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Abstract Exact kinky breather-wave solutions for
the (3+ 1)-dimensional potential Yu–Toda–Sasa–
Fukuyama equation are obtained by using extended
homoclinic test technique. Based on the kinky breather-
wave solution, rational breather-wave solution is gen-
erated by homoclinic breather limit method. Some new
dynamical features of kinkywave are presented, includ-
ing kink degeneracy, rational breather wave is drowned
or swallowed up by kinky wave in the interaction
between rational breather wave and kinky wave. These
results enrich the variety of the dynamics of higher
dimensional nonlinear wave field.
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1 Introduction

Nonlinear evolution equations (NLEEs) depict many
physical scenarios that occur in many areas of physics,
engineering, and applied mathematics. It is indeed
important to investigate the exact explicit solutions of
NLEEs so as to have a better understanding of the phe-
nomena modeled by the underlying NLEEs. To obtain
the exact solutions of NLEEs, many effective meth-
ods have been developed, such as the inverse scattering
method [1,2], the homogeneous balance method [3,4],
the Darboux transformation method [5,6], Hirotäs
bilinear method [7,8], the variable separation approach
[9], the extended tanh method [10,11], the Lie group
method [12,13], and extended homoclinic test tech-
nique [14,15].

Generally speaking, the interactions between soliton
solutions for some nonlinear partial differential equa-
tions are considered to be completely elastic. That is
to say, the soliton amplitude, velocity, and wave shape
will not alter after nonlinear collisions [1]. However,
for some soliton equations, when certain conditions
between the wave speeds and velocities are satisfied,
the completely non-elastic interactions between soliton
solutions will occur. For example two or more solitons
may fuse to a single soliton [16,17]. On the contrary,
at a specific time, a single soliton may fission to two or
more solitons [18]. These two types of phenomenawere
called as soliton fission and soliton fusion, respectively
[18]. In fact, in many nonlinear science fields such
as the plasma physics, gas dynamics, laser and opti-
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cal physics, hydrodynamics, nuclear physics, electro-
magnetics, and passive random walker dynamics [19],
people have observed the similar phenomena. There-
fore, it plays a very important role to discuss the elastic
interactions between the solitary waves in certain inte-
grable or non-integrable system with strong physical
backgrounds, and it may provide theoretical tools in
supporting and understanding the relevant dynamical
behavior.

In this work, we consider the (3 + 1)-dimensional
Yu–Toda–Sasa–Fukuyama (YTSF) equation:

(Φ(v)vz − 4vt )x + 3vyy = 0,

Φ(v) = ∂2x + 4v + 2vx∂
−1
x , (1)

where v : Rx ×Ry×Rz×Rt → R. Using the potential
v = ux gives the (3 + 1)-dimensional potential-YTSF
equation [20]:

− 4uxt + uxxxz + 4uxuxz + 2uxxuz + 3uyy = 0. (2)

It is well known that YTSF equation is an exten-
sion of the Bogoyavlenskii–Schif equation, and it is
not a integrable system [21]. The linearly solitary
wave solution of YTSF equation was firstly given
using the strong symmetry [21]. The non-traveling
wave solution was found using auto-Bäcklund trans-
formation and the generalized projective Riccati equa-
tionmethod [22,23].Moreover, some soliton-like solu-
tions and periodic solutions for the potential-YTSF
equation were obtained by Hirotäs bilinear method,
the tanh–coth method, and the exp-function method
[13,20,24].Recently,Darvishi andNajafi [25] obtained
some breather cross-kink solutions by modification of
the extended homoclinic test technique. In this work,
we discuss further the (3 + 1)-dimensional potential-
YTSF equation by newmethods including the extended
homoclinic test technique and homoclinic breather
limit method. New exact solutions including kinky
breather-wave solution, rational breather-wave solu-
tion, and solitary solution are obtained. Besides, a
new nonlinear dynamical behavior of kinky wave, kink
degeneracy, is investigated, and the completely non-
elastic interaction betweenkink solitarywave and ratio-
nal breather-wave solution is presented. Eventually,
rational breather waves are drowned or swallowed up
by kink wave in the interaction between kink wave and
rational breather wave as t → ∞.

Now, we propose a homoclinic (heteroclinic)
breather limit method (HBLM), to seek kink degener-

acy phenomenon of the potential-YTSF equation. We
take the following four steps [26]:

Step 1 By Painlevé analysis, a transformation u =
T ( f ) is made for some new and unknown function
f .
Step 2 By using the transformation in step 1, origi-
nal equation can be converted into Hirotas bilinear
form G(Dt , Dx , f ) = 0, where the D-operator is
defined by

Dm
x Dk

y f · g

=
(

∂

∂x
− ∂

∂x ′

)m (
∂

∂y
− ∂

∂y ′

)k

f (x, y, t)

· g(x ′
, y

′
, t

′
)|

(x,y,t)=(x ′
,y′

,t ′ ).

Step 3 Solve the above equation to get kinky
breather-wave solution by using extended homo-
clinic test approach (EHTA) [25].
Step 4 Let the period of periodic wave go to infi-
nite in kinky breather-wave solution; we can obtain
rational breather-wave solution; and at the same
time, we get kink degeneracy phenomenon.

2 Kink degeneracy and rational breather-wave
solution

Firstly,weobtain an exact kinkybreather-wave solution
by using the extended homoclinic test technique. We
suppose that

ξ = x + az, and (3)

then, Eq. (2) reduces to

− 4uξ t + auξξξξ + 6auξuξξ + 3uyy = 0, (4)

whose Painlevé analysis and Lax pairs are given in [13]
together with some exact solutions. By using Painleve
analysis we can assume that

u(ξ, y, t) = 2(ln f )ξ , (5)

for some unknown real function f (ξ, y, t) and Eq. (5)
into Eq. (4), we can be reduced into the following bilin-
ear form

(−4Dξ Dt + aD4
ξ + 3D2

y) f · f = 0. (6)

With regard to Eq. (6), using the extended homoclinic
test technique, we are going to seek the solution of the
form
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f (ξ, y, t) = e−pη+b0 cos(p1(ξ−β t+ω1))+b1e
pη,

(7)

where η = ξ + α y + β t + ω and α, β, ω, ω1, p, p1,
b0, b1 are some constants to determine later. Substitut-
ing Eq. (7) into Eq. (6), we get

[2b1b0(−4βp2 − 4p1
2β − 6ap2 p21

+ ap41 + ap4 + 3 p2α2) cos(p1(ξ − β t + ω1))

+ 8apb0b1 p1(p − p1)(p + p1)

× sin(p1(ξ − β t + ω1))]epη + [2b0(−4β p2

− 6ap2 p21 − 4p21β + ap41 + ap4 + 3p2α2)

× cos(p1(ξ − β t + ω1)) − 8apb0 p1(p − p1)

× (p + p1) sin(p1(ξ − β t + ω1))]e−pη

+ 8(3p2α2b1 − 4β p2b1 + 4ap4b1

−β b20 p1
2 + ab20 p

4
1) = 0. (8)

Equating all coefficients of different powers of epη,
e−pη, cos(p1(ξ −β t+ω1)), sin(p1(ξ −β t+ω1)) and
constant term to zero, we obtain the set of algebraic
equation for α, β, ω, ω1, p, p1, b1, b0. From Eq. (8),
we have⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

8apb0 p1(p − p1)(p + p1) = 0

−4βp2 − 4p12β − 6ap2 p21 + ap41
+ ap4 + 3 p2α2 = 0

3p2α2b1 − 4β p2b1 + 4ap4b1

−β b20 p1
2 + ab20 p

4
1 = 0.

(9)

Solving Eq. (9) with the aid of Maple, we get

p1 = ± p, b1 = b20(β − ap2)

4(β + 2ap2)
, α =

√
8β + 4ap2

3
,

(10)

where β, ω, ω1, p and b0 are some free real constants.
SubstitutingEq. (10)withEq. (3) intoEq. (7),weobtain
the solution as

f (x, y, z, t) = e−pζ + b0 cos(pϑ) + b1e
pζ , (11)

where ζ = x+az+α y+β t+ω,ϑ = x+az−β t+ω1.
If 0 < b1 ∈ R, then we obtain the exact kinky breather-
wave solution as follows:

u(x, y, z, t)

= 2p(2
√
b1 sinh(pζ + 1

2 ln(b1)) − b0 sin(pϑ))

2
√
b1 cosh(pζ + 1

2 ln(b1)) + b0 cos(pϑ)
.

(12)

Fig. 1 Kinky breather-wave solution as β = 2, p = 1
4 , b0 =

2, α = −1, ω1 = ω = y = z = 0

Especially, ifwe choose the arbitrary b0 = −2, Eq. (12)
can be rewritten as:

u =
2p

(√
β−ap2

β+2ap2
sinh

(
pζ + 1

2 ln
(

β−ap2
β+2ap2

))
+sin(pϑ)

)
√

β−ap2
β+2ap2 cosh

(
pζ + 1

2 ln
(

β−ap2
β+2ap2

))
−cos(pϑ)

,

(13)

where β > ap2 or β < −2ap2 when a > 0, β >

−2ap2 or β < ap2 when a < 0. Solution u(x, y, z, t)
represented by Eq. (12) is kinky breather wave which
has speed β, and the forward-direction (or backward-
direction) wave shows breather feature as trajectory
along the straight line x = −(α y + az + βt + ω);
meanwhile, it takes on kinky feature as trajectory along
the straight line x = −(az − βt + ω1) for (3+1)-
dimensional potential-YTSF equation. Especially, this
wave shows both breather and kink feature to space
variable t . Besides, it also has a periodic feature with
period 2π

p (see Fig. 1).
Secondly, let p tends to zero in Eq. (13), and we

can get the following rational breather-wave solution
as follows:

u(x, y, z, t) = 8x + 8az + 8
3

√
6β y + 4ω + 4ω1

� ,

(14)
where � = (x + az + β t + 2

3

√
6
√

β y + ω)2 + (x +
az − β t + ω1)

2 − 3a
β
. The solution u(x, y, z, t) rep-

resented by Eq. (14) is a new rational breather-wave
solution. Notice that u tends to zero in Eq. (14) when
the t → ±∞ and notice that the rational breather-wave
solution has one upper lump and one down deep hole.
The deep hole is hidden under the planewave, and it is a
bright-dark solitary wave solution, so it is no longer the
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Fig. 2 Rational breather-wave solution as a = ω1 = ω =
1, β = 3, y = z = 0

kinky. Such a surprising feature of weakly dispersive
long wave is first obtained. Meanwhile, this shows that
kink is degenerated as a rational breather-wave solu-
tion when the period of breather wave tends to infinite
in the breather kink wave (see Fig. 2). This is a new
nonlinear phenomenon up to now.

Now, we study the potential function of the (3+ 1)-
dimensional potential-YTSF equation. By Eq. (14) to
give u(x, y, z, t), the potential function:

v = −ux =
4

(
2x + 2az + 2

√
6β
3 y + ω + ω1

)2
�2

− 8

� , (15)

The solution Eq. (15) is actually a dark roguewave [27]
solution which is a point of hot discussion. The ampli-
tude of the rogue wave solution Eq. (15) depends on
the four parameters a, β, ω1, and ω2. It has one down
hole and two small upper peaks. The main peak forms
a much deeper hole. Figure 3 shows the time structure
of the potential function v(x, 0, 0, t). We can also see
that an obvious feature of this solution is localized in
x−directions. Thus, it indicates that the obtained solu-
tion is the rational rogue wave of (3 + 1)-dimensional
potential-YTSF equation.

3 Interaction between kink wave and rational
breather-wave solution

3.1 Kink-wave solution

Here, we construct single solitary wave solution of the
(3+ 1)-dimensional potential-YTSF equation with the

Fig. 3 Time structure of the rational rogue solution as a =
−2, β = 1, ω1 = ω = 4, y = z = 0

help of its bilinear form. Substituting the ansätz with
regard to Eq. (5), using the extended homoclinic test
technique, we are going to seek the solution of the form

f (ξ, y, t) = 1 + ea3ξ+b3y+c3t , (16)

into Eq. (6) which will produce the dispersion relation

c3 = aa43 + 3b23
4a3

. (17)

So, we can obtain the single traveling solitary wave
solution

u(x, y, z, t) = 2a3ea3ξ+b3y+c3t

1 + ea3ξ+b3y+c3t
. (18)

The solution Eq. (18) shows the single kink soliton
feature, the solution u → 2a3, when t → +∞, and
the solution u → 0, when t → −∞.

3.2 Rational breather-wave solution

In this section, we construct rational breather-wave
solution of the (3 + 1)-dimensional potential-YTSF
equation with the help of its bilinear form. Inspired
by the equation Eq. (14), substituting the ansätz

f (ξ, y, t) = 1 + (a1ξ + b1y + c1t)
2

+ (a2ξ
2 + b2y

2 + c2t
2
), (19)

into Eq. (6) will produce the following relation

c1 = 3a(a41+2a21a2+a22)

4a1
, b2 = −a(a2+a21)

2,

b1 = 0, c2 = −9a2a2(3a21a
2
2+a61+3a41a2+a32)

16a21
.

(20)
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Fig. 4 Rational breather-wave solution as a = a2 = − 1
4 , a1 =

−1, x = 0, t = 0

So, we can obtain the rational breather-wave solution
by inserting Eq. (20) with Eq. (19) into Eq. (5) which
is in the form of

u(ξ, y, t)

= (4(a21 + a2)ξ + 3a(a21 + a2)
2t)

×
⎛
⎝1 +

(
a1ξ + 3a(a21 + a2)2t

4a1

)2

− a(a21 + a2)
2y2

+ a2ξ
2 + 9a2a2(3a21a

2
2 + a61 + 3a41a2 + a32)t

2

16a21

)−1

.

(21)

Some asymptotic behaviors of the obtained solution
Eq. (21) can be found, the solution u → 0, when t →
±∞. It does not possess the feature of kink solitary
wave. Moreover, the solution Eq. (21) is algebraically
decaying, rather than exponentially decaying. From the
Fig. 4, we know that the rational breather-wave solution
has one upper lump and one down deep hole. The deep
hole is hidden under the plane wave, and it is a bright-
dark solitary wave solution (see Fig. 4).

3.3 Interaction

In this section, we study the completely non-elastic
interaction between kink solitary wave solution and
rational breather-wave solution for the (3 + 1)-
dimensional potential-YTSF equation. To obtain the
completely non-elastic interaction between solitary
wave solution and rational kink-wave solution, we turn
the above function f (ξ, y, t) into the following new
ansätz function

f (ξ, y, t) = 1 + (a1ξ + b1y + c1t)
2

+ (a2ξ
2+b2y

2+c2t
2)+δea3ξ+b3y+c3t .

(22)

The function f (ξ, y, t) contains an exponential func-
tion and a rational function. Substituting Eq. (22) into
Eq. (6), we can get the following relations among the
parameters,

b2=−aa43, b1=0, c2= 9

16
a2a63−c21, c3= aa33

4
,

b3 = 0, a1 = 3aa33
4c1

, a2 = a33(16c
2
1 − 9a2a63)

16c21
.

(23)

So, we can obtain new explicit solitarywave solution of
(3+1)-dimensional potential-YTSF equation by insert-
ing Eq. (23) with Eq. (24) into Eq. (5) which is in the
form of

u(ξ, y, t) = a3(χ + 2δe
1
4 a3(4ξ+aa23 t))

1 + χ2

16 − aa43 y
2 + δe

1
4 a3(4ξ+aa23 t)

, (24)

where χ = 4a3ξ + 3aa33 t, and a3, c1, δ are arbitrary
constants. New asymptotic behaviors of the obtained
solution Eq. (24) can be got with aa3

4 > 0, the solu-
tion u → 2a3 as t → +∞, and solution u → 0 as
t → −∞. The asymptotic behaviors show the sin-
gle kink wave finally drowns or swallows up rational
breather wave varying with evolution of time t . In fact,
the solution Eq. (24) is a rational kink-wave solution.
That is to say, it is a solitary wave solution with x and
t (or z and t), and at the same time is also a rational
kink-wave solution with x, y and t (or z, y and t). It
is algebraically decaying, and it is also exponentially
decaying. Hence, it is a mixed exponential–algebraic
solitary wave solution. It reflects the completely non-
elastic interactionbetween twodifferent solitarywaves.
Figure 5 shows the process of interaction, and rational
breatherwaves are drowned or swallowed by kinkwave
(see Fig. 5).

Now, we study the soliton interaction of the (3+1)-
dimensional potential-YTSF equation. In fact, not-
ing f1 = 1, f2 = (a1ξ + b1y + c1t)2 + a2ξ2 +
b2y2 + c2t2, f3 = δea3ξ+b3y+c3t , then any combina-
tions among f1, f2 and f3 will form a solitary wave.
So, we can obtain the solitary waves S1, S2 and S3 with
the following functions⎧⎪⎪⎨
⎪⎪⎩

S1 : f13 = 1 + δea3ξ+b3y+c3t ,

S2 : f12 = 1 + χ2

16 − aa43 y
2,

S3 : f23 = 1 + χ2

16 − aa43 y
2 + δea3ξ+b3y+c3t .

(25)
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Fig. 5 Spatial structures interaction at different times as a =
− 1

2 , a3 = 1
2 , δ = − 1

16 , x = 0

Fig. 5 continued

The solitary waves S1 and S3 are solutions of (3 + 1)-
dimensional potential-YTSF equation. Note the veloc-
ity of the single kink solitary wave solution S1 is

vk = − aa23
4 on the x-axis. Notice S3 is a rational

breather solitary in the condition of δ = 0, and the

velocity is vr = − 3aa23
4 on the x-axis [28]. So, we

obtain the relation Δ(vr , vk) of between vr and vk :

Δ(vr , vk) = vr − vk = −aa23
2

. (26)

If Δ(vr , vk) = 0, then vr ≡ vk , and under this condi-
tion, a3 = 0, no interaction of the solitary wave solu-
tion occurs. If Δ(vr , vk) > 0, then vr > vk , and under
this condition, the fission of the solitary wave solution
will occur. Obviously, when t → −∞, the solution
u represents a rational solitary wave solution. When
t → +∞, the solution u turns into two solitary waves:
the kink solitary wave solution and the rational solitary
wave solution. If Δ(vr , vk) < 0, then vr < vk . Under
this condition, the fusion of the solitary wave solutions
will occur. It is clear that when t → −∞, the solution
u represents two solitary waves: the kink solitary wave
solution and the rational solitary wave solution. When
t → +∞, the rational solitary wave solution disap-
pears, and only the kink solitary wave solution exists.
Like this phenomenon, the process of interaction of
rational breatherwave is drowned or swallowed by kink
solitary wave, when t → ∞(see Fig. 5). Our results are
different from the previous literatures [13,18,20–23].
The above analysis shows that the mixed exponential–
algebraic solitarywave solution is instability. These are
new dynamical phenomenon for (3 + 1)-dimensional
potential-YTSF equation, which has not been reported.
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4 Conclusions

In summary, based on Hirotä bilinear form, apply-
ing the homoclinic breather limit method to the
(3 + 1)-dimensional potential-YTSF equation, exact
kinky breather-wave solution, rational breather-wave
solution, kink-wave solution, and mixed exponential–
algebraic solitary wave solutions are obtained. Fur-
thermore, we investigated new dynamical features of
kinky wave including kink degeneracy, and rational
breather wave is drowned or swallowed by kink wave.
At the same time, the completely non-elastic interac-
tion between kink wave and rational breather wave for
(3 + 1)-dimensional potential-YTSF equation is pre-
sented. The result obtained in this work shows that the
mixed exponential–algebraic solitary wave solution is
instability. These resultsmight be helpful to understand
the propagation processes for nonlinear waves in fluid
mechanics.
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