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Abstract This paper is concerned with a
non-autonomous Nicholson’s blowflies model with an
oscillating death rate. Under proper conditions, we
employ a novel argument to establish a criterion on the
global exponential stability of positive pseudo-almost
periodic solution, which improves and extends some
known relevant results. Moreover, an example along
with its numerical simulations is presented to demon-
strate the validity of the proposed result.

Keywords Positive pseudo-almost periodic
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1 Introduction

In a classic study of population dynamics, the delayed
Nicholson’s blowflies model can be described as fol-
lows:

x ′(t) = −δx(t) + Px(t − τ)e−ax(t−τ), (1.1)

which has agreed with the experimental data on the
population of the Australian sheep blowfly in [1,2].
Here x(t) is the size of the population at time t , P is
the maximum per capita daily egg production, 1

a is the
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size at which the population reproduces at itsmaximum
rate, δ is the per capita daily adult death rate, and τ is
the generation time. Since the coefficients and delays in
differential equations of population and ecology prob-
lems are usually time-varying in the real world, the
model (1.1) has been naturally generalized to the fol-
lowing Nicholson’s blowflies model with time-varying
coefficients and delays:

x ′(t) = −a(t)x(t)

+
m∑

j=1

β j (t)x(t − τ j (t))e
−γ j (t)x(t−τ j (t)).

(1.2)

In particular, there have been extensive results on the
problem of the convergence and persistence of model
(1.2) in the literature. We refer the reader to [3–5] and
the references cited therein. Recently, the attractivity of
periodic or almost periodic solutions and other dynam-
ical aspects have been studied by [6–10], where some
criteria were established to guarantee the global expo-
nential stability of positive periodic solutions and posi-
tive almost periodic solutions, respectively. Moreover,
in these known results in [1–10], we find the following
conditions:

(A0) the coefficient function a(t) in the death rate is
not oscillating, i. e.,

inf
t∈R

a(t) > 0,

has been adopted as fundamental for the consid-
ered dynamic behaviors of (1.1) and (1.2).
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On the other hand, as pointed out in [11], equations
with oscillating coefficients appear in linearizations
of population dynamics models with seasonal fluctua-
tions, where during some seasons the death or harvest-
ing rates may be greater or lesser than the birth rate.
As we known, the existence of pseudo-almost periodic
solutions is among the most attractive topics in qualita-
tive theory of differential equations due to their appli-
cations, especially in biology, economics, physics and
engineering [12–15]. Now, a question naturally arises:
How to find the new criteria to guarantee the existence
and exponential stability of the positive pseudo-almost
periodic solutions of (1.2) with an oscillating coeffi-
cient in death rate.

Motivated by the above discussions, avoiding the
condition (A0), themain purpose of this paper is to give
some sufficient conditions for the existence and global
exponential stability of the positive pseudo-almost peri-
odic solutions of (1.2), and the exponential convergence
rate can be unveiled. The proof is based on the exponen-
tial dichotomy theory and fixed point theorem. Partic-
ularly, our result not only generalizes the results in the
literature [6–10], but also improves them. In fact, one
can see the following Remarks 3.1 and 4.1 for details.

For the sake of simplicity of notations, given a
bounded and continuous function g defined on R, we
denote

g+ = sup
t∈R

g(t) and g− = inf
t∈R

g(t).

It will be assumed that a : R → R is an almost peri-
odic function, β j , τ j , γ j : R → [0, +∞) are pseudo-
almost periodic functions, and

M[a] = lim
T→+∞

1

T

∫ t+T

t
a(s)ds > 0, r

= max
1≤ j≤m

τ+
j , min

1≤ j≤m
γ −
j ≥ 1. (1.3)

As usual, C = C([−r, 0],R) is the Banach space of
the set of all continuous functions from [−r, 0] to R

equipped with supremum norm || · || and C+ = {ϕ ∈
C |ϕ(θ) ≥ 0 for θ ∈ [−r, 0]}. Furthermore, for a con-
tinuous function x defined on [t0 − r, σ ) with t0 < σ

and t ∈ [t0, σ ), we define xt ∈ C by xt (θ) = x(t + θ)

for θ ∈ [−r, 0].
We write by xt (t0, ϕ)(x(t; t0, ϕ)) an admissible

solution of (1.2) with admissible initial conditions

xt0 = ϕ, ϕ ∈ C+ and ϕ(0) > 0. (1.4)

Also, let [t0, η(ϕ)) be the maximal right interval of the
existence of xt (t0, ϕ).

Two positive numbers will be crucial in stating our
results. Since the function 1−x

ex is decreasing with the
range [0, 1], it follows easily that there exists a unique
κ ∈ (0, 1) such that

1 − κ

eκ
= 1

e2
. (1.5)

Obviously,

sup
x≥κ

∣∣∣∣
1 − x

ex

∣∣∣∣ = 1

e2
. (1.6)

Moreover, since xe−x increases on [0, 1] and decreases
on [1,+∞), let κ̃ be the unique number in (1, +∞)

such that

κe−κ = κ̃e−κ̃ .

We let BC(R,R) be the set of bounded and continu-
ous functions fromR toR. Clearly, (BC(R,R), ‖·‖∞)

is a Banach space where ‖ · ‖∞ denotes the supremum
‖ f ‖∞ := sup

t∈R
| f (t)|. We denote by AP(R,R) the set

of the almost periodic functions from R to R, which
can be found in [12,13]. Define the class of functions
PAP0(R,R) as follows:

{
f ∈ BC(R,R)| lim

T→+∞
1

2T

∫ T

−T
| f (t)|dt = 0

}
.

A function f ∈ BC(R,R) is called pseudo-almost
periodic if it can be expressed as

f = h + ϕ,

where h ∈ AP(R,R) and ϕ ∈ PAP0(R,R).

The collection of such functions will be denoted by
PAP(R,R). In particular, (PAP(R,R), ‖.‖∞) is a
Banach space [12].

2 Preliminary results

In this section, we give some results which will be of
importance in the discussion of Sect. 3.

Lemma 2.1 Let a∗ : R → (0, +∞) be an almost
periodic function, F S, Fi , ηS, ηi and M be positive
constants such that
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Fie− ∫ t
s a

∗(u)du ≤ e− ∫ t
s a(u)du

≤ FSe− ∫ t
s a

∗(u)du, for allt, s ∈ R and t − s ≥ 0,

(2.1)⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−ηS = sup
t∈R

{
−a∗(t)M + FS 1

e

m∑
j=1

β j (t)
γ j (t)

}
,

ηi = inf
t∈R

{
−a∗(t) + Fi

m∑
j=1

β j (t)
γ j (t)

e−κ

}
,

(2.2)

M > κ, max
1≤ j≤m

γ +
j ≤ κ̃

M
. (2.3)

Then, the set of {xt (t0, ϕ) : t ∈ [t0, η(ϕ))} is bounded,
and η(ϕ) = +∞. Moreover, there exists tϕ > t0 such
that

κ < x(t; t0, ϕ) < M for all t ≥ tϕ. (2.4)

Proof Since ϕ ∈ C+, using Theorem 5.2.1 in [16,
p. 81], we have xt (t0, ϕ) ∈ C+ for all t ∈ [t0, η(ϕ)).
Let x(t) = x(t; t0, ϕ). Multiplying both sides of (1.2)

by e
∫ t
t0
a(v)dv , and integrating it on [t0, t], in view of

x(t0) = ϕ(0) > 0, we have

x(t) = e
− ∫ t

t0
a(v)dv

x(t0)

+
∫ t

t0
e− ∫ t

s a(v)dv
m∑

j=1

β j (s)x(s − τ j (s))

× e−γ j (s)x(s−τ j (s))ds

> 0, for all t ∈ [t0, η(ϕ)). (2.5)

According to (2.1), (2.2), (2.5) and the fact that
sup
u≥0

ue−u = 1
e , we get

x(t) = e
− ∫ t

t0
a(v)dv

x(t0)

+
∫ t

t0
e− ∫ t

s a(v)dv
m∑

j=1

β j (s)

γ j (s)
γ j (s)x(s − τ j (s))

× e−γ j (s)x(s−τ j (s))ds

≤ FSe
− ∫ t

t0
a∗(v)dv

x(t0) +
∫ t

t0
e− ∫ t

s a
∗(v)dv

× FS
m∑

j=1

β j (s)

γ j (s)

1

e
ds

≤ FSe
− ∫ t

t0
a∗(v)dv

x(t0)

+
∫ t

t0
e− ∫ t

s a
∗(v)dv[−ηS + a∗(s)M]ds

≤ FSe
− ∫ t

t0
a∗(v)dv

x(t0)

+ sup
t∈R

−ηS

a∗(t)

[
1 − e

− ∫ t
t0
a∗(v)dv

]

+ M

[
1 − e

− ∫ t
t0
a∗(v)dv

]

:= A(t), for all t ∈ [t0, η(ϕ)).

From Theorem 2.3.1 in [17] and the boundedness of
A(t), we can obtain η(ϕ) = +∞. Furthermore, we
have

lim
t→+∞ A(t) = sup

t∈R
−ηS

a∗(t)
+ M < M,

which implies that there exists t1 ∈ [t0, +∞) such that

0 < x(t) < M, for all t ∈ [t1, +∞). (2.6)

We now show that l := lim inf
t→+∞ x(t) > 0. By way of

contradiction, we assume that l = 0. For each t ≥ t0,
we define

m(t) = max

{
�|� ≤ t, x(�) = min

t0≤s≤t
x(s)

}
.

It follows from l = 0 that m(t) → +∞ as t → +∞
and that

lim
t→+∞ x(m(t)) = 0.

From the definition of m(t), we know that there exists
t2 > t1 + r such that

0 < x(m(t)) < κ, m(t) > t1 + r,

for all t ∈ [t2, +∞), (2.7)

and

x(m(t)) ≤ γ j (s)x(s − τ j (s)) ≤ γ +
j M ≤ κ̃, (2.8)

where s ∈ [t1 + r, m(t)], t ∈ [t2, +∞), j =
1, 2, . . . ,m. Note that xe−x increases on [0, 1] and
decreases on [1, +∞). In view of (2.1), (2.2), (2.7),
(2.8) and the fact that κe−κ = κ̃e−κ̃ , we have

x(m(t)) = e
− ∫ m(t)

t1+r a(v)dv
x(t1 + r)

+
∫ m(t)

t1+r
e− ∫ m(t)

s a(v)dv
m∑

j=1

β j (s)

γ j (s)
γ j (s)x

× (s − τ j (s))e
−γ j (s)x(s−τ j (s))ds

≥ Fie
− ∫ m(t)

t1+r a
∗(v)dv

x(m(t))

+
∫ m(t)

t1+r
e− ∫ m(t)

s a∗(v)dv

× Fi
m∑

j=1

β j (s)

γ j (s)
x(m(t))e−x(m(t))ds,

for all t ∈ [t2, +∞),
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and

1 ≥ Fie
− ∫ m(t)

t1+r a
∗(v)dv +

∫ m(t)

t1+r
e− ∫ m(t)

s a∗(v)dvFi

×
m∑

j=1

β j (s)

γ j (s)
e−x(m(t))ds

≥ Fie
− ∫ m(t)

t1+r a
∗(v)dv +

∫ m(t)

t1+r
e− ∫ m(t)

s a∗(v)dvFi

×
m∑

j=1

β j (s)

γ j (s)
e−κds

≥ Fie
− ∫ m(t)

t1+r a
∗(v)dv

+
∫ m(t)

t1+r
e− ∫ m(t)

s a∗(v)dv
[
ηi + a∗(s)

]
ds

≥ Fie
− ∫ m(t)

t1+r a
∗(v)dv

+ inf
t∈R

ηi

a∗(t)

[
1 − e

− ∫ m(t)
t1+r a

∗(v)dv
]

+
[
1 − e

− ∫ m(t)
t1+r a

∗(v)dv
]

,

for all t ∈ [t2, +∞). (2.9)

Letting t → +∞, (2.9) yields

inf
t∈R

ηi

a∗(t)
< 0,

which contradicts (2.2). Thus, lim inf
t→+∞ x(t) = l > 0.

We next prove that lim inf
t→+∞ x(t) = l > κ . Again, by

way of contradiction, we assume that l ≤ κ . Then, for
any positive constant Λ < l, there exists t3 > t1 + r
such that

l − Λ ≤ x(s − τ j (s))

≤ γ j (s)x(s − τ j (s)) ≤ γ +
j M ≤ κ̃,

for all s ∈ [t3, +∞),

where j = 1, 2, . . . ,m. Again from the facts that
κe−κ = κ̃e−κ̃ , xe−x increases on [0, 1] and decreases
on [1, +∞), we obtain

x(t) = e
− ∫ t

t3
a(v)dv

x(t3)

+
∫ t

t3
e− ∫ t

s a(v)dv
m∑

j=1

β j (s)

γ j (s)
γ j (s)x(s − τ j (s))

× e−γ j (s)x(s−τ j (s))ds

≥ e
− ∫ t

t3
a(v)dv

x(t3) +
∫ t

t3
e− ∫ t

s a(v)dv

×
m∑

j=1

β j (s)

γ j (s)
(l − Λ)e−(l−Λ)ds

≥ e
− ∫ t

t3
a(v)dv

x(t3) +
∫ t

t3
e− ∫ t

s a(v)dv

×
m∑

j=1

β j (s)

γ j (s)
(l − Λ)e−κds

≥ Fie
− ∫ t

t3
a∗(v)dv

x(t3) + Fi
∫ t

t3
e− ∫ t

s a
∗(v)dv

×
m∑

j=1

β j (s)

γ j (s)
(l − Λ)e−κds

≥ Fie
− ∫ t

t3
a∗(v)dv

x(t3) +
∫ t

t3
e− ∫ t

s a
∗(v)dv

× (ηi + a∗(s))(l − Λ)ds

≥ Fie
− ∫ t

t3
a∗(v)dv

x(t3) + inf
t∈R

ηi

a∗(t)
(l − Λ)

×
[
1 − e

− ∫ t
t3
a∗(v)dv

]

+ (l − Λ)

[
1 − e

− ∫ t
t3
a∗(v)dv

]

:= B(t), for all t ∈ [t3, +∞),

and

lim
t→+∞ B(t) = inf

t∈R
ηi

a∗(t)
(l − Λ) + (l − Λ),

which, together with the arbitrariness of Λ, entail that

l = lim inf
t→+∞ x(t)

≥ lim
t→+∞ B(t) and l ≥ inf

t∈R
ηi

a∗(t)
l + l > l.

This is a contradiction. Hence, l > κ and there exists
t4 ∈ [t1 + r, +∞) such that

κ < x(t), for all t ∈ [t4, +∞). (2.10)

In view of (2.6) and (2.10), there exists tϕ > t4 such
that

κ < x(t; t0, ϕ) < M for allt ≥ tϕ.

The proof is complete. 
�
Lemma 2.2 (see [18, Lemma 2.8]) Set

B∗ =
{
ϕ|ϕ ∈ PAP(R,R) is uniformly continuous on

R, K1 ≤ ϕ(t) ≤ K2, for all t ∈ R

}
.

Then, B∗ is a closed subset of P AP(R,R).
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3 Main results

In this section, we establish sufficient conditions on the
existence and global exponential stability of positive
pseudo-almost periodic solutions of (1.2).

Theorem 3.1 Let

sup
t∈R

{
− a∗(t) + F

S
m∑

j=1

β j (t)
1

e2

}
< 0, (3.1)

and the assumptions of Lemma2.1 hold. Then, Eq. (1.2)
has at least one positive pseudo-almost periodic solu-
tion.

Proof By (3.1), we can choose a constant ς ∈ (0, 1]
such that

sup
t∈R

{
− a∗(t) + F

S
m∑

j=1

β j (t)
1

e2
eς

}
< 0. (3.2)

Set

B =
{
ϕ|ϕ ∈ PAP(R,R) is uniformly continuous on

R, κ ≤ ϕ(t) ≤ M, for all t ∈ R

}
.

It follows from Lemma 2.2 that B is a closed subset of
PAP(R,R). Let φ ∈ B and f (t, z) = φ(t − z). In
view of Theorem 5.3 in [12, p. 58] and Definition 5.7
in [12, p. 59], the uniform continuity of φ implies that
f ∈ PAP(R × Ω) and f is continuous in z ∈ L and
uniformly in t ∈ R for all compact subset L ofΩ ⊂ R.
This, together with τ j ∈ PAP(R,R) and Theorem
5.11 in [12, p. 60], yields

φ(t − τ j (t)) ∈ PAP(R,R), j = 1, 2, . . . ,m.

According to Corollary 5.4 in [12, p. 58] and the com-
position theorem of pseudo-almost periodic functions,
we have
m∑

j=1

β j (t)φ(t − τ j (t))e
−γ j (t)φ(t−τ j (t)) ∈ PAP(R,R).

We next consider an auxiliary equation

x ′(t) = −a(t)x(t) +
m∑

j=1

β j (t)φ(t − τ j (t))

× e−γ j (t)φ(t−τ j (t)). (3.3)

In view of the fact that M[a] > 0, it follows from
Theorem 2.3 in [19] that the system (3.3) has exactly
one pseudo-almost periodic solution

xφ(t) =
∫ t

−∞
e− ∫ t

s a(u)du
[ m∑

j=1

β j (s)φ(s − τ j (s))

× e−γ j (s)φ(s−τ j (s))
]
ds, (3.4)

for any φ ∈ B. Define a mapping T : B −→
PAP(R,R) by setting

T (φ(t)) = xφ(t), ∀ φ ∈ B.

For any φ ∈ B, from (2.1) to (2.2), together with the
fact that sup

u≥0
ue−u = 1

e , we have

xφ(t) =
∫ t

−∞
e− ∫ t

s a(u)du
[ m∑

j=1

β j (s)

γ j (s)
γ j (s)φ(s−τ j (s))

× e−γ j (s)φ(s−τ j (s))
]
ds

≤
∫ t

−∞
e− ∫ t

s a
∗(u)du

⎡

⎣FS
m∑

j=1

β j (s)

γ j (s)

1

e

⎤

⎦ ds

≤
∫ t

−∞
e− ∫ t

s a
∗(u)du[−ηS + a∗(s)M]ds≤M,

for all t ∈ R. (3.5)

Note that xe−x increases on [0, 1] and decreases on
[1, +∞). In view of (2.1–2.3) and the facts that

κe−κ = κ̃e−κ̃ , κ ≤ γ j (t)φ(t − τ j (t)) ≤ γ +
j M ≤ κ̃,

for all t ∈ R, j = 1, 2, . . . ,m,

we obtain

xφ(t) =
∫ t

−∞
e− ∫ t

s a(u)du
[ m∑

j=1

β j (s)

γ j (s)
γ j (s)φ(s−τ j (s))

× e−γ j (s)φ(s−τ j (s))
]
ds

≥
∫ t

−∞
e− ∫ t

s a
∗(u)du Fi

m∑

j=1

β j (s)

γ j (s)
κe−κds

≥
∫ t

−∞
e− ∫ t

s a
∗(u)du[ηi + a∗(s)]κds ≥ κ,

for all t ∈ R, (3.6)

which, together with (3.5), leads to

κ ≤ xφ(t) ≤ M, for all t ∈ R. (3.7)

Subsequently, from (3.3), we get that (xφ(t))′ is
bounded for all t ∈ R, and

xφ ∈ PAP(R,R) is uniformly continuous on R.
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Thus, xφ ∈ B, and the mapping T is a self-mapping
from B to B.

Now, we prove that the mapping T is a contraction
mapping on B.

In fact, for ϕ,ψ ∈ B, we get

‖T (ϕ) − T (ψ)‖∞

= sup
t∈R

∣∣∣∣
∫ t

−∞
e− ∫ t

s a(u)du

×
m∑

j=1

[
β j (s)

γ j (s)
(γ j (s)ϕ(s − τ j (s))e

−γ j (s)ϕ(s−τ j (s))

−γ j (s)ψ(s − τ j (s))e
−γ j (s)ψ(s−τ j (s)))

]
ds

∣∣∣∣

≤ sup
t∈R

∫ t

−∞
e− ∫ t

s a(u)du
m∑

j=1

[
β j (s)

γ j (s)
|γ j (s)ϕ

× (s − τ j (s))e
−γ j (s)ϕ(s−τ j (s))

−γ j (s)ψ(s − τ j (s))e
−γ j (s)ψ(s−τ j (s))|

]
ds. (3.8)

In view of sup
κ≤u≤κ̃

| 1−u
eu | = 1

e2
and the inequality

|xe−x − ye−y | =
∣∣∣∣
1 − (x + θ(y − x))

ex+θ(y−x)

∣∣∣∣ |x − y|

≤ 1

e2
|x − y| where

x, y ∈ [κ, +∞), 0 < θ < 1, (3.9)

then, (2.1) and (2.6) give us that

‖T (ϕ) − T (ψ)‖∞

≤ sup
t∈R

∫ t

−∞
e− ∫ t

s a
∗(u)du FS

m∑

j=1

β j (s)

× 1

e2
|ϕ(s − τ j (s)) − ψ(s − τ j (s))|ds

≤ ‖ϕ − ψ‖∞ sup
t∈R

∫ t

−∞
e− ∫ t

s a
∗(u)du FS

×
m∑

j=1

β j (s)
1

e2
ds

≤ ‖ϕ − ψ‖∞ sup
t∈R

∫ t

−∞
e− ∫ t

s a
∗(u)dua∗(s) 1

eς
ds

≤ 1

eς
‖ϕ − ψ‖∞,

It follows from e−ς < 1 that the mapping T is a
contraction on B. Using Theorem 0.3.1 of [20], we
obtain that the mapping T possesses a unique fixed

point ϕ∗ ∈ B, Tϕ∗ = ϕ∗. By (3.2), ϕ∗ satisfies (1.2).
So ϕ∗ is a positive pseudo-almost periodic solution of
(1.2) in B. This completes the proof.

Theorem 3.2 Suppose that all conditions in Theo-
rem 3.1 are satisfied. Let x∗(t) be the positive pseudo-
almost periodic solution of Eq. (1.2) in Theorem 3.1.
Then, x∗(t) is globally exponentially stable, i.e., the
solution x(t; t0, ϕ) of (1.2) with admissible initial con-
ditions (1.4) converges exponentially to x∗(t) as t →
+∞.

Proof By (3.1), we can choose a constant λ ∈
(0, inf

t∈R
a∗(t)] such that

sup
t∈R

{
− a∗(t) + λ + F

S
m∑

j=1

β j (t)
1

e2
eλτ+

j

}
< 0.

(3.10)

Assume that x∗(t) is the positive pseudo-almost peri-
odic solution of Eq. (1.2) in Theorem 3.1. To prove
Theorem 3.2, we should show the global exponential
stability for x∗(t). Let x(t) = x(t; t0, ϕ). In view of
Lemma 2.1, we have that there exists tϕ ∈ [t0, +∞)

such that

κ < x(t) < M for all t ∈ [tϕ, +∞). (3.11)

Set y(t) = x(t) − x∗(t). Then

y′(t) = −a(t)y(t)

+
m∑

j=1

β j (t)[x(t − τ j (t))e
−γ j (t)x(t−τ j (t))

− x∗(t − τ j (t))e
−γ j (t)x∗(t−τ j (t))],

and

y(t) = e
− ∫ t

t0
a(v)dv

y(t0)

+
∫ t

t0
e− ∫ t

s a(v)dv
m∑

j=1

β j (s)

γ j (s)

×[γ j (s)x(s − τ j (s))e
−γ j (s)x(s−τ j (s))

−γ j (s)x
∗(s − τ j (s))e

−γ j (s)x∗(s−τ j (s))]ds,
(3.12)

where t ∈ [t0, +∞).

Let

tξ = tϕ + r, Kϕ = FS + 1, ‖y‖ξ

= max
t∈[t0−r, tξ ] |x(t) − x∗(t)|. (3.13)
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Consequently, for any ε > 0, it is obvious that

|y(tξ )| < ‖y‖ξ + ε,

|y(t)| < Kϕ(‖y‖ξ + ε)eλtξ e−λt ,

for all t ∈ [t0 − r, tξ ].
In the following, we will show

‖y(t)‖ < Kϕ(‖y‖ξ + ε)eλtξ e−λt

for all t > tξ . (3.14)

Otherwise, there must exist θ > tξ such that
{ |y(θ)| = Kϕ(‖y‖ξ + ε)eλtξ e−λθ ,

|y(t)| < Kϕ(‖y‖ξ + ε)eλtξ e−λt , for all t ∈ [t0 − r, θ).

(3.15)

With the help of (3.9), (3.11), (3.12), (3.13) and (3.15),
we have

|y(θ)| = e
− ∫ θ

tξ
a(v)dv|y(tξ )|

+
∫ θ

tξ
e− ∫ θ

s a(v)dv
m∑

j=1

β j (s)

γ j (s)

× |γ j (s)x(s − τ j (s))e
−γ j (s)x(s−τ j (s))

−γ j (s)x
∗(s − τ j (s))e

−γ j (s)x∗(s−τ j (s))|ds
≤ FSe

− ∫ θ
tξ
a∗(v)dv|y(tξ )| +

∫ θ

tξ
e− ∫ θ

s a∗(v)dvFS

×
m∑

j=1

β j (s)
1

e2
|y(s − τ j (s))|ds

≤ FSe
− ∫ θ

tξ
a∗(v)dv

(‖y‖ξ + ε)

+
∫ θ

tξ
e− ∫ θ

s a∗(v)dvFS

×
m∑

j=1

β j (s)
1

e2
Kϕ(‖y‖ξ + ε)eλtξ e−λ(s−τ j (s))ds

≤ Kϕ(‖y‖ξ + ε)eλtξ e−λθ

×
[
FS

Kϕ

e
− ∫ θ

tξ
a∗(v)dv

eλ(θ−tξ )

+ eλθ

∫ θ

tξ
e− ∫ θ

s a∗(v)dvFS

×
m∑

j=1

β j (s)
1

e2
eλτ+

j e−λsds

]

= Kϕ(‖y‖ξ + ε)eλtξ e−λθ

[
FS

Kϕ

e
− ∫ θ

tξ
(a∗(v)−λ)dv

+
∫ θ

tξ
e− ∫ θ

s (a∗(v)−λ)dvFS
m∑

j=1

β j (s)
1

e2
eλτ+

j ds

]

≤ Kϕ(‖y‖ξ + ε)eλtξ e−λθ

[
FS

Kϕ

e
− ∫ θ

tξ
(a∗(v)−λ)dv

+
∫ θ

tξ
e− ∫ θ

s (a∗(v)−λ)dv(a∗(s) − λ)ds

]

≤ Kϕ(‖y‖ξ + ε)eλtξ e−λθ

×
[
1 −

(
1 − FS

Kϕ

)
e
− ∫ θ

tξ
(a∗(v)−λ)dv

]

< Kϕ(‖y‖ξ + ε)eλtξ e−λθ ,

which contradicts the first Eq. in (3.15). Hence, (3.14)
holds. Letting ε −→ 0+, we have from (3.14) that

|y(t)| ≤ Kϕ‖y‖ξ e
λtξ e−λt for all t > tξ ,

which ends the proof. 
�
Remark 3.1 Most recently, Liu [6,10] considered the
periodic solution and almost periodic solution problem
of (1.2) with almost periodic coefficients and delays
under the following assumption:

a(t) ≡ a∗(t) satisfies (2.1), (2.2), (2.3) and (3.1).

Noting that the pseudo-almost periodic functions is a
natural generalization of the concept of almost period-
icity and the fact that AP(R,R) is a proper subspace of
PAP(R,R) (see [12]), it is obvious that all the results
in [6,10] are special cases of our results.

4 Example and remark

Example 4.1 Consider the following Nicholson’s
blowflies model with an oscillating death rate:

x ′(t) = −(0.4040326 + sin 200t)x(t)

+ 1

2

100 + cos
√
2t

100 + sin t
x(t − sin2 t − e−t2 sin4 t )

× e−x(t−sin2 t−e−t2 sin4 t )

+ 1

2

100 + cos
√
3t

100 + sin t
x(t − cos2 t − e−t2 sin4 t )

× e−x(t−cos2 t−e−t2 sin4 t ). (4.1)

Obviously,

a(t) = 0.4040326 + sin 200t, a∗(t) = 0.4040326,

FS = e
1

100 , Fi = e− 1
100 ,

Fie− ∫ t
s a

∗(u)du ≤ e− ∫ t
s a(u)du ≤ FSe− ∫ t

s a
∗(u)du,

for all t, s ∈ R and t − s ≥ 0,
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M[a] = lim
T→+∞

1

T

∫ t+T

t
a(s)ds

= 0.4040326 + lim
T→+∞

1

200T
×[cos 200t − cos 200(t + T )] = 0.4040326,

r = 2, β−
i = 1

2

99

101
, β+

j = 1

2

101

99
,

γ −
1 = γ +

1 = 1.

Note κ ≈ 0.7215355 and κ̃ ≈ 1.342276. Let M =
1.203432. Then

a∗M = 0.4040326 × 1.203432

≈ 0.4862258,

FS

(
β+
1

γ −
1

1

e
+ β+

2

γ −
2

)
1

e
= e

1
100

101

99

1

e
≈ 0.37,

Fi

(
β−
1

γ +
1

+ β−
2

γ +
2

)
e−κ = e− 1

100
99

101
e−κ

≈ 99

101
e−0.7215355 ≈ 0.47,

FS(β+
1 + β+

2 )
1

e2
= e

1
100

101

99

1

e2
≈ 0.13,

which implies that the Nicholson’s blowflies model
(4.1) satisfies all the conditions in Theorem 3.2. Hence,
from Theorem 3.2, Eq. (4.1) has exactly one posi-
tive pseudo-almost periodic solution x∗(t). Moreover,
x∗(t) is globally exponentially stable. This fact is veri-
fiedby the numerical simulations inFigs. 1 and2. In this
case, x∗(t) ∈ [0.7215355, 1.203432], and the solution
x(t; t0, ϕ)of (4.1)with x0 ≡ 0.93, 0.96, 1, 0.1, 0.20.5,

0 10 20 30 40 50 60 70
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

t/s

x

x0=0.93

x0=0.96

x0=1

Fig. 1 Numerical solutions x(t) of system (3.1) for initial value
x0 ≡ 0.93, 0.96, 1

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2 Numerical solutions x(t) of system (3.1) for initial value
x0 ≡ 0.1, 0.20.5, 0.8

0.8 converges exponentially to x∗(t) as t → +∞,
where the exponential convergent rate λ is approxi-
mately equal to 0.01.

Remark 4.1 It is worth mentioning that computing the
upper right derivative of Lyapunov function is the key
method to prove the stability of biological dynamics
model in [3–5,7–9,21,22], which is invalid for the
Nicholson’s blowflies model with oscillating death rate
coefficients. In (4.1), the time-varying oscillating death
rate

a(t) = 0.4040326 + sin 200t

is oscillating, and doesn’t satisfy (A0). For all we know,
there is no research on the global exponential stability
of positive pseudo-almost periodic solutions of Nichol-
son’s blowflies model with oscillating death rate. Thus,
all the results in the Refs. [3–5,7–9] and [21,22] can-
not be applicable to prove that all the solutions of (4.1)
converge exponentially to the positive pseudo-almost
periodic solution.

5 Conclusions

In this paper, the global exponential stability of posi-
tive pseudo-almost periodic solution for a Nicholson’s
blowflies model has been analyzed. Without assum-
ing that the death rate is not oscillating, based on the
pseudo-almost periodic function theory and differen-
tial inequality techniques, we employ a novel proof to
establish some criteria to guarantee the existence and
global exponential stability of positive pseudo-almost
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periodic solution for the model. Finally, two numerical
simulation figures are given to demonstrate the effec-
tiveness and feasibility of the theoretical results. More-
over, the method used in this paper provides a possible
approach to study the pseudo-almost periodic problem
of the higher dimension Nicholson’s blowflies systems
with oscillating death rates. This is the aim of our future
work.

Acknowledgments I would like to thank the associate editor
and reviewers, whose valuable suggestions helped me elaborate
and improve my paper. In particular, the author expresses the
sincere gratitude to Prof. Bingwen Liu (Jiaxing University, Zhe-
jiang, P.R. China) for the helpful discussion when this work is
carried out. Moreover, this work was supported by the Natural
Scientific Research Fund of Hunan Provincial of China (Grant
Nos. 2016JJ6103, 2016JJ6104), and the Construction Program
of the Key Discipline in Hunan University of Arts and Science-
Applied Mathematics.

References

1. Nicholson, A.J.: An outline of the dynamics of animal pop-
ulations. Aust. J. Zool. 2, 9–65 (1954)

2. Gurney, W.S., Blythe, S.P., Nisbet, R.M.: Nicholsons
blowflies (revisited). Nature 287, 17–21 (1980)

3. Liu, B.: Global stability of a class of Nicholsons blowflies
model with patch structure and multiple time-varying
delays. NonlinearAnal. RealWorldAppl. 11(4), 2557–2562
(2010)

4. Zhou, H., Wang, W., Zhang, H.: Convergence for a class
of non-autonomous Nicholsons blowflies model with time-
varying coefficients and delays. Nonlinear Anal. RealWorld
Appl. 11(5), 3431–3436 (2010)

5. Berezansky, L., Braverman, E., Idels, L.: Nicholson’s
blowflies differential equations revisited: main results and
open problems. Appl. Math. Model. 34, 1405–1417 (2010)

6. Liu, B.: Global exponential stability of positive periodic
solutions for a delayedNicholson’s blowfliesmodel. J.Math.
Anal. Appl. 412, 212–221 (2014)

7. Alzabut, J.O.: Almost periodic solutions for an impulsive
delay Nicholson’s blowflies model. J. Comput. Appl. Math.
234, 233–239 (2010)

8. Xu, B., Yuan, R.: The existence of positive almost periodic
type solutions for some neutral nonlinear integral equation.
Nonlinear Anal. 60(4), 669–684 (2005)

9. Chen, W., Liu, B.: Positive almost periodic solution for a
class of Nicholsons blowflies model with multiple time-
varying delays. J. Comput. Appl. Math. 235, 2090–2097
(2011)

10. Liu, B.: New results on global exponential stability of almost
periodic solutions for a delayed Nicholson’s blowflies
model. Ann. Polon. Math. 113(2), 191–208 (2015)

11. Berezansky, L., Braverman, E.: On exponential stability of
a linear delay differential equation with an oscillating coef-
ficient. Appl. Math. Lett. 22, 1833–1837 (2009)

12. Zhang, C.: Almost Periodic Type Functions and Ergodicity.
Kluwer Academic/Science Press, Beijing (2003)

13. Shao, J.: Pseudo almost periodic solutions for a Lasota–
Wazewska model with an oscillating death rate. Appl. Math.
Lett. 43, 90–95 (2015)

14. Diagana, T.: Pseudo almost periodic solutions to a class of
semilinear differential equations. Nonlinear Dyn. 45, 45–53
(2005)

15. Insperger, T., Stepan, G.: Stability analysis of turning with
periodic spindle speed modulation via semi-discretisation.
J. Vib. Control. 10, 1835–1855 (2004)

16. Smith, H.L.: Monotone Dynamical Systems. Mathemati-
cal Surveys Monographs, American Mathematical Society,
Providence (1995)

17. Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional
Differential Equations. Springer, New York (1993)

18. Zhang, H.: New results on the positive pseudo almost peri-
odic solutions for a generalized model of hematopoiesis.
Electron. J.Qual. TheoryDiffer. Equ. 2014(24), 1–10 (2014)

19. Zhang, C.: Pseudo almost periodic solutions of some dif-
ferential equations II. J. Math. Anal. Appl. 192, 543–561
(1995)

20. Hale, J.K.: Ordinary Differential Equations. Krieger, Mal-
abar (1980)

21. Rakkiyappan, R., Zhu, Q., Chandrasekar, A.: Stability of
stochastic neural networks of neutral type with Markovian
jumping parameters:Adelay-fractioning approach. J. Frank.
Inst. 351(3), 1553–1570 (2014)

22. Rakkiyappan, R., Chandrasekar, A., Lakshmanan, S., Ju
Park, H.: Exponential stability of Markovian jumping
stochastic Cohen–Grossberg neural networks with mode-
dependent probabilistic time-varying delays and impulses.
Neurocomputing 131(5), 265–277 (2014)

123


	New results on positive pseudo-almost periodic solutions  for a delayed Nicholson's blowflies model
	Abstract
	1 Introduction
	2 Preliminary results
	3 Main results
	4 Example and remark
	5 Conclusions
	Acknowledgments
	References




