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Abstract There are many types of oscillators and
many different circuit configurations that produce
oscillations. Some oscillators produce sinusoidal sig-
nals, and others produce nonsinusoidal signals. Non-
sinusoidal oscillators, such as pulse and ramp (or
sawtooth) oscillators, find use in timing and control
applications. Pulse oscillators are commonly found
in digital-systems clocks, and ramp oscillators are
found in the horizontal sweep circuit of oscilloscopes
and television sets. Sinusoidal oscillators are used in
many applications, for example, in consumer electronic
equipment (such as radios, TVs, and VCRs), in test
equipment (such as network analyzers and signal gen-
erators), and in wireless systems. There are two widely
usedmethods of oscillator amplitude control. In thefirst
method, the oscillator active element has a nonlinear
characteristic of the limiting type. In the secondmethod
the oscillator active element has linear control of gain.
In this paper a new method of control based on state
energy concept is proposed. It will show that system
controlled by a linear controller with energy feedback
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can generate different types of signals. Depending on
parameters of the controller the generated output sig-
nal can be sinusoidal, nonsinusoidal, or even chaotic.
A new chaotic attractor was found by means of state
energy feedback.
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1 Introduction

Oscillations and waves are ubiquitous phenomena that
are encountered in many different areas of physics.
An oscillation is a disturbance in a physical system
that is repetitive in time. A wave is a disturbance in
an extended physical system that is both repetitive in
time and periodic in space. In general, an oscillation
involves a continuous back and forth flow of energy
between two different energy types: e.g., kinetic and
potential energy, in the case of a pendulum. A wave
involves similar repetitive energy flows to an oscilla-
tion, but, in addition, is capable of transmitting energy
and information from place to place. Now, although
sound waves and electromagnetic waves, for example,
rely on quite distinct physical mechanisms, they, nev-
ertheless, share many common properties. The same
is true of different types of oscillation. It turns out that
the common factor linking various types of wave is that
they are all described by the same mathematical equa-
tions. Again, the same is true of various types of oscilla-
tion. In some circumstances the system can be chaotic.
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Chaotic motions are behavior of some nonlinear sys-
tems (at least third order or higher) with “floating” fre-
quency, amplitude, and unregular (non periodic) energy
variations. For example, in physics, jerk is the third
derivative of position. It has been shown that a jerk
equation, which is equivalent to a system of three first
orders, ordinary, nonlinear differential equation is in a
certain sense the minimal setting for solutions showing
chaotic behavior. This motivates mathematical interest
in jerk systems. Systems involving a fourth or higher
derivative are called accordingly hyperjerk systems.

Chaos theory studies the behavior of dynamical sys-
tems which are nonlinear, highly initial condition sen-
sitive, having deterministic (rather than probabilistic)
underlying rules which every future state of the sys-
tem must follow. Such systems exhibit aperiodic oscil-
lations in the time series of state variables. It has a
large or infinite number of unstable periodic patterns
which is commonly termed as order in disorder. Long-
term prediction is almost impossible due to the sen-
sitive dependence on initial conditions. Though such
effect may seem quite unusual, it is however observed
in very simple systems, for example, a ball placed at the
crest of a hill might roll into different valleys depending
on slight difference in the initial position. Most com-
mon chaotic phenomenon is observed in case of regular
weather prediction. Other application of chaos theory
is pervaded in many fields like geology, mathematics,
biology, microbiology, computer science, economics,
philosophy, politics, population dynamics, psychology,
and robotics. Some real-world applications of chaotic
time series are computer networks, data encryption,
information processing, pattern recognition, economic
forecasting, market prediction, etc. [1–3].

In this paper it will shown that system controlled
by a linear controller (PI controller, P—proportional,
I—integrative) with energy feedback (nonlinear) can
generate required types of signals. Depending on para-
meters of the controller the generated output signal can
be sinusoidal, quasi-periodic, or even chaotic.

2 The state energy approach

Let us consider a class of finite dimensional nonlinear
systems described in the following form

ẋ = A(x)x + Bu
y = C(x)x

(1)

where the matrix C(x), defining the output measure-
ment, is not a’priori specified, and the structure of
matrices A(x) (tridiagonal)

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−α11 α2 0 0 0 0
−α2 −α22 α3 0 0 0

0 −α3 −α33
. . . 0 0

0 0
. . .

. . . αn−1 0
0 0 0 −αn−1 −αn−1,n−1 αn
0 0 0 0 −αn −αn,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

We start with presentation of some basic ideas of the
state space energy-based approach [4–6]. Let P0(t)
denotes the output dissipation power of a zero input
causal systemwith an informational output y(t)defined
by

y(t) = ±√
P0(t), P0(t) ≥ 0 (3)

Let E(t) denotes the instantaneous value of the state
space energy (stored in a state vector x(t)):

E(t) =
∞∫

t0

P0(τ )dτ, ∀t : t = t0 (4)

The state space energy conservation principle holds

dE

dt
= 〈ψ(x), f (x)〉 = −P0(t) (5)

whereψ is the gradient vector of the state space energy
potential field E, f is the state space velocity vector,
and 〈., .〉 denotes the operation of dual product.

Because the choice of origin and that of the state
space coordinate system is free, we can define the gra-
dient ψ(x) of the energy E in its most simple form:

ψ(x) = xT → E = 1

2

n∑
i=1

x2i (6)

where n is the order of the system representation. In
some situations it may be useful to consider the inte-
gral of E(x) as an additional concept of the state space
hyper-energy J , which, divided by the length of inter-
val T = [t0, t1], defines a mean value of the E(x).

3 Dissipative system structures

Recall that according to Liouville’s theorem of vector
analysis, dissipative systems have the important prop-
erty that any volume of the state space strictly decreases
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under the action of the system flow. For linear as well
as nonlinear systemswith state velocity vector given by
a vector field f, the property of dissipativity is defined:

divf(x) =
n∑

i=1

∂ fi (x)
∂xi

< 0 (7)

Thus a systemdefined by amatrixA(x) is dissipative
if the matrix A(x) has negative trace.

It follows from the state space energy conservation
principle that a special form of a structurally dissipa-
tive state equivalent system representation called gen-
eralized dissipation normal form can easily be derived.
Its internal structure is determined by the tridiagonal
matrix (2).

The structure of this representation is shown in
Fig. 1. It is completely characterized by minimal num-
ber of independent (internal) state energy storage ele-
ments, represented by minimal number of state vari-
ables.

Σ ∫

2-α2α

1x 1x

Σ∫

3-α 3α

1β 1γ 1( )y t

2x 2x

Σ ∫

4α

3β

4-α

3x 3x

nβ
nx nx

11-α

2β

1( )u t

2 ( )u t

3 ( )u t

( )nu t

22-α

33-α

3γ 3 ( )y t

Σ ∫ nγ ( )ny t

- nnα

2γ2 ( )y t

Fig. 1 Structure of the dissipation normal form

In some cases not only the state minimality, but also
a property of parametric minimality is required. In the
important special case of parametrically minimal sys-
tem representation the internal structure reduces to:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−α11 α2 0 0 0 0
−α2 0 α3 0 0 0

0 −α3 0
. . . 0 0

0 0
. . .

. . . αn−1 0
0 0 0 −αn−1 0 αn

0 0 0 0 −αn 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

Because the derived system structure satisfies the
abstract form of state energy conservation principle, we
call it physically correct. It is worthwhile to notice that
any of internal or external power-informational inter-
actions, as depicted in Fig. 1, may be nonlinear with
respect to state and input variables.

System representations with zero divergence

divf(x) = 0 ⇒ α1 = 0 (9)

preservevolumealong state trajectories and are referred
to as conservative. Locally linearized dissipative sys-
tems in a vicinity of an equilibrium state need not be
globally dissipative. If a representation is neither dis-
sipative nor conservative, instability appears.

Following elementary consequences of the state
space energy conservation principle for parametrically
minimal dissipation structure are in order [7,8]:

1. α11 > 0 is necessary and sufficient for dissipativity
2. α11 < 0 is sufficient for structural instability
3. α11 = 0 is necessary and sufficient for conserva-

tivity
4. α11 > 0 is necessary for asymptotic stability
5. ∀i , j ∈ {2, 3, . . . , n} : αi 
= o, α11 
= 0 is equiva-

lent to parametric and state minimality
6. ∀i , j ∈ {2, 3, . . . , n} : αi 
= o, β1 
= 0 is equiva-

lent to structural controlability
7. ∀i , j ∈ {2, 3, . . . , n} : αi 
= o, γ1 
= 0 is equiva-

lent to structural observability
8. ∀i , j ∈ {2, 3, . . . , n} : αi 
= o, α11 
= 0 is equiva-

lent to structural asymptotic stability

where matrices B, C are

B = [
β1 0 · · · 0

]T

C = [
γ1 0 · · · 0

] (10)
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4 The state energy feedback

In this part we try to attack the “problem of oscilla-
tions” not from the standard “observation of reality
point of view,” but from the opposite direction, i.e.,
we intend to develop a consistent approach to the real-
world situations from a “generation of controlled oscil-
lations point of view.” The objective is to stabilize the
state space energy E(t) on any prescribed value E∗
by means of a linear controller, but under the assump-
tion that instead of the measured output signal y(t), the
information about the actual value of the state space
energy E[x(t)] is assumed to be available to the con-
troller [9,10].

At least the following three interpretations are nat-
ural:

• either the state space energy is continuously mea-
sured, and a standard linear “output error” con-
troller is used, where not the informational output
y(t}, but the integrated output dissipation power is
used in the feedback informational channel,

• or the actual state vector x(t) is continuously mea-
sured and used in the feedback informational chan-
nel; then, the corresponding actual value of the state
space energy is computed and a standard linear
“output error“ controller is used,

• or the actual values of the input u(t) and that of the
output y(t) are continuously measured and used
in the feedback informational channel, including
a state reconstructor and a state energy error con-
troller.

The structure for single-input single-output system
with nonlinear part of controller is shown in Fig. 2.

The proportional-integral (PI) controller based on
state space energy is shown in Fig. 3, where E is pre-
scribed value of energy and x2i is state space variable
(the total state space energy is given by Eq. 6).

Let us start with analysis of the state representation
Eq. (1) where the information about the system struc-
ture is contained in the triple of matrices (A, B, C),
where the diagonal elements of the matrix A represent
the dissipation parameters, the off-diagonal elements
represent the internal interaction parameters between
both the first-order subsystems, and the elements of the
matrices B and C represent the parameters of external
interactions. Typical solutions of the state energy error
control problem are illustrated by simulation results:
harmonic oscillations and generation of chaotic oscil-

Linear part
of controller S

*( )E t 0( )x t

[ ( )]E x t

( )u t ( )y t

( )x t

Nonlinear part
of controller

STATE VECTOR
FEEDBACKNONLINEAR CONTROLLER

Fig. 2 Linear system with nonlinear part of controller and the
state vector measurement

+

∑
∫ik

pk
∑

2
1x

2
2x

E

2
Nx u

Controller

Fig. 3 Block diagram of PI controller based on state space
energy control

Σ ∫
2-α2α

1x 1x

Σ∫
2x

2x

1-α

3-α

Fig. 4 Linear quadrature oscillator with dissipation parameters
α1, α3. The frequency is controlled by parameter α2

lations (by the same systems, only control parameters
will change).

The block diagram of linear quadrature oscillator
with 2 dissipations is shown in Fig. 4 (dissipations are
α1, α3).

This system can be described by second-order sys-
tem with the dissipation α1α3 and frequency propor-
tional of α2.

ẋ1 = −α1x1 + α2x2
x2 = −α2x1 − α3x2

(11)

Because of dissipativity, without control, the oscil-
lation in this system vanishes after short time which
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Σ ∫
2-α2α

1x 1x

Σ∫2x 2x

1-α

u

3-α

X 1ux

+

∑
∫ik

pk
∑

2(.) 2(.)
1x2x

2
1x

2
2x

*( )E t

Linear system

0.5
0.5

Linear controller

u

Fig. 5 System 1. The linear quadrature oscillator controlled by
a state energy error PI controller

depends on initial conditions and values of dissipative
coefficient. Using of different controllers is possible for
amplitude stabilization of oscillations [11,12]. In this
paper the newprinciple based on state space energywas
selected. The block diagram of linear quadrature oscil-
lator with proportional-integral controller is displayed
in Fig. 5

The whole system oscillator with PI controller with
nonlinear feedback is represented by

ẋ1 = −α1x1 + α2x2 + x1u(t)

x2 = −α2x1 − α3x2

ẋ3 = kI Ẽ(t)

Ẽ(t) = E∗ − E(t)

E(t) = 1

2

(
x21 + x22

)

u(t) = kP

[
E∗ − 1

2

(
x21 + x22

)]
+ x3 (12)

The first equation can be rewritten as

ẋ1 = x1(u(t) − α1) + α2x2 (13)

From this equation it can be seen that system can be
dissipative if

u(t) − α1 < 0 (14)

or anti-dissipative if

u(t) − α1 > 0 (15)

therefore with appropriate control this system can
hold desired energy. Based on previous results, the
dissipativity/anti-dissipativity is controlled by con-
troller which must hold prescribed energy E∗ where
state space energy of oscillator is given as

E[x(t)] = 1

2

(
x21 + x22

)
(16)

Results depend on proportional and integral gains
of PI controller. It will show that for some gain values
of PI controller the system can be chaotic but holds
(in average) the prescribed energy. The system can be
therefore simply switched as sinusoidal oscillator or
system with chaotic oscillations.

5 Results of computer simulations

The system according to Fig. 5, described by Eq. (12),
was simulated (system 1) for different values of gains
of PI controller.

On the first, the prescribed energy was E∗
1 =

1.5 (from time t ∈ 〈0 to 150〉) and E∗
2 = 3 (from time

t ∈ (150 to 400〉) with initial conditions x1(0) =
0.1; x2(0) = 0; x3(0) = 0 and ki = 0.0015; kp =
0.3;α1 = 0.01;α2 = 1.4;α3 = 0.01. For gain values
of PI controller the system works as sinusoidal oscil-
lator. The results are shown in Fig. 6 (phase portrait),

Fig. 6 Phase portrait of system 1 for ki = 0.0015; kp =
0.3; α1 = 0.01; α2 = 1.4; α3 = 0.01
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Fig. 7 Time evolution of state variables x1 and x2 for system 1
for ki = 0.0015; kp = 0.3; α1 = 0.01; α2 = 1.4; α3 = 0.01

Fig. 8 Time evolution of the prescribed energy (dash line) and
state space energy (solid line) of system 1 for ki = 0.0015; kp =
0.3; α1 = 0.01; α2 = 1.4; α3 = 0.01

Fig. 7 (time evolution of state variables), Fig. 8 (time
evolution of state space energy), and Fig. 9 (frequency
spectrum).

On the second, the prescribed energy was E∗
1 =

1.5 (from time t ∈ 〈0 to 150〉) and E∗
2 = 1.4 (from time

t ∈ (150 to 300〉) with initial conditions x1(0) = 0.1;
x2(0) = 0; x3(0) = 0 and ki = 0.885; kp = 0.099;
α1 = 1;α2 = 1.4;α3 = 1.4. For these gain values of
PI controller the system works as chaotic system. The
results are shown in Fig. 10 (phase portrait), Fig. 11
(time evolution of state variables), Fig. 12 (time evo-
lution of state space energy), and Fig. 13 (frequency
spectrum) [11–14].

On the third the similar systemwas used, but the sign
of 2 state variables x1, x2 is changed in time t > 150

Fig. 9 The frequency spectrum of the state space variable x1 of
system 1 for ki = 0.0015; kp = 0.3; α1 = 0.01; α2 = 1.4; α3 =
0.01

Fig. 10 Phase portrait of system 1 for, ki = 0.885; kp =
0.099; α1 = 1; α2 = 1.4; α3 = 1.4; and initial conditions
x1(0) = 0.1; x2(0) = 0; x3(0) = 0

(by switching signal SW); therefore, “rotation” of the
system was reversed (see Fig. 14), [15–18].

The second system (including switching signal) is
described by Eq. (17)

ẋ1 = −α1x1 + α2SW x2 + x1u(t)

x2 = −α2SW x1 − α3x2

ẋ3 = kI Ẽ(t)

Ẽ(t) = E∗ − E(t)

E(t) = 1

2

(
x21 + x22

)
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Fig. 11 Time evolution of state variables x1 and x2 for system
1 for ki = 0.885; kp = 0.099; α1 = 1; α2 = 1.4; α3 = 1.4

Fig. 12 Time evolution of the prescribed energy (dash line) and
state space energy (solid line) of system 1 for ki = 0.885; kp =
0.099; α1 = 1; α2 = 1.4; α3 = 1.4

u(t) = kP

[
E∗ − 1

2

(
x21 + x22

)]
+ x3

SW =
{+1 for t ≤ t1

−1 for t > t1
(17)

The simulation results lead to 4-wing chaotic system
(system 2), see phase portrait in Fig. 15 and the next
Figs. 16, 17, and 18.

In Table 1 some important characteristic of the both
chaotic systems (system1 and 2) is presented (calcu-
lated from state variables x1 and x2):

Largest Lyapunov exponent, Hurst exponent, capac-
ity dimension, correlation dimension.

Fig. 13 The frequency spectrum of the state space variable x1
of system 1 for for ki = 0.885; kp = 0.099; α1 = 1; α2 =
1.4; α3 = 1.4

Σ ∫

2α−

1−

1x 1x

Σ∫
2x

2x

1-α

u

3-α

X 1ux

+

∑
∫ik

pk
∑

2(.) 2(.)
1x2x

2
1x

2
2x

*( )E t

Controlled system

0.5
0.5

Linear controller

u

X X

2α

SW

1+
1−

Fig. 14 System 2. The dissipative oscillator controlled by a state
energy error PI controller with switching sign of coupling signals
by multipliers and switching signal SW

6 Conclusion

In this paper the several types of feedback system based
on linear controlled system, linear controller but non-
linear state space feedback were presented and simu-
lated. The theory of state space energy approach was
used. Depending on parameters of the controller the
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Fig. 15 Phase portrait of system 2 with reversed rotation, ki =
0.885; kp = 0.099; α1 = 1; α2 = 1.4; α3 = 1.4

Fig. 16 Time evolution of system 2 with reversed rotation, ki =
0.885; kp = 0.099; α1 = 1; α2 = 1.4; α3 = 1.4

Fig. 17 The state space energy of system 2 with reversed rota-
tion, ki = 0.885; kp = 0.099; α1 = 1; α2 = 1.4; α3 = 1.4

Fig. 18 The frequency spectrum of system 2 with reversed rota-
tion, ki = 0.885; kp = 0.099; α1 = 1; α2 = 1.4; α3 = 1.4

Table 1 Systems properties

State variable System 1 System 2

x1 x2 x1 x2

Lyap. exponent 0.031 0.037 0.038 0.048

Hurst exponent 0.71 0.798 0.713 0.80

Capacity dim. 1.32 1.29 1.36 1.27

Correl. dim. 1.67 1.71 1.66 1.56

system can generate sinusoidal, nonsinusoidal, or even
chaotic signal.
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