The
neural network randomly fires few action potentials
in the case of the weak synaptic conductivity. When
the synaptic conductivity is strong, the firing rate of
the neural network is high, especially for the network
with the low rewiring probability. However, the neural
network displays the best synchronous firing activi-
ties with the stronger synaptic conductivity and higher
rewiring probability.

The raster plots of the firing time of each neuron
are more clear to show the neural network activities.

p

g sy
n (m

S
/c

m
2 )

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

0.1

0.2

0.3

0.4

0.5

(a)

p

g sy
n (m

S
/c

m
2 )

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

10

15

20

25

(b)

Fig. 2 The bursting synchronization (a) and themean frequency
(b) of the neural network activities as function of rewiring prob-
ability and synaptic conductivity

Figure 3 gives the raster plots of the network activities
with the different synaptic conductivities and rewiring
probabilities. For the weak synaptic conductivity in the
top panels of Fig. 3, only few neurons in the network
randomly fire action potentials and display low mean
firing rate.As the synaptic conductivity is increased, the
firing pattern of the network resembles the repetitive
chains for the low rewiring probability. For the high
rewiring probability, however, the mean firing rate of
the network is also increased and the firing patterns
of the network are still random. However, the neural
network shows the synchronous firing pattern as the
rewiring probability and synaptic conductivity are both
very high (see the gsyn = 1.5 mS/cm2, p = 0.9 in
Fig. 3).

In a word, the network activities depend on the para-
meters of synaptic conductivity and rewiring probabil-
ity of the neural network. Thus, in the following work,
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Fig. 3 The raster plots show the firing time of neurons in the network for different synaptic conductivity and rewiring probability

we choose several specific values of the synaptic con-
ductivity and rewiring probability to simulate the effect
of an external electric field on the neural network activ-
ities.

3.2 Firing frequency and synchronicity of the neural
network with AC field

In this section, we consider the case of AC external
electric field with sinusoidal form, which is defined by
Eqs. 7 and 8. The parameters (the intensity Eappl and
the frequency f) of the sinusoidal field are set as free
parameters. Here, we choose the rewiring probability
as p = 0.1, 0.9 and the synaptic conductivity as gsyn =
0.2, 0.9 mS/cm2.

For the neural network with weak synaptic conduc-
tivity, the activities of the network are not synchro-
nized, and even the intensity of the sinusoidal field is
very strong. However, the firing rate of the neural net-
work can be modified to a great extent by the external
field. Figure 4 shows a color map of the bursting syn-
chronization (upper panels) andfiring rate (bottompan-
els) with the synaptic conductivity gsyn = 0.2 mS/cm2.
The left and right panels give the results of the neural
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Fig. 4 Bursting synchronization (a, b) and firing rate (c, d) of
the network in color plots. Synaptic connective is set as gsyn =
0.2 mS/cm2. The rewiring probability p = 0.1 in (a, c); p = 0.9
in (b, d)

network with rewiring probability p = 0.1 and 0.9,
respectively. As the parameters (the intensity Eappl and
the frequency f) of the sinusoidal field are changed,
the bursting synchronization of the network with the
rewiring probability p = 0.1 and 0.9 is altered little and
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Fig. 5 Bursting synchronization (a, b) and firing rate (c, d) of
the network in color plots. Synaptic connective is set as gsyn =
0.9 mS/cm2. The rewiring probability p = 0.1 in (a, c); p = 0.9
in (b, d)

no more than 0.25. This result reveals that the network
firing is not synchronized showing the random firing
pattern. For the weak field (see as Eappl < 100 V/m in
Fig. 4c, d), the firing rate of the network is similar to
that without AC electric field and nearly do not change
with the frequency of the AC electric field. When the
intensity of the field is enhanced, the network exhibits
a high firing rate, especially for the AC electric field
frequency near 100 HZ. For the stronger field, the fre-
quency range of AC electric field to induce the high fir-
ing rate is enlarged to the high-frequency direction. It is
clear that the firing rate is increased with the intensity
of the sinusoidal electric field. As a whole, the higher
firing rate emerges in a v-shape parameter area in the
Eappl-f panel (see as Fig. 4c, d). It is also noted that the
firing patterns of the network nearly do not change the
rewiring probability.

As the synaptic conductivity increased, the effect
of sinusoidal field on the neural network activities is
almost the same as that shown in Fig. 4, except for
some little changes in the value of the bursting syn-
chronization and firing rate. When synaptic intensity is
above 0.6 mS/cm2, the patterns of the neural network
activities are very different from that of weak synaptic
intensity.

As shown in Fig. 5, the color maps of the burst-
ing synchronization (upper panels) and firing rate (bot-
tom panels) are given as the synaptic conductivity
gsyn = 0.9 mS/cm2. For the low rewiring probabil-
ity (see Fig. 5a, c), the neural network still does not

show synchronized firing activities. Moreover, the fir-
ing rate of the network nearly does not change for the
weak sinusoidal electric field, but is higher than that
of the neural network with weak synaptic connection.
As the sinusoidal field is strong, there is also a v-shape
parameter area in Eappl-f panel, where the neural net-
work displays a high firing rate. For the high rewiring
probability, the results are more interesting. When the
parameters of the sinusoidal electric field is chosen in
the v-shape area of the Eappl-f panel, the neural network
shows the lowest bursting synchronization as shown in
Fig. 5b. Outside v-shape area, however, the activity of
the neural network shows very large bursting synchro-
nization. As the intensity of a sinusoidal electric field
increased, the bursting synchronization is increased
outside the v-shape area. That is to say the sinusoidal
electric field destroyed the synchronized neural net-
work activities with the parameters in the v-shape area.
However, the corresponding firing rate in the v-shape
is higher than that outside (see in Fig. 5d). Moreover,
the firing rate of the neural network also increases with
the intensity of the external field.

As the firing response of neural network show in
Figs. 4 and 5, there is very high-frequency response
in the v-shape parameter area. In the presence of a
sinusoidal electric field and background noise, a sin-
gle neuron displays stochastic resonance when the field
parameters are chosen in the v-shape area. Although
neurons are coupled into a complex network, the mean
frequency response is still very high. This collective
behavior also reveals a novel resonant phenomenon of
neural network exposed in a periodic electric field. It
is noted that such resonant phenomenon is robust to
coupling topology.

The typical raster plots of the neural network
exposed to the sinusoidal electric field are given in
Fig. 6. For the weak synaptic conductivity (gsyn =
0.2 mS/cm2), neurons in the neural network (with the
rewiring probability p=0.1 or p=0.9) almost randomly
fire action potentials. For strong synaptic conductivity,
the activity patterns of the neural network took the form
repetitive chains (as p = 0.1, Eappl = 200 mS/cm2,
f = 100 Hz in Fig. 6). When the parameters of the sinu-
soidal field belong to the v-shape area in the Eappl-f
panel, the neurons in the network fire large number
of action potentials asynchronously, whereas the firing
activities of the network show synchronous behaviors
with the parameters outside of the v-shape area (as p =
0.9; Eappl = 600; f = 700 in Fig. 6).
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Fig. 6 The raster plots show the firing time of neurons in the
neural network exposed to sinusoidal electric field

3.3 Information entropy of the neural network with
AC field

The results of the above sections show that the external
electric field has a significant impact on the activities
of the neural network. In this section, we focus on the
changes in the transmission information of the neural
network in the presence of the external AC filed. To do
this, we introduced the information entropy H to mea-
sure the amount of information in the network [43,44].
Information entropy is a concept from information the-
ory. The definition of the information entropy of a
neural network is given by

H = − 1

N

N∑

i=1

∑

observe�t

Pi
ISI(�t) log2

(
Pi
ISI(�t)

)
.

(11)

Here, N is the total neuron number of the neural net-
work. Pi

I SI (�t) is the probability of ISIs of i th neuron.
�t was chosen as 1.0ms. Information entropy tells how
much information there is in an event and has appli-
cations in many areas, including statistical inference,
biology, machine learning, and so on. This information
entropy can serve as order parameter to give us not only
the amount of information in the neural network, but
also property of the neural network activities.
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Fig. 7 Information entropy of the neural network exposed to
a sinusoidal electric field. The parameters are set as: a gsyn =
0.2 mS/cm2 and p = 0.2; b gsyn = 0.2 mS/cm2 and p = 0.9; c
gsyn = 0.9 mS/cm2 and p = 0.2; and d gsyn = 0.9 mS/cm2 and
p = 0.9. The number of neurons in the network is set as 100.
The mean connectivity fraction (the mean ratio of the number of
synapse of each neuron) is set as 5%

Figure 7 gives the information entropy of the neural
network exposed to a sinusoidal electric field. When
the synaptic conductivity is weak, the external field
has a little effect on the synchronicity of the neural net-
work firing. However, the external field shows a signif-
icant impact on the information entropy of the neural
network. As shown in Fig. 7a, b, the neural network
exhibits high value of information entropy in the most
region of the Eappl-f parameter space. That is due to
the fact that external field enhances irregularity of the
neural network firing, when the synaptic conductivity
is weak. That is also the reason that the firing of neural
network is not synchronous.

As the synaptic conductivity is increased, the effect
of an external field on the information entropy become
weak, when the rewiring probability of the network
work is low. As shown in Fig. 7c, the value of informa-
tion entropy is relatively lower than that of the neural
network with weak synaptic conductivity. In this case,
the neural network still exhibits irregular firing and the
interspike intervals of the neural network is distributed
in a scattered area, although the external field enhances
the firing of the neural network and the strong synap-
tic conductivity enhances the communication between
neurons. That is why the neural network still does not
show synchronous firing, but high firing frequency (as
shown inFig. 5a, c).When the synaptic intensity and the
rewiring probability are both large enough, the infor-
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mation entropy in the Eappl-f parameter space exhibits
similar pattern to that of bursting synchronization (see
in Fig. 5d). There is a distinct v-shape parameter area
in Eappl -f panel, where the neural network displays
a small value of information entropy. Outside this v-
shape area, however, the neural network shows a larger
value of information entropy.

It is also noted that the neural network displays
a small value of information entropy as the fre-
quency of the external field in the region 0–300 Hz
regardless the synaptic conductivity and the rewiring
probability. In this region, the neural network also
shows the highest firing frequency. Those results reveal
that resonance of the neural network for the exter-
nal field is in this frequency region. Interestingly, the
previous work reveals that the application of low-
frequency (0–300 Hz) time-varying external magnetic
fields induces currents affecting neural firing in the
central nervous system and affects pain sensitivity in
snails, rodents, and humans. This frequency region is
the same as the resonance frequency region in our
simulation.

3.4 The effect of the connectivity fraction and
network size

As the results of the previous studies, spatiotemporal
activities of the neural network depend on the over-
all synaptic input of individual neuron as well as the
number of cells in the neural network [18,38]. Thus,
we consider the spatiotemporal activities of neural net-
work with different connectivity fraction and network
size in the sinusoidal electric field.

Firstly, we only change the number of the neurons in
the neural network, keeping the connectivity fraction
as the default value (k = 0.05). As shown in Fig. 8, the
bursting synchronization and mean firing rate of the
network with different number of neurons are given
as functions of the frequency of the sinusoidal elec-
tric field. When the frequency of the external field
is low, the bursting synchronization fluctuates largely
both of the networks with low and high rewiring proba-
bility. Increasing the frequency of the electric field, the
bursting synchronization of the network with the low
rewiring probability is increased and then decreased
with the frequency of the electric field. For the network
with high rewiring probability, however, the bursting
synchronization is increasing with the frequency of the
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Fig. 8 Effect of the number of neurons in the network. The
intensity of the external field Eappl = 700 V/m and the synaptic
conductivity gsyn = 0.9 mS/cm2. Left panels p = 0.2; right
panels p = 0.9. Upper panels give the results of the bursting
synchronization; bottom panels give the results of mean firing
rate of the network

external field, and then decreases in the high-frequency
area. It is interesting that the network with a larger
number of neurons exhibits larger bursting synchro-
nization. This result reveals that the network with a
larger number of neurons exhibits more synchronous
firing pattern. Moreover, the network with large num-
ber of neurons could display synchronous firing pattern
as the frequency of external field near 500 Hz, which
does not depend on the rewiring probability (see as
Fig. 8a, b).

As shown in Fig. 8c, d, the mean firing rate of the
neural network is increasedwith the frequency of exter-
nal field, when the frequency of the external field is low.
As the frequency of the external field is high enough
(nearly over the 200 Hz), the mean firing rate of the
network begins to decrease. For the low rewiring prob-
ability, the network with a larger number of neurons
displays lower mean firing rate. For the high rewiring
probability, however, the number of neurons in the net-
work almost has no effect on the mean firing rate of the
network.

In Fig. 9, we change the connectivity fraction and set
the network size as the default value (N = 100). As the
frequency of the external field increasing, the changing
trends of the bursting synchronization and mean firing
rate are similar to that showed in Fig. 8. The neural
network with higher connectivity fraction displays the
better synchronous firing pattern. Moreover, the firing
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Fig. 9 Effect of the mean connectivity fraction of the neural
network. The intensity of the external field Eappl = 700 V/m
and the synaptic conductivity gsyn = 0.9 mS/cm2. left panels
p = 0.2; right panels p = 0.9. Upper panels give the results of
the bursting synchronization; bottom panels give the results of
mean firing rate of the network

rate of the neural network with low rewiring probabil-
ity decreases as the connectivity fraction increases in
the high- frequency area of the external field. However,
the firing rate of the network with high rewiring proba-
bility has a little change when the connectivity fraction
increased.

4 Conclusion and discussion

In this paper, we investigated the spatiotemporal activ-
ities of neural network exposed to an external electric
fields. We observed that the neural network exhibited
intriguing behaviors as a result of interaction among
network structure, synaptic conductivity, and the elec-
tric fields. The weak external field does not change the
activities of neural network regardless the form of the
external field, the network structure, and the synaptic
conductivities. However, the strong external field has
significant effects on the activities of neuron: not only
changed themean firing rate but alsomodified the firing
synchronicity of the neural network.

For the AC electric field, the neural network exhibits
more interesting spatiotemporal activities. When the
synaptic conductivity is weak, the synchronicity of the
neural network is similar to that without the AC field
and nearly does not change by changing the field para-

meters. When the synaptic intensity is strong, the syn-
chronicity of the neural network is modulated by the
external electric field to a large extent. However, the
mean response frequency of the network almost not
depends on synaptic conductivity and rewiring proba-
bility. The information entropy revealed that the exter-
nal field is capable of changing the amount of infor-
mation in the neural network. Moreover, the interspike
internals distribution can also be changed by the exter-
nal regardless the network parameters. In the Eappl-f
parameter space, there is a v-shape area, where the
neural network exhibits a high firing rate. For the neural
network with higher rewiring probability and stronger
conductivity, it is interesting that the neural network
displays asynchronous firing in the v-shape parame-
ter area, but the neural network exhibits better syn-
chronous firing pattern outside this area. The collec-
tive behaviors of the neurons reveal a novel resonant
phenomenon of neural network exposed in a periodic
electric field.

As the neuron network exposed to the sinusoidal
electric field with high enough frequency, we also
observed that the synchronicity of the neural network
could be enhanced and the mean firing rate could be
decreased as the number of the neuron and the connec-
tion fraction of the neural network increases in the case
of network with low rewiring probability. When the
neural network has a high rewiring probability, how-
ever, the synchronicity (as well as the firing rate) of the
neural network with different network size ( as well as
connectivity fraction) is nearly the same.

Nowadays, everyone, both at home and at work, is
exposed to a complex mix of weak electric and mag-
netic fields in the environment due to the abundantman-
made electromagnetic fields. Electric fields influence
the human body by the electromagnetic force on the
charged particles in the human body. It is also reported
that there exists a strong relationship between some dis-
eases and the electric field [45]. Here, we studied the
spatiotemporal activities of neural network exposed in
an electric field. Our results reveal that the weak elec-
tric field does not change the spatiotemporal activities
of neural network, but the strong electric field does.
Those results conform to the common sense andmay be
helpful to the theoretical studies of the effects of elec-
tric field on the human brain. A potential implication
of this research helps neuroscientist and neurosurgeon
to choose a proper external electric field to control the
activities of a network of neurons or brain tissues. It is

123



890 H. Wang, Y. Chen

also reported the electric field had been used to con-
trol epileptic seizure-like events in hippocampal brain
slices [46]. Our current results can also reveal that the
mechanism of this method to control epileptic seizure-
like events is based on the disturbance on the hyper-
synchronous brain activities.

However, the real nervous system is a highly com-
plex system, and the electromagnetic field cannot only
change the balance of charged particles and has heating
effect in the human body. Thus, further studies on the
effect of the electromagnetic field to the human brain
are needed in both theory and experiment.
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Appendix

Description of the neuronal model

The neuron in our neural network is chosen as the
Hodgkin–Huxley conductance-based model, which
describes how action potentials are initiated and prop-
agated in a single neuron. Here, the neuron is treated
as a single-patch model, and the current along the axon
is ignored. To make the model closely match the real
nervous system, the angle (θ ) between the field line
and the exterior normal direction of the patches has a
uniform distribution, based on the complex structure
neural network and neurons.

On the other hand, we consider the action of the
exogenous electric fields at the cellular level as a mem-
brane voltage perturbation and introducing an additive
correction term VE for the reversal potential. In fact, the
external fields interact with the ions in the neuron and
induce a reset of the distribution of ions both inside
and outside membranes. Thus, the reversal potential
should be modified. Based on the theory of the electric
field (induced by ion distribution) force just balances
the diffusion force at equilibrium, in the current model,
we suppose that force induced by an external electri-
cal field VE is balanced by the changes in distribution
of ions. Thus, the final reversal potential Efinal

ion (with
effect of an external field) can be simply written as:
Efinal
ion = −VE + Eion. Here, Eion is the reversal poten-

tial without of an external field.
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